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Abstract. Modular arithmetic is the underlying integral computation
model in conventional programming languages. In this paper, we discuss
the satisfiability problem of propositional formulae in modular arithmetic

over the finite ring Z2ω . Although an upper bound of 22
O(n4)

can be ob-
tained by solving alternation-free Presburger arithmetic, it is easy to see
that the problem is in fact NP-complete. Further, we give an efficient
reduction to integer programming with the number of constraints and
variables linear in the length of the given linear modular arithmetic for-
mula. For non-linear modular arithmetic formulae, an additional factor of
ω is needed. With the advent of efficient integer programming packages,
our algorithm could be useful to software verification in practice.

1 Introduction

Modular arithmetic is widely used in the design of cryptosystems and pseudo
random number generators [22, 12]. Since integers use a finite binary represen-
tation in conventional programming languages such as C, modular arithmetic
is often required in software verification as well. Indeed, many algorithms are
designed to avoid overflow in modular arithmetic explicitly. Verification tools
therefore need to support modular arithmetic to check these algorithms.

In this paper, we discuss the satisfiability problem of propositional formulae
in modular arithmetic. All arithmetic computation in the formulae is over the
finite ring Z2ω for some fixed ω. In addition to linear terms, non-linear terms
such as multiplications and modulo operations of arbitrary terms are allowed.
We show that the satisfiability problem is NP-complete for formulae of linear
modular arithmetic. The problem is still in NP for full modular arithmetic.

We give an efficient reduction to integer programming to have a practical de-
cision procedure for modular arithmetic. Several issues have to be addressed in
our construction. Firstly, modular computation must be simulated by linear con-
straints, as well as all logical operations. Furthermore, non-linear multiplications
and modulo operations need to be expressed in the form of linear constraints.
Most importantly, we would not like our reduction to increase the size of the
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problem significantly. Our construction should not use more than a linear num-
ber of constraints and variables in the length of the modular arithmetic formula.

It is well-known that the first-order non-linear arithmetic theory is unde-
cidable [8]. Presburger arithmetic is a decidable first-order linear arithmetic

theory [6, 15, 19]. In [15], Oppen shows an upper bound of 222O(n lg n)

for de-
termining the truth of Presburger arithmetic formula of length n. If the number

of quantifier alternation is m, the problem can be solved in time 22O(nm+4)

and
space 2O(nm+4) [19]. Although Presburger arithmetic can express first-order lin-
ear arithmetic properties, it does not allow modular arithmetic nor non-linear
operations.

Integer programming optimizes a given linear objective function subject to
a set of linear constraints [16]. The problem is known to be NP-complete. Un-
like Presburger arithmetic, it does not allow arbitrary logical combinations of
constraints but their conjunction. It does not allow modular arithmetic either.

Other decision procedures for linear arithmetic are available. In [4], a survey
of the automata-theoretic approach is given. For a special class of quantifier-free
Presburger arithmetic, [21] gives an efficient reduction to Boolean satisfiability.
The tool CVC Lite [2] contains a decision procedure to check validity of lin-
ear arithmetic formula. Similar to [6, 15, 19], none of them considers modular
arithmetic nor non-linear operations. In [1], a decision procedure for systems of
modular arithmetic inequalities is proposed. Although the authors use an al-
gebraic approach to check the satisfiability of (in)equalities in a system. It is
unclear whether the logical and modulo operations can be added within their
framework.

We note that our reduction may serve as a reduction to Presburger arith-
metic. Since Presburger arithmetic does not allow modular arithmetic, encoding
it in linear constraints allows us to solve the problem by various decision proce-
dures for Presburger arithmetic. However, solving the corresponding Presburger

arithmetic formula requires 22O(n4)

in the length of the modular arithmetic for-
mula. Our reduction is more efficient asymptotically.

The remaining of paper is organized as follows. Section 2 contains the back-
ground. It is followed by the syntax and semantics of linear modular arithmetic
in Section 3. The algorithm for the satisfiability of linear modular arithmetic
is presented in Section 4. The syntax and semantics of modular arithmetic for-
mulae are defined in Section 5. Section 6 discusses the satisfiability problem for
non-linear modular arithmetic. Applications of our algorithm are discussed in
Section 7. We report our preliminary experimental results in Section 8. Finally,
Section 9 concludes the paper.

2 Preliminaries

Let Z be the set of integers, Z+ the set of positive integers, and Z× the set of
non-zero integers. In the following exposition, we will fix the set X of integer
variables and m = 2ω where ω ∈ Z+.



Definition 1. ([11], for example) For any a ∈ Z, b ∈ Z
×, there are q, r ∈ Z

such that a = bq + r and 0 ≤ r < |b|.

The numbers q and r are called a quotient b (a quo b) and a modulo b (a mod
b) respectively. We also define signed quotient and signed modulo as follows.

a smod b
△
=

{

a mod b if 0 ≤ a mod b < ⌊ |b|
2 ⌋

a mod b − |b| if ⌊ |b|
2 ⌋ ≤ a mod b < |b|

a squo b
△
=

a − (a smod b)

b

For example, −7 quo −3 = 3 and −7 mod −3 = 2, but −7 squo −3 = 2
and −7 smod −3 = −1 for −7 = −3 × 3 + 2. We say a is congruent to b modulo
m, a ≡ b (mod m), if (a − b) mod m = 0. For any a ∈ Z, the residue class of

a modulo m is the set [a]
△
= {x|x ≡ a (mod m)}. It is easy to verify that the

residue class system Zm = ({[0], [1], . . . , [m − 1]}, +, [0], ·, [1]) is a commutative
ring with identity [11].

Since Zm consists of residue classes of integers modulo m, several represen-
tations of the equivalence classes are possible. Particularly, we call {−m

2 , . . . ,

−1, 0, 1, m
2 − 1} the signed representation and {0, 1, . . . , m − 1} the unsigned

representation. To emulate integral computation in conventional languages, we
use the signed representation if not mentioned otherwise. If c ∈ Z, the notation
c ∈ Zm denotes that c is an element in the signed representation of Zm.

Let c, ai,j ∈ Z and xj ∈ X for 0 ≤ i < M , 0 ≤ j < N . Given a set of M linear

constraints
∑N−1

j=0 ai,jxj ∼i ci where ∼i∈ {≤, <, =, >,≥}, and a linear objective

function
∑N−1

j=0 bjxj , the integer programming problem is to find a valuation
ρ : X → Z such that ρ satisfies all linear constraints and attains the maximum
value of the objective function. We denote an instance of integer programming
problem as follows.

maximize
∑N−1

j=0 bjxj

subject to

∑N−1
j=0 a0,jxj ∼0 c0

∑N−1
j=0 a1,jxj ∼1 c1

...
∑N−1

j=0 aM−1,jxj ∼M−1 cM−1

It is known that the integer programming problem is NP-complete [16].

3 Linear Modular Arithmetic

For any c ∈ Zm and x ∈ X , the syntax of the Linear Modular Arithmetic For-
mula over Zm is defined in Figure 1. We use the symbols % and ÷ for the
modulo and quotient operators respectively in our object language to avoid con-
fusion. Also, we do not use syntactic translation for equality nor any of the logical



Term t
△

= c | c · t | t% c | t ÷ c | t + t
′

Atomic Proposition l
△

= ff | t ≤ t
′ | t = t

′

Formula f
△

= l | ¬f | f ∧ f
′ | f ∨ f

′

Fig. 1. Syntax of Linear Modular Arithmetic Formula over Zm

connectives. A more efficient reduction can be attained by treating each oper-
ator separately, although it does not improve the performance asymptotically.
Finally, only constants in Zm are allowed. Overflowed constants cause compilers
to generate warnings; they can be identified rather easily.1

[[c]]ρ
△

= c

[[c · t]]ρ
△

= c[[t]]ρ smod m

[[t + t′]]ρ
△

= [[t]]ρ + [[t′]]ρ smod m

[[t % c]]ρ
△

= [[t]]ρ mod c

[[t ÷ c]]ρ
△

= [[t]]ρ quo c

[[ff]]ρ
△

= false

[[t ≤ t′]]ρ
△

= [[t]]ρ ≤ [[t′]]ρ

[[t = t′]]ρ
△

= [[t]]ρ = [[t′]]ρ

[[¬f ]]ρ
△

= ¬[[f ]]ρ

[[f ∧ f ′]]ρ
△

= [[f ]]ρ ∧ [[f ′]]ρ

[[f ∨ f ′]]ρ
△

= [[f ]]ρ ∨ [[f ′]]ρ

Fig. 2. Semantics of Linear Modular Arithmetic Formula over Zm

For any valuation ρ, the semantic function [[•]]ρ for linear modular arithmetic
formulae over Zm is defined in Figure 2. Since c ∈ Zm, it is unnecessary to com-
pute the signed representations for constants, modulo and quotient operations.
For the others, their semantic values are obtained by the signed modulo m.

Assume each integral and logical computation in conventional languages
takes O(1) time. We can now phrase the satisfiability problem as follows.

Problem 1. (Satisfiability) Given a linear modular arithmetic formula f over Zm

with variables x̄, determine whether there is a valuation ρ such that [[f ]]ρ = true.

Since the evaluation of any linear modular arithmetic formula is in P, we
immediately have the following upper bound for the satisfiability problem.

Proposition 1. The satisfiability problem for any linear modular arithmetic
formula f can be decided in NP.2

1 In gcc 4.0.2, the warning message “integer constant is too large for its type” is shown.
2 Please refer to [23] for all proofs of the propositions and theorems in this paper.



The lower bound of the problem can be obtained by reduction from 3CNF.
Although Boolean variables are not allowed in linear modular arithmetic, they
can be simulated by the parity of integer variables fairly easily.

Proposition 2. The satisfiability problem for any linear modular arithmetic
formula f is NP-hard.

Corollary 1. The satisfiability problem for linear modular arithmetic formula
is NP-complete.

4 Solving the Satisfiability Problem for Linear Modular

Arithmetic

Since modular arithmetic is the default integral computation in conventional
languages, deciding the satisfiability of linear modular arithmetic formula could
be useful in software verification. One may, of course, use binary encoding and
solve the problem in the Boolean domain. But it would disregard the nature of
the problem. We are therefore looking for alternatives capable of exploiting the
underlying mathematical structure of the problem.

Given an instance of any syntactic class (terms, atomic propositions, or for-
mulae), we translate it to an integer variable and a set of constraints. Intuitively,
the integer variable has the semantic value of the given instance for any valua-
tion subject to the set of constraints. For terms, the integer variable has a value
in [−m

2 , m
2 − 1]. For atomic propositions and formulae, it has values 0 or 1.

σ(c)
△

= (p, p = c)
σ(c · t)

△

=

(

p,

α

−m

2
≤ p < m

2

cp′ − mq = p

)

where (p′, α) = σ(t)

σ(t0 + t1)
△

=






p,

α0

α1

−m

2
≤ p < m

2

p0 + p1 − mq = p







where
(p0, α0) = σ(t0)
(p1, α1) = σ(t1)

σ(t% c)
△

=

(

p,

α

0 ≤ p < |c|
p′ − cq = p

)

where (p′, α) = σ(t)

σ(t ÷ c)
△

=

(

p,
α

0 ≤ p′ − cp < |c|

)

where (p′, α) = σ(t)

Fig. 3. Linear Constraints for Terms

Consider, for example, the following translation of t % c (Figure 3).


p,

α

0 ≤ p < |c|
p′ − cq = p



where (p′, α) = σ(t)



The semantic value p′ and constraints α of t are obtained by σ(t) recursively.
Since the semantic value p of t % c is equal to p′ % c, we add the constraints
0 ≤ p < |c| and p′ − cq = p. The following proposition shows that the semantics
of terms is still retained in spite of the constraints in Figure 3.

Proposition 3. Let t be a term in linear modular arithmetic. Then, there is a
valuation ρ such that [[t]]ρ = d ⇔ there is a valuation η such that η satisfies α

and η(p) = d where (p, α) = σ(t).

λ(ff)
△

= (p, p = 0)

λ(t0 ≤ t1)
△

=











p,

α0

α1

0 ≤ p ≤ 1
p0 − p1 − (m − 1)(1 − p) ≤ 0

p0 − p1 + mp > 0











where
(p0, α0) = σ(t0)
(p1, α1) = σ(t1)

λ(t0 = t1)
△

=





















p,

α0

α1

0 ≤ q0 + q1 ≤ 1
p0 − p1 + m(1 − q0) − q0 ≥ 0
p0 − p1 − m(1 − q1) + q1 ≤ 0

p0 − p1 − m(q0 + q1) ≤ 0
p0 − p1 + m(q0 + q1) ≥ 0

1 − q0 − q1 = p





















where
(p0, α0) = σ(t0)
(p1, α1) = σ(t1)

Fig. 4. Linear Constraints for Atomic Propositions

For atomic propositions, observe

−m < −m+1 = −
m

2
−(

m

2
−1) ≤ [[t0]]ρ− [[t1]]ρ ≤ (

m

2
−1)−(−

m

2
) = m−1 < m.

Consider the atomic proposition t0 ≤ t1. From Figure 4, we have













p,

α0

α1

0 ≤ p ≤ 1
p0 − p1 − (m − 1)(1 − p) ≤ 0

p0 − p1 + mp > 0













where
(p0, α0) = σ(t0)
(p1, α1) = σ(t1)

.

Since the variables p0 and p1 have the semantic values of the terms t0 and
t1 respectively, we have −m < p0 − p1 ≤ m − 1. If p0 ≤ p1, it is easy to verify
that the constraints are satisfied if the semantic value p is 1. Conversely, if the
variable p has the value 1, p0 − p1 − (m− 1)(1− p) = p0 − p1 ≤ 0 is enforced by
the constraints. Thus p0 ≤ p1.



For equality, one could use a less efficient construction by conjunction and
comparison. But we have a slightly better translation in Figure 4. Intuitively, the
variables q0 and q1 denote p0 > p1 and p0 < p1 respectively. Note that q0 and q1

must be 0 or 1 by the constraint 0 ≤ q0+q1 ≤ 1. If q0 = 1, then p0−p1−1 ≥ 0 by
the constraint p0 − p1 + m(1− q0)− q0 ≥ 0. Hence p0 > p1. Conversely, suppose
p0 > p1 but q0 = 0. There are two cases. If q1 = 0, we have p0 − p1 ≤ 0 by the
constraint p0 − p1 + m(q0 + q1) ≤ 0, a contradiction. If q1 = 1, p0 − p1 + 1 ≤ 0
by the constraint p0 − p1 − m(1 − q1) + q1 ≤ 0, also a contradiction. Hence,
q0 = 1 if and only if p0 > p1 for any valuation satisfying the constraints. And
the semantic value of t0 = t1 is 1 if and only if q0 = q1 = 0, namely, 1− q0 − q1.

The following proposition shows that we can replace the semantics values of
atomic propositions by 0 or 1.

Proposition 4. Let l be an atomic proposition in linear modular arithmetic.
Then, (1) there is a valuation ρ such that [[l]]ρ = true ⇔ there is a valuation η

such that η satisfies α and η(p) = 1 where (p, α) = λ(l); (2) there is a valuation
ρ such that [[l]]ρ = false ⇔ there is a valuation η such that η satisfies α and
η(p) = 0 where (p, α) = λ(l).

Let p0 and p1 be the semantic values of the subformulae f0 and f1 respec-
tively. Consider the constraints p0 + p1 ≥ p and p0 + p1 ≤ 2p in the translation
of their disjunction (Figure 5). We would like the semantic value p of their dis-
junction to be 0 when both p0 and p1 are 0. It is achieved by the constraint
p0 + p1 ≥ p. On the other hand, the constraint p0 + p1 ≤ 2p is added to enforce
p = 1 when any of the disjuncts is true.

φ(l)
△

= λ(l)
φ(¬f)

△

=

(

p,
α

1 − p′ = p

)

where (p′, α) = φ(f)

φ(f0 ∧ f1)
△

=











p,

α0

α1

0 ≤ p ≤ 1
p0 + p1 ≥ 2p

p0 + p1 ≤ 1 + p











where
(p0, α0) = φ(f0)
(p1, α1) = φ(f1)

φ(f0 ∨ f1)
△

=











p,

α0

α1

0 ≤ p ≤ 1
p0 + p1 ≥ p

p0 + p1 ≤ 2p











where
(p0, α0) = φ(f0)
(p1, α1) = φ(f1)

Fig. 5. Linear Constraints for Formulae

Note that we do not rearrange the input formula to canonical forms. Since
the rearrangement could increase the length of the formula significantly, it would
not be efficient. In order to have linear number of constraints and variables, it
is crucial not to transform the input formula to canonical forms.



Given a formula in linear modular arithmetic, there is a set of constraints
such that the semantic value of the formula is denoted by the designated variable
in our construction. Our progress is summarized in the following proposition.

Proposition 5. Let f be a formula in linear modular arithmetic. Then, (1)
there is a valuation ρ such that [[f ]]ρ = true ⇔ there is a valuation η such that η

satisfies α and η(p) = 1 where (p, α) = φ(f); and (2) there is a valuation ρ such
that [[f ]]ρ = false ⇔ there is a valuation η such that η satisfies α and η(p) = 0
where (p, α) = φ(f).

To solve the satisfiability problem of a linear modular arithmetic formula
f , we first obtain an integer variable p and a set of constraints α from the
translation φ(f). It is not difficult to see that the satisfiability problem can be
solved by optimizing the objective function p with respect to α.

Our translation is constructed recursively. A recursive call is invoked for
each subformula in the input formula. Further, a constant number of constraints
and variables are added in each recursion. Since the number of subformulae is
linear in the length of the input formula, the corresponding integer programming
problem has the number of variables and constraints linear in the length of the
input formula. The following theorem summarizes our result on the satisfiability
problem for linear modular arithmetic formulae.

Theorem 1. Given a formula f in linear modular arithmetic, the satisfiability
problem can be solved by an instance of the integer programming problem with
the number of constraints and variables linear in |f |.

5 Modular Arithmetic

Term t
△

= . . . | t · t′ | t % t
′

[[t · t′]]ρ
△

= [[t]]ρ[[t′]]ρ smod m

[[t % t
′]]ρ

△

= [[t]]ρ mod [[t′]]ρ

Fig. 6. Syntax and Semantics of Modular Arithmetic over Zm

The syntax and semantics of modular arithmetic extend those of linear mod-
ular arithmetic by multiplication, t · t′, and modulo operation, t % t′, of terms
(Figure 6). Similar to linear terms, the semantic value of term multiplication
uses the signed modulo to reflect the semantics of conventional programming
languages. On the other hand, it is unnecessary to compute the signed represen-
tation for modulo operations of terms since overflow could not occur.



The lower bound of the satisfiability problem for modular arithmetic formula
follows from Proposition 2. Additionally, the evaluation of any modular arith-
metic formula can also be done in polynomial time, we immediately have the
following theorem.

Theorem 2. The satisfiability problem for modular arithmetic formula is NP-
complete.

6 Solving the Satisfiability Problem for Modular

Arithmetic

Based on the translation of linear modular arithmetic formulae, multiplications
and modulo operations of arbitrary terms can be emulated in integer program-
ming. Of course, one could use the binary representation and encode a multiplier
circuit in linear modular arithmetic. But it would introduce too many tempo-
rary variables. Besides, the mathematical nature of the problem would not be
preserved by Boolean circuits. We hereby propose a more efficient translation.

In order to compute non-linear terms, we will use the binary representations
of operands’ semantic values. But it becomes complicated for negative numbers.
However, it is safe to use the unsigned representation in this context. Observe

ab ≡ (a + m)b ≡ a(b + m) ≡ (a + m)(b + m) (mod m).

We therefore assume the unsigned representation, compute the result, then con-
vert it back to the signed representation for multiplications of terms. Thus, only
the linear constraints of the unsigned multiplication is needed.

χ(p0, p1)
△

=



















c,

p1 < m

0 ≤ bi ≤ 1 for 0 ≤ i < ω
∑ω−1

i=0
2ibi = p0

0 ≤ ci ≤ 2ip1 for 0 ≤ i < ω

2ip1 − 2im(1 − bi) ≤ ci for 0 ≤ i < ω

2imbi ≥ ci for 0 ≤ i < ω
∑ω−1

i=0
ci = c



















Fig. 7. Linear Constraints for Unsigned Multiplication

More concretely, suppose 0 ≤ p0 < m. The constraints 0 ≤ b0, . . . , bω−1 ≤
1 and

∑ω−1
i=0 2ibi = p0 compute the unsigned representation of p0 (Figure 7).

Intuitively, the bit string bω−1bω−2 · · · b1b0 is the binary representation for p0.
To compute the partial result ci = 2ibip1, we use the constraints 0 ≤ ci ≤

2ip1, 2ip1 − 2im(1 − bi) ≤ ci, and 2imbi ≥ ci. If bi = 0, we have 2imbi = 0 ≥ ci

≥ 0. On the other hand, we have 2ip1 − 2im(1 − bi) = 2ip1 ≤ ci ≤ 2ip1 when
bi = 1. Thus, ci = 2ibip1.



Proposition 6. Let p0, p1 be variables. Then, there is a valuation ρ such that
0 ≤ η(p0) = d0, ρ(p1) = d1 < m, and ρ(p0)ρ(p1) = d ⇔ there is a valuation η

such that η satisfies α, η(p0) = d0, η(p1) = d1, and η(p) = d where (p, α) =
χ(p0, p1).

ζ(p′)
△

=






p,

0 ≤ a ≤ 1
m

2
(a − 1) ≤ p′ ≤ m

2
a − 1

−ma ≤ p + p′ ≤ ma

−m(1− a) ≤ p − p′ ≤ m(1 − a)







Fig. 8. Linear Constraints for Absolute Value

For modulo operations of terms, note

a mod b = a mod |b| =

{

|a| mod |b| if a ≥ 0
(−|a|) mod |b| = |b| − (|a| mod |b|) if a < 0.

We can therefore perform the modulo operations of terms by their absolute
values. Consider the constraints 0 ≤ a ≤ 1 and m

2 (a − 1) ≤ p′ ≤ m
2 a − 1 in

Figure 8, where p′ has the semantic value of any term. Intuitively, p′ is non-
negative if and only if a = 1. Suppose p′ ≥ 0 and a = 0. We would have
−m

2 ≤ p′ ≤ −1, a contradiction. Conversely, a = 1 implies 0 ≤ p′ ≤ m
2 − 1.

Hence p′ ≥ 0.

Proposition 7. Let p′ be a variable. Then, there is a valuation ρ such that
−m ≤ ρ(p′) = d′ ≤ m and |ρ(p′)| = d ⇔ there is a valuation η such that η

satisfies α, η(p′) = d′, and η(p) = d where (p, α) = ζ(p′).

We can now describe the linear constraints for non-linear terms. For multipli-
cation t0 · t1, we first get the unsigned representation p′0 and p′1 of the semantic
values of t0 and t1 respectively. This is done by the constraints p′0 = p0 + ma,
0 ≤ p′0 < m, p′1 = p1+mb, and 0 ≤ p′1 < m where (p0, α0) = σ(t0) and (p1, α1) =
σ(t1) respectively. Then we compute the unsigned result p′ by χ(p′0, p

′
1). Fi-

nally, the result is converted to the signed representation p by p′ − md = p and
−m

2 ≤ p < m
2 (Figure 9).

To compute the semantic value of t0 % t1, we first get the absolute values
p′0 and p′1 of the semantic values of t0 and t1 by ζ(p0) and ζ(p1) respectively.
The constraints p′0 − r = p′ and 0 ≤ p′ < p′1 give p′ = |p0| mod |p1| where r is
a multiple of |p1|. Suppose p0 ≥ 0. Then a = 1 by the constraint m

2 (a − 1) ≤
p0 ≤ m

2 a − 1. Hence p = p′ = |p0| mod |p1| by the constraint −2m(1 − a) ≤
p− p′ ≤ m(1− a). On the other hand, p0 < 0 implies a = 0. Hence p = p′1 − p′ =
|p1| − (|p0| mod |p1|) by the constraint −ma ≤ p − p′1 + p′ ≤ 2ma (Figure 9).



σ(t0 · t1)
△

=

























p,

α0

α1

α2

p′

0 = p0 + ma

0 ≤ p′

0 < m

p′

1 = p1 + mb

0 ≤ p′

1 < m

p′ − md = p

−m

2
≤ p < m

2

























where
(p0, α0) = σ(t0)
(p1, α1) = σ(t1)
(p′, α2) = χ(p′

0, p
′

1)

σ(t0 % t1)
△

=

































p,

α0

α1

α2

α3

α4

p′

0 − r = p′

0 ≤ p′ < p′

1

0 ≤ a ≤ 1
m

2
(a − 1) ≤ p0 ≤ m
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(p0, α0) = σ(t0)
(p1, α1) = σ(t1)
(p′

0, α2) = ζ(p0)
(p′

1, α3) = ζ(p1)
(r, α4) = χ(p′

1, p
′′)

Fig. 9. Linear Constraints for Non-linear Terms

Proposition 8. Let t be a non-linear term in modular arithmetic. Then, there
is a valuation ρ such that [[t]]ρ = d ⇔ there is a valuation η such that η satisfies
α and η(p) = d where (p, α) = σ(t).

Since the number of constraints and variables in the unsigned multiplication
is O(ω), our translation requires O(ω) constraints and variables for non-linear
terms. In summary, the satisfiability problem for modular arithmetic formula
can be reduced to an instance of integer programming with O(ω|f |) constraints
and variables.

Theorem 3. Given a formula f in modular arithmetic over Zm where m = 2ω,
the satisfiability problem can be solved by an instance of the integer programming
problem with the number of constraints and variables linear in ω|f |.

7 Applications

Our decision procedure may be useful in software verification, especially for
programs in conventional programming languages. For hardware verification,
our reduction may work as a non-linear constraint solver which accepts control
signals from other decision procedures. Particularly, we find that the following
areas may benefit from our algorithm.



Modern proof assistants allow external decision procedures to discharge proof
obligations [13, 17, 10]. Although modular arithmetic is essential to many num-
ber theoretic and cryptographic algorithms, there is no proof assistant which
provides decision procedures for modular arithmetic to the best of our knowl-
edge. Since it is rather tedious to deal with modular arithmetic in each integral
computation, verifiers simply assume the infinite-precision integer model in soft-
ware verification. Subsequently, algorithms certified by proof assistants are not
exactly the same as their implementations. Our procedure may help verifiers
work in a more realistic computational model.

If a proof assistant is used to determine the truth values of predicates, ab-
stract models constructed in predicate abstraction [7, 20] may be inadequate for
the same reason. In the presence of non-linear modular arithmetic, our integer
programming-based procedure may also be more efficient than, say, SAT-based
technique used in predicate abstraction [5] (see Section 8). The new technique
refines the abstraction and may perform better in such circumstances.

Another possible application of our algorithm is SAT-based model checking
([3], for instance). Our word-level decision procedure may be better for models
with modular arithmetic, but it does not seem to fare well on Boolean satis-
fiability. However, modern integer programming packages support distributed
computation [18]. Our approach gives a parallel SAT solver indirectly.

8 Experimental Results

We have implemented the algorithm to solve the satisfiability problem of modu-
lar arithmetic formulae. Our implementation generates instances of integer pro-
gramming problems in the MPS format [14]. These files are then sent to the
SYMPHONY package [18] as inputs. SYMPHONY is an open-sourced mixed
integer programming solver. In addition to the conventional execution model,
the SYMPHONY package also supports Parallel Virtual Machine [9]. We there-
fore conduct our experiments with both the uni- and multi-process versions. The
uni-process version runs on an Intel Pentium 4 2.8GHz Linux 2.6.17 workstation
with 2GB memory. The multi-process version runs on a PC cluster consisting
of fifteen AMD Athlon MP 2000+ Linux 2.4.22 workstations with 1GB mem-
ory. For comparison, we repeat the experiments by the SAT solver zchaff on
the workstation of the same configuration as the uni-process version.3 We are
interested in solving the following problems in Z256 (that is, ω = 8).

i. (x · y = 143) ∧ (x ≤ 143) ∧ (y ≤ 143) ∧ ((x 6= 1 ∧ y 6= 1))
ii. x · y · z + y · z + 2 · x · z + 2 · z + 3 · x · y + 3 · y + 6 · x + 6 = 0
iii. x · y · z − y · z − 2 · x · z + 2 · z − 3 · x · y + 3 · y + 6 · x − 6 = 0
iv. ((x 6= 0)∨(y 6= 0)∨(z 6= 0))∧x·y ·z+y ·z+2·x·z+2·z+3·x·y+3·y+6·x = 0
v. ((x 6= 0)∨(y 6= 0)∨(z 6= 0))∧x·y ·z−y ·z−2·x·z+2·z−3·x·y+3·y+6·x = 0

3 Unfortunately, we have not conducted all the experiments in the same platform at
the time of writing. Each workstation in our PC cluster is a bit outdated than the
workstation used in the uni-version version.



Our first experiment is to factorize 143. Although it is easy to see that
11 × 14 = 143 is a solution, other solutions may be possible in Z256. Other
experiments find roots to three-variable polynomials of degree three. In Exper-
iment (ii) and (iii), the polynomials have constant terms. Hence their roots are
always non-trivial. For polynomials without constant terms, trivial solutions can
easily be found. We therefore look for non-trivial solutions in Experiment (iv)
and (v).

Uni-process Multi-process
Experiment solution time solution time

(i) x = 53, y = 51 183.97 x = 13, y = 11 1.90
(ii) - > 600 x = y = 0, z = 253 0.39
(iii) - > 600 x = y = 0, z = 3 0.92
(iv) x = y = 0, z = 128 0.84 x = 42, y = 0, z = 6 0.61
(v) x = y = 0, z = 128 1.12 x = y = 0, z = 128 1.60

(a) with Integer Programming Package

Experiment solution time

(i) x = 15, y = 129 0.19
(ii) x = 64, y = 254, z = 255 2.08
(iii) x = y = 0, z = 3 1.53
(iv) x = y = 0, z = 128 1.52
(v) x = y = 0, z = 128 1.52

(b) with SAT Solver

Fig. 10. Experimental Results

Figure 10 shows the solution and the user time (in seconds) for each experi-
ment. The multi-process solver does improve the performance significantly. For
example, the factorization is done in less than two seconds by the multi-process
solver. But it takes more than three minutes with the uni-process solver. Another
interesting observation is that the solutions are not necessarily obvious. The fac-
torization found by the uni-process solver is somewhat unexpected. Instead of
the unique factorization in Z, we have 53 × 51 ≡ 143 in Z256. Similarly, the
solution found by the multi-process solver in Experiment (iv) is correct only in
Z256. These unexpected solutions are precisely the reasons why bugs may occur.
On the other hand, the SAT solver performs rather stably. Although it may not
always outperform the uni-process integer programming package, it does solve
all problems in seconds. The multi-process integer programming package is able
to finish and outperform the SAT solver in three of the five problems. More
thorough experiments are still needed to compare both techniques.



9 Conclusion

Deciding the satisfiability of modular arithmetic formula is essential in software
verification. We have characterized the complexity of its satisfiability problem
and provided an efficient reduction to the integer programming problem. Our
result shows that it is more efficient to develop specialized algorithms than apply
more general algorithms for Presburger arithmetic. Additionally, the number
of constraints and variables is linear in the length of the input formula in our
reduction. With heuristics like relaxation and rounding, the satisfiability problem
could be solved efficiently by modern integer programming packages in practice.

It would be interesting to compare our algorithm with other techniques [4,
21, 1], especially those with the binary encoding scheme. Since the satisfiability
problem of modular arithmetic formula is NP-complete, one could also build a
decision procedure based on SAT solvers. But the binary encoding would elimi-
nate the mathematical nature of the problem. Although our preliminary exper-
imental results suggest that our approach may be useful in finding solutions to
multi-variant low-degree polynomials, it is unclear which approach will prevail
in practice.

There are still a few missing pieces in our construction. Our translation of
the unsigned multiplication is not satisfactory. It would be more useful if our
construction used only O(lg ω) variables and constraints. Additionally, the quo-
tient and remainder operations of arbitrary terms are not allowed. Although it is
possible to encode them in modular arithmetic formula, an efficient construction
similar to non-linear terms is certainly welcome.
Acknowledgement. The author would like to thank anonymous referees for
their constructive comments in improving the paper.
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