
Complete SAT-based Model Checking for

Context-Free Processes?

Geng-Dian Huang1,2 and Bow-Yaw Wang1

1 Institute of Information Science
Academia Sinica, Taiwan

2 Department of Electrical Engineering
National Taiwan University, Taiwan

[gdhuang|bywang]@iis.sinica.edu.tw

Abstract. A complete SAT-based model checking algorithm for context-
free processes is presented. We reduce proof search in local model check-
ing to Boolean satisfiability. Bounded proof search can therefore be per-
formed by SAT solvers. Moreover, the completion of proof search is
reduced to Boolean unsatisfiability and hence can be checked by SAT
solvers. By encoding the local model checking algorithm in [13], SAT
solvers are able to verify properties in the universal fragment of alternation-
free µ-calculus formula on context-free processes.

1 Introduction

Since pushdown systems give natural representations of program control flows,
problems in program analysis can be reduced to verification problems on the
infinite-state model. In the past years, efficient verification algorithms for push-
down systems have been proposed [11, 12]. Experimental results suggest that the
BDD-based algorithm for the succinct model could be much more space-efficient
than those for finite-state systems in program analysis [12].

Meanwhile, hardware verification has been influenced by the development
of practical satisfiability (SAT) solvers [4, 3]. Thanks to various heuristics, SAT
solvers are very efficient in both time and space. By reducing bounded verification
problems to Boolean satisfiability, the technique can detect flaws in finite-state
models unattainable by explicit-state or BDD-based algorithms.

SAT-based verification algorithms for finite-state systems make the experi-
ment in [12] regretfully obsolete. Since bebop uses a BDD-based algorithm [2],
it is unclear how the explicit-state [5, 11] or BDD-based [12] algorithms for
pushdown systems compare with SAT-based algorithms for finite-state systems.
Moreover, the explicit-state and BDD-based algorithms for pushdown systems
might suffer from the same capacity problem as in finite-state systems. An SAT-
based algorithm for pushdown systems could be more scalable.

? The work is partly supported by NSC grands 95-3114-P-001-002-Y02, 95-2221-E-
001-024-MY3, and the SISARL thematic project of Academia Sinica.

In this paper, we give a complete SAT-based model checking algorithm for the
universal fragment of alternation-free µ-calculus formulae on context-free pro-
cesses. Given a context-free grammar, one may view derivations as system evolu-
tions. A context-free grammar thus defines the transition system of a context-free
process [6, 13]. Although the languages recognized by context-free grammars and
pushdown automata coincide, pushdown systems are in fact more expressive than
context-free processes [8]. Nevertheless, pushdown systems with only one control
state are context-free processes. Problems in program analysis can thus be mod-
eled by context-free processes. Moreover, our preliminary experimental results
show that the new algorithm performs better than a BDD-based algorithm for
large random models. We feel that our SAT-based verification algorithm could
still be useful in program analysis.

Based on the explicit-state algorithm in [6], a local model checking algo-
rithm for alternation-free µ-calculus formulae on context-free processes is devel-
oped [13]. We construct a Boolean formula whose satisfiability is equivalent to a
bounded proof. If no proof within certain bounds can be found, the completion
of proof search is then established by the unsatisfiability of another formula. Our
SAT-based model checking algorithm therefore reduces proof search of the lo-
cal model checking algorithm in [13] to Boolean (un)satisfiability. The universal
fragment of alternation-free µ-calculus formulae on context-free processes can
hence be verified by the absence of proofs of their negations using SAT solvers.

An explicit-state model checking algorithm for context-free processes is given
in [6]. Second-order assertions specify properties on sets of states under contex-
tual assumptions. Since the given property is of main concern, formulae in its
closure are sufficient for contextual assumptions. The model checking problem is
solved by computing contextual assumptions on finite representations. Employ-
ing second-order assertions, a local model checking algorithm for alternation-free
µ-calculus formulae on context-free processes is developed in [13].

Complete SAT-based model checking algorithms for finite-state models can
be found in literature [15, 1, 18]. Interpolation is exploited to verify invariants [15].
In [1], SAT solvers are used to detect cycles and check properties in linear tem-
poral logic. A similar technique based on local model checking is able to verify
the universal fragment of µ-calculus properties by SAT solvers [18].

Verification algorithms for pushdown systems have also been proposed [16,
5, 11, 12, 17]. Model checking monadic second-order logic properties is known to
be decidable but with a non-elementary upper bound [16]. Verifying µ-calculus
properties is DEXPTIME-complete for pushdown systems [5]. For linear prop-
erties, the problem can be solved in polynomial time but requires polynomial
space [11]. A BDD-based algorithm is compared with the software verification
tool bebop in [12]. Finally, a game-theoretic algorithm is given in [17].

The paper is organized as follows. Section 2 gives backgrounds. Our reduction
of proof search to Boolean satisfiability is presented in Section 3. The SAT-
based model checking algorithm for the universal fragment of alternation-free
µ-calculus formulae is shown in Section 4. Preliminary experimental results are
reported in Section 5. Finally, Section 6 concludes the paper.

2

2 Preliminaries

A context-free process is a finite-state automaton with procedure calls and two
designated locations.3 Procedure invocation is denoted by names. The unique
entry and exit points of procedures are represented by the start and end locations
respectively.

Definition 1. A context-free process P = 〈Σ,N,Act,→P , δ, ε〉 is a tuple where

– Σ is a finite set of locations;
– N and Act are finite sets of names and actions respectively;
– →P⊆ Σ × (N ∪Act) ×Σ is its transition relation; and
– δ and ε are are the start and end locations respectively.

For clarity, we write σ
α
→ σ′ for (σ, α, σ′) ∈→. A context-free process is

guarded if for all δ
α
→ σ, we have α ∈ Act. We only consider guarded context-

free processes in the following presentation.
A context-free process system is a set of recursively defined context-free pro-

cesses. Let n be the name set {0, 1, . . . , n} and the name i denote the invocation
of process Pi. Since all context-free processes share the same name set, mutual
recursion can be modeled easily. In our setting, context-free processes and basic
process algebra are in fact equivalent [9, 7].

Definition 2. A context-free process system P = 〈P0, . . . , Pn〉 consists of context-
free processes P0, . . . , Pn where

– P0, . . . , Pn share the sets of names n and actions Act;
– P0 is the main process.

A context-free process system serves as a finite representation of a process
graph. A process graph is a transition system with designated start and end
states, and may have an infinite number of states.

Definition 3. A process graph G = 〈S,Act,→, s0, se〉 is a tuple where

– S is the set of states;
– Act is the finite set of actions;
– →⊆ S ×Act× S is its transition relation; and
– s0 and se are the start and end states respectively.

The process graph represented by a context-free system is obtained by ex-
panding recursive calls. Observe that copies of context-free processes can be
made infinitely many times. A location in a context-free process may correspond
to an infinite number of states in the process graph.

Definition 4. Let P = 〈P0, . . . , Pn〉 be a context-free process system with Pi =
〈Σi, n, Act, →i, δi, εi〉 for 0 ≤ i ≤ n. The process graph PG(P) of P is obtained

by expanding s0
0
→ se recursively as follows.

3 The term “location” is called “state class” in [6, 13].

3

1. For each transition s
i
→ s′, make a copy of the context-free process Pi; and

2. Identify δi and εi with s and s′ respectively.

When a copy of Pi is made, a state s is added for each location σ in Σi

except δi and εi. We hence say s is an instance of σ. The notation s ∈ σ denotes
that s is an instance of σ or s is identified with σ when σ = εi. Further, s′′ is

the return state of s (denoted by end(s)) if s is added while expanding s′
pi
→ s′′.

Both end(s0) and end(se) are defined to be se.
Given the set V ar of relational variables, X ∈ V ar, and A ⊆ Act. The syntax

of µ-calculus formulae is defined as follows

φ ::= tt X ¬φ φ0 ∧ φ1 〈A〉φ µX.φ

Relational variables must be bound positively by least fixed point operators
in µX.φ. We adopt the following abbreviation: ff for ¬tt, φ0 ∨ φ1 for ¬(¬φ0 ∧
¬φ1), [A]φ for ¬〈A〉¬φ, and νX.φ for ¬µX.¬φ[¬X/X]. A µ-calculus formula
is alternation-free if all its fixed point subformulae do not have free relational
variables bound by fixed point operators of the other type. The negative nor-
mal form of a µ-calculus formula is obtained by applying De Morgan’s laws
repeatedly so that negations appear only before tt. The universal fragment of
µ-calculus formulae consists of µ-calculus formulae whose negative normal forms
do not have existential modal operators (〈a〉•). Let ψ be a universal µ-calculus
formula. It is easy to verify that the negative normal form of ¬ψ does not have
universal modal operators ([a]•). In the following, we assume all formulae are in
their negative normal forms.

Given a process graph G = 〈S,Act,→, s0, se〉, an environment e is a mapping
from V ar to 2S. The notation e[X 7→ U] denotes the environment that maps X
to U and Y to e(Y) for Y 6= X . The semantic function [[φ]]Ge for the µ-calculus
formula φ is defined as follows.

[[tt]]Ge = S

[[X]]Ge = e(X)

[[φ0 ∧ φ1]]
G
e = [[φ0]]

G
e ∩ [[φ1]]

G
e

[[φ0 ∨ φ1]]
G
e = [[φ0]]

G
e ∪ [[φ1]]

G
e

[[[A]φ]]Ge = {s ∈ S | ∀a, s′.a ∈ A ∧ s
a
→ s′ =⇒ s′ ∈ [[φ]]Ge }

[[〈A〉φ]]Ge = {s ∈ S | ∃a, s′.a ∈ A ∧ s
a
→ s′ ∧ s′ ∈ [[φ]]Ge }

[[νX.φ]]Ge =
⋃

{U ⊆ S | U ⊆ [[φ]]Ge[X 7→U]}

[[µX.φ]]Ge =
⋂

{U ⊆ S | U ⊇ [[φ]]Ge[X 7→U]}

We say s satisfies φ in process graph G (denoted by G, s |= φ) if s ∈ [[φ]]G
∅

.
Let Φ be a set of µ-calculus formulae. Define G, s |= Φ if G, s |= φ for all φ ∈ Φ. If
P is a context-free system, we say P satisfies φ, P |= φ, if PG(P), s0 |= φ. When
there is no ambiguity, we write s |= φ and s |= Φ for G, s |= φ and G, s |= Φ.

4

Since different instances of a location may be instantiated in different invo-
cations, one cannot naively expect all instances to satisfy the same property.
Contextual assumptions are hence used in the specification of locations. They
are chosen from closures of µ-calculus formulae and postulated during process
invocation [6, 13].

Definition 5. The closure CL(φ) of a µ-calculus formula φ is inductively de-
fined as follows.

CL(tt) = ∅

CL(φ0 ∧ φ1) = {φ0 ∧ φ1} ∪ CL(φ0) ∪ CL(φ1)

CL(φ0 ∨ φ1) = {φ0 ∨ φ1} ∪ CL(φ0) ∪ CL(φ1)

CL([A]φ) = {[A]φ} ∪ CL(φ)

CL(〈A〉φ) = {〈A〉φ} ∪ CL(φ)

CL(νX.φ) = {νX.φ} ∪ CL(φ[νX.φ/X])

CL(µX.φ) = {µX.φ} ∪ CL(φ[µX.φ/X])

Given a µ-calculus formula φ and a set of µ-calculus formulae Θ ⊆ CL(φ),
the pair 〈φ,Θ〉 is called a second-order assertion. Define σ |= 〈φ,Θ〉 if s |= φ
for s ∈ σ provided end(s) |= Θ. Intuitively, a location satisfies a second-order
assertion 〈φ,Θ〉 if its instances under the given contextual assumptions Θ satisfy
the µ-calculus formula φ.

We now describe the local model checking algorithm in [13]. Let P = 〈P0, . . . ,
Pn〉 be a context-free process system with Pi = 〈Σi, n, Act, →i, δi, εi〉 for 0 ≤
i ≤ n, PG(P) = 〈S,Act,→, s0, se〉 its process graph, and φ a µ-calculus formula.
A sequent is of the form s ` φ or σ ` 〈φ,Θ〉. We call the former first-order and
the latter second-order sequents respectively. Let Ω be a set of sequents and ω

a sequent. An inference rule is represented as Ω
ω . The sequents in Ω and ω

are the premises and conclusion of the inference rule respectively. For clarity, we

write
ω
ω′ and

ω0 ω1

ω′ for
{ω}

ω′
and

{ω0, ω1}

ω′
respectively. A proof

is a tree rooted at a given sequent and constructed according to the inference
rules in Figure 1. The start rule first guesses initial contextual assumptions Θ
for the given property φ in the second-order assertion 〈φ,Θ〉. The assumptions Θ
must be satisfied after the invocation of the main process. Similarly, contextual
assumptions are chosen in modality rules. There are only finitely many possible
contextual assumptions for any µ-calculus formula φ because CL(φ) is finite.

To show a location satisfies a conjunction in a second-order assertion, one
proves that both conjuncts are satisfied under the same contextual assumptions.
Symmetrically, a disjunct under the same assumptions in a second-order as-
sertion must be satisfied in a disjunction. For fixed points, the inference rules
simply unroll the formula. The unrolling need be justified on the leaves of the
proof (Definition 6 (vi)). A (d, r)-proof is a proof which applies the fixed point
and modality rules at most d and r times along any path from the root to a leaf
respectively.

5

Definition 6. A leaf of a proof is successful if it has one of the following forms.

(i) se ` tt;
(ii) se ` [A]φ;
(iii) σ ` 〈tt, Θ〉;
(iv) σ ` 〈[A]φ,Θ〉 where σ ∈ Σi is not an end location and there is no σ′ with

σ
a
→i σ

′ for any a ∈ A, or σ
j
→i σ

′;
(v) ε ` 〈φ,Θ〉 and φ ∈ Θ; or
(vi) σ ` 〈φ(νX.ψ), Θ〉 where φ(νX.ψ) ∈ CL(νX.ψ) and the same sequent re-

occurs on the path from the root to itself.

A finite proof is successful if all its leaves are successful. A sequent is derivable
if there is a successful proof rooted in the sequent. A formula φ is derivable if
the sequent s0 ` φ is derivable. The following theorem shows the inference rules
in Figure 1 are sound and complete.

Theorem 1. ([13]) An alternation-free µ-calculus formula φ is derivable for a
context-free process system P iff it is satisfied in P.

An exemplary run of the local model checking algorithm is shown in Fig-
ure 2. In the figure, a simple context-free process P with an infinite number of
states is considered. After performing the action a, the process P can either call
itself recursively or terminates by executing b. We verify that the start state s0

satisfies νX.[a, b]X by the successful proof in the figure. Observe there are two
nondeterministic choices of contextual assumptions in the applications of start
and modality rules. They happen to be the same in the proof.

3 Proof search by SAT

Suppose P = 〈P0, . . . , Pn〉 is a context-free process system with Pi = 〈Σi, n, Act,
→i, δi, εi〉 for 0 ≤ i ≤ n, and PG(P) = 〈S,Act,→, s0, se〉 its process graph. Since
the number of locations in Σ0 ∪ · · · ∪ Σn is finite, we can use a Boolean vector
of size lg(

∑n

i=0 |Σi|) to encode locations. The Boolean vector representing the
location σ is denoted by σ. Moreover, we assume a fixed linear order on CL(φ)
for the µ-calculus formula φ and denote the i-th formula in CL(φ) by φi. Any
subset Θ of CL(φ) can hence be encoded by a Boolean vector z̄ of size |CL(φ)|
such that z̄[i] = tt if and only if φi ∈ Θ. The Boolean vector representing the
subset Θ ⊆ CL(φ) is denoted by Θ.

Let φ be an alternation-free µ-calculus formula without universal modal op-
erators. Figure 3 gives our encoding of proof search in the local model checking
algorithm. In the figure, the Boolean variable vectors ū, v̄, w̄ encode locations
and are of size lg(Σn

i=0|Σi|). The Boolean variable vectors z̄ and z̄′ encode a
subset of CL(φ) and hence of size |CL(φ)|. The list Γ consists of triples of the
form (ū, φ, z̄). It records all second-order sequents σ ` 〈φ,Θ〉 from the root to
the current sequent. The notation (ū, φ, z̄) :: Γ represents the list whose elements
are (ū, φ, z̄) followed by those in Γ . |Γ | denotes the size of the list Γ . Intuitively,

6

Start rule

{δ0 ` 〈φ,Θ〉} ∪ {se ` θ | θ ∈ Θ}

s0 ` φ

End rules

se ` φ0 se ` φ1

se ` φ0 ∧ φ1

se ` φ0

se ` φ0 ∨ φ1

se ` φ1

se ` φ0 ∨ φ1

se ` φ[tt/X]

se ` νX.φ

se ` φ[ff/X]

se ` µX.φ

Conjunction and disjunction rules

σ ` 〈φ0, Θ〉 σ ` 〈φ1, Θ〉

σ ` 〈φ0 ∧ φ1, Θ〉

σ ` 〈φ0, Θ〉

σ ` 〈φ0 ∨ φ1, Θ〉

σ ` 〈φ1, Θ〉

σ ` 〈φ0 ∨ φ1, Θ〉

Fixed point rule

σ ` 〈φ[νX.φ/X], Θ〉

σ ` 〈νX.φ,Θ〉

σ ` 〈φ[µX.φ/X], Θ〉

σ ` 〈µX.φ,Θ〉

Modality rules

{σ′ ` 〈φ,Θ〉 | a ∈ A, σ
a
→i σ

′} ∪
S

j:σ
j
→iσ′

({δj ` 〈[A]φ, Ψj〉} ∪ {σ
′ ` 〈ψ,Θ〉 | ψ ∈ Ψj})

σ ` 〈[A]φ,Θ〉

σ′ ` 〈φ,Θ〉
a ∈ A, σ

a
→i σ

′

σ ` 〈〈A〉φ,Θ〉

{δj ` 〈〈A〉φ,Ψ〉} ∪ {σ
′ ` 〈ψ,Θ〉 | ψ ∈ Ψ}

σ
j
→i σ

′

σ ` 〈〈A〉φ,Θ〉

Weakening rule

σ ` 〈φ,Θ′〉
(Θ′ ⊆ Θ)

σ ` 〈φ,Θ〉

Fig. 1. Local Model Checking Algorithm

7

a

ba

P

a

a

b

b

b

PG(P)

.

.

δ σ ε s0s e

P

ε ` 〈M, {M}〉

σ ` 〈M, {M}〉
(Modality)

δ ` 〈N, {M}〉
(Modality)

σ ` 〈N, {M}〉
(Fixed point)

σ ` 〈M, {M}〉
(Modality)

δ ` 〈N, {M}〉
(Fixed point)

δ ` 〈M, {M}〉

se ` [a, b]tt
(End)

se `M
(Start)

s0 `M

where M = νX.[a, b]X and N = [a, b]νX.[a, b]X

Fig. 2. An Example of Local Model Checking

the idea is to construct a Boolean formula whose satisfiability is equivalent to
a bounded proof. Another Boolean formula whose unsatisfiability is equivalent
to completion will be built later. The model checking problem for context-free
processes is therefore reduced to Boolean (un)satisfiability.

The following lemma states that our encoding of the end rules is correct.

Lemma 1. se ` φ′ is derivable iff λ(se, φ
′) = tt.

To encode the derivation of the second-order sequent σ ` 〈〈A〉φ′, Θ〉, we let
SAT solvers choose the contextual assumption Ψ in modality rules. The new
assumption Ψ is represented by z̄′ in the Boolean formula Π (ū, A, φ′, z̄, Γ, d,
r). Given an assignment ρ, the valuation [[ū]]ρ maps a Boolean variable vector ū
to a Boolean vector. The function χ(ū, A, v̄) in π(ū, A, φ′, z̄, Γ, d, r) is tt with

respect to an assignment ρ if and only if [[ū]]ρ = σ, [[v̄]]ρ = σ′, and σ
a
→i σ

′ for
some i and a ∈ A. Similarly, ζ(ū, v̄, w̄) = tt with respect to an assignment ρ if and

only if [[ū]]ρ = σ, [[v̄]]ρ = δj , [[w̄]]ρ = σ′, and σ
j
→i σ

′ for some i. For the derivation
of the sequent σ ` 〈ηX.φ′, Θ〉 where η is either the least or greatest fixed point
operator, we simply unroll the formula and let Successful leaf(ū, φ′, z̄, Γ) check
whether the sequent is successful or not. The variable ci’s in fixed point and
modality rules are called expansion variables. Intuitively, ci’s indicate a proof

8

Auxiliaries

Υ0(ū)
4
=

Wn

i=0
(εi = ū) Υ1(φk, z̄)

4
= z̄[k]

Ω0(ū, φ
′, z̄, Γ)

4
=

W|Γ |−1

k=0
(ū, φ′, z̄) = Γ [k]

Not leaf(ū, φ′, z̄, Γ)
4
= ¬Υ0(ū) ∧ ¬Ω0(ū, φ

′, z̄, Γ)

Successful leaf(ū, φ′, z̄, Γ)
4
=

(Υ0(ū) ∧ Υ1(φ
′, z̄)) ∨Ω0(ū, φ

′, z̄, Γ) if φ′ ∈ CL(νX.ψ)
Υ0(ū) ∧ Υ1(φ

′, z̄) if φ′ 6∈ CL(νX.ψ)
Start rule

α(φ, d, r)
4
= ū = δ̄0 ∧ Λ(ū, φ, z̄, [], d, r) ∧

V|z̄|−1

k=0
(z̄[k]⇒ λ(se, φk))

where z̄ : a vector of fresh Boolean variables of size |CL(φ)|
End rules

λ(se, φ
′
0 ∧ φ

′
1)

4
= λ(se, φ

′
0) ∧ λ(se, φ

′
1) λ(se, φ

′
0 ∨ φ

′
1)

4
= λ(se, φ

′
0) ∨ λ(se, φ

′
1)

λ(se, νX.φ
′)

4
= λ(se, φ

′[tt/X]) λ(se, µX.φ
′)

4
= λ(se, φ

′[ff/X])

λ(se, 〈a〉φ
′)

4
= ff λ(se, tt)

4
= tt λ(se,ff)

4
= ff

Conjunction and disjunction rules

Λ(ū, φ′
0 ∧ φ

′
1, z̄, Γ, d, r)

4
=

Successful leaf(ū, φ′
0 ∧ φ

′
1, z̄, Γ) ∨ (Λ(ū, φ′

0, z̄, Γ
′, d, r) ∧ Λ(ū, φ′

1, z̄, Γ
′, d, r))

where Γ ′ = (ū, φ′
0 ∧ φ

′
1, z̄) :: Γ

Λ(ū, φ′
0 ∨ φ

′
1, z̄, Γ, d, r)

4
=

Successful leaf(ū, φ′
0 ∨ φ

′
1, z̄, Γ) ∨ (Λ(ū, φ′

0, z̄, Γ
′, d, r) ∨ Λ(ū, φ′

1, z̄, Γ
′, d, r))

where Γ ′ = (ū, φ′
0 ∨ φ

′
1, z̄) :: Γ

Fixed point rule

Λ(ū, ηX.φ′, z̄, Γ, d, r)
4
=

Successful leaf(ū, ηX.φ′, z̄, Γ) ∨ (Not leaf(ū, ηX.φ′, z̄, Γ) ∧ ci) if d = 0
Successful leaf(ū, ηX.φ′, z̄, Γ) ∨ Λ(ū, φ′[ηX.φ′/X], z̄, Γ ′, d− 1, r)) if d > 0

where ci : a fresh Boolean variable and Γ ′ = (ū, ηX.φ′, z̄) :: Γ
Modality rules

Λ(ū, 〈A〉φ′, z̄, Γ, d, r)
4
=

Successful leaf(ū, 〈A〉φ′, z̄, Γ) ∨ (Not leaf(ū, 〈A〉φ′, z̄, Γ) ∧ ci) if r = 0
Successful leaf(ū, 〈A〉φ′, z̄, Γ) ∨ π(ū, A, φ′, z̄, Γ, d, r) ∨Π(ū, A, φ′, z̄, Γ, d, r) if r > 0

where ci : a fresh Boolean variable

π(ū, A, φ′, z̄, Γ, d, r)
4
= χ(ū, A, v̄) ∧ Λ(v̄, φ′, z̄, Γ ′, d, r)

Π(ū, A, φ′, z̄, Γ, d, r)
4
=

ζ(ū, v̄, w̄) ∧ Λ(v̄, 〈A〉φ′, z̄′, Γ ′, d, r − 1) ∧
V|z̄′|−1

k=0
(z̄′[k]⇒ Λ(w̄, φk, z̄, Γ

′, d, r − 1))

where
v̄, w̄ : vectors of fresh Boolean variables of size lg(

Pn

i=0
|Σi|)

z̄′ : a vector of fresh Boolean variables of size |CL(φ)|
Γ ′ = (ū, 〈A〉φ′, z̄) :: Γ

Atomic rules

Λ(ū, tt, z̄, Γ, d, r)
4
= tt Λ(ū,ff, z̄, Γ, d, r)

4
= ff

Fig. 3. Proof Search in Boolean Satisfiability

9

needs to apply more fixed point and modality rules. The following lemma shows
that a satisfying assignment ρ for Λ(ū, φ′, z̄, [], d, r) ∧

∧l

i=0 ¬ci corresponds to a
successful proof for the sequent σ ` 〈φ′, Θ〉 with σ = [[ū]]ρ and Θ = [[z̄]]ρ.

Lemma 2. Let P = 〈P0, . . . , Pn〉 be a context-free process system, PG(P) =
〈S,Act,→, s0, se〉 its process graph, and c0, . . . , cl the expansion variables in

Λ(δ̄0, φ
′, z̄, [], d, r) with d, r ∈ N. If ū = δ̄0∧Λ(ū, φ′, z̄, [], d, r)∧

∧l

i=0 ¬ci is satisfied
by the assignment ρ, there is a successful proof for δ0 ` 〈φ′, Θ〉 with [[z̄]]ρ = Θ.

On the other hand, the formula Λ(ū, φ′, z̄, [], d, r) ∧
∧l

i=0 ¬ci can be satisfied
by the assignment ρ if a successful (d, r)-proof for the second-order sequent
σ ` 〈φ′, Θ〉 with σ = [[ū]]ρ and Θ = [[z̄]]ρ exists.

Lemma 3. Let P = 〈P0, . . . , Pn〉 be a context-free process system, PG(P) =
〈S,Act,→, s0, se〉 its process graph, and c0, . . . , cl the expansion variables in ū =
σ ∧ Λ(ū, φ′, z̄, [], d, r) where d, r ∈ N. If there is a successful (d, r)-proof for σ `
〈φ′, Θ〉, then there is a satisfying assignment ρ for ū = σ ∧ Λ(ū, φ′, z̄, [], d, r) ∧∧l

i=0 ¬ci such that [[ū]]ρ = σ and [[z̄]]ρ = Θ.

By Lemma 2 and 3, a satisfying assignment ρ for Λ(ū, φ′, z̄, [], d, r) and a
successful (d, r)-proof for the second-order sequent σ ` 〈φ′, Θ〉 are related by
[[ū]]ρ = σ and [[z̄]]ρ = Θ. If the start rule is furthermore taken into consideration,
we have the following theorem.

Theorem 2. Let P = 〈P0, . . . , Pn〉 be a context-free process system, PG(P) =
〈S,Act,→, s0, se〉 its process graph, and c0, . . . , cl the expansion variables in ū =

α(φ, d, r) with d, r ∈ N. Define Ξ−(φ, d, r)
4
= α(φ, d, r) ∧

∧l
i=0 ¬ci.

(i) If Ξ−(φ, d, r) is satisfiable, then there is a successful proof for s0 ` φ.
(ii) If there is a successful (d, r)-proof for s0 ` φ, then Ξ−(φ, d, r) is satisfiable.

Given two integers d and r, Theorem 2 shows that a successful (d, r)-proof
for a second-order sequent exists exactly when the Boolean formula Ξ−(φ, d, r)
is satisfiable. But we have no information when the Boolean formula is unsat-
isfiable. Particularly, we do not know if any (d, r)-proof exists for larger d or r.
The following lemma states that we need not continue the proof search when a
similar formula is unsatisfiable.

Lemma 4. If there is a successful (d′, r′)-proof for σ ` 〈φ′, Θ〉 with d′ > d or
r′ > r, and c0, . . . , cl are the expansion variables in Λ(ū, φ′, z̄, [], d, r), then there

is a satisfying assignment ρ for ū = σ∧Λ(ū, φ′, z̄, [], d, r)∧
∧l

i=0 ci with [[z̄]]ρ = Θ.

By considering the start location and adding the start rule, we have the
following criteria for the completion of proof search.

Theorem 3. Let P = 〈P0, . . . , Pn〉 be a context-free process system, PG(P) =
〈S,Act,→, s0, se〉 its process graph, and c0, . . . , cl the expansion variables in

α(φ, d, r) with d, r ∈ N. Define Ξ+(φ, d, r)
4
= α(φ, d, r). If there is a success-

ful (d′, r′)-proof for s0 ` φ with d′ > d or r′ > r, then there is an assignment ρ
satisfying Ξ+(φ, d, r).

10

The unsatisfiability of the formula Ξ+(φ, d, r) corresponds to the absence of
proof in local model checking. Again, one must show thatΞ+(φ, d, r) is eventually
unsatisfiable if the property fails at the initial state. Our technical results are
now summarized in the following two theorems.

Theorem 4. (Soundness and completeness)

1. If Ξ−(φ, d, r) is satisfiable, then there is a successful (d, r)-proof for s0 ` φ.
2. If there is a successful (d, r)-proof for s0 ` φ, then Ξ−(φ, d, r) is satisfiable.

Theorem 5. (Completion and termination)

1. If Ξ+(φ, d, r) is unsatisfiable, then there is no successful (d′, r′)-proof for
s0 ` φ with d′ > d or r′ > r.

2. If there is no successful proof for s0 ` φ, then there are some d and r such
that Ξ+(φ, d, r) is unsatisfiable.4

4 Algorithm

Our SAT-based model checking algorithm for context-free processes is shown in
Figure 4. The algorithm first computes the negative normal form of the negation
of the given property. Proofs of refutation and completion are checked incremen-
tally. If a proof of the negated property is found, the algorithm reports an error.
If, on the other hand, the completion criteria is satisfied, it reports success.

Given a context-free process system P and PG(P) = 〈S,Act,→, s0, se〉
Let ψ be a universal alternation-free µ-calculus formula
Let φ be the negative normal form of ¬ψ
d← 0
loop

if Ξ−(φ, d, d) is satisfiable then

return “s0 0 ψ”
if Ξ+(φ, d, d) is unsatisfiable then

return “s0 ` ψ”
d← d+ 1

end

Fig. 4. Model Checking Algorithm

By Theorem 4, a proof of the negated property can always be found should
it exist. Otherwise, the algorithm checks whether the search should continue
by Theorem 5 (1). If a proof is possible, the algorithm increments the bounds
and repeats. It will terminate if there is no proof (Theorem 5 (2)). Applying
Theorem 1, we have the following theorem.

4 Intuitively, Successful leaf(ū, φ′, z̄, Γ) is unsatisfiable when there is no successful
proof. But Not leaf(ū, φ′, z̄, Γ) will become unsatisfiable eventually.

11

Theorem 6. The algorithm in Figure 4 is correct. Namely, it has the following
properties.

– It always terminates.
– It reports “s0 ` φ” if and only if s0 |= φ.

5 Experiments

5.1 Implementation

We have implemented our SAT-based model checking algorithm for context-free
processes in Objective Caml [14]. Given a context-free process and a formula in
the universal fragment of alternation-free µ-calculus, our implementation creates
instances of the Boolean satisfiability and solves them using MiniSat [10].

Most of our implementation is straightforward, but care must be taken for
modality rules in Figure 3. The formula Π(ū, A, φ′, z̄, Γ, d, r) presumes process
invocation for any location represented by ū. Hence it may construct Λ(w̄, φk,
z̄, Γ ′, d, r − 1) for 1 ≤ k ≤ |CL(φ)| unnecessarily. Precisely, the formulae
Λ(w̄, φk, z̄, Γ

′, d, r − 1) are not needed when ζ(ū, v̄, w̄) is unsatisfiable.
To avoid creating unneeded formulae in Π(ū, A, φ′, z̄, Γ, d, r), we compute the

set of locations reachable by r transitions from the start location of the main
process P0. If there is no location in the set that may invoke other processes,
ζ(ū, v̄, w̄) is unsatisfiable and Λ(w̄, φk , z̄, Γ

′, d, r − 1) can be omitted. More for-

mally, let δ be the start state of P0. Define ∆0
4
= {δ} and ∆i+1

4
= {σ′ : σ

α
→

σ′ for some σ ∈ ∆i}. Modify Π(ū, A, φ′, z̄, Γ, d, r) as follows.

Π(ū, A, φ′, z̄, Γ, d, r)
4
=

8

>

<

>

:

ff if ∀σ ∈ ∆r, i ∈ n.σ 6
i
→

ζ(ū, v̄, w̄) ∧ Λ(v̄, 〈A〉φ′, z̄′, Γ ′, d, r − 1)∧
V|z̄′|−1

k=0
(z̄′[k]⇒ Λ(w̄, φk, z̄, Γ

′, d, r − 1))
otherwise

Intuitively, ∆i contains locations reachable from the start location δ0 with i
transitions. If none of the locations in ∆i performs process invocation, it is un-
necessary to expandΠ(ū, A, φ′, z̄, Γ, d, r) further. The simple modification avoids
creating unneeded formulae and can improve the performance significantly.

5.2 Experimental results

We compare our SAT-based algorithm with a BDD-based algorithm on randomly
generated context-free process systems in [12]. A location may be sequential,
branching, and looping with probabilities 0.6, 0.2, and 0.2 respectively. More-
over, context-free processes may be called with probability 0.2 on the sequential
location.

Two properties are checked against the randomly generated system. The
liveness property checks if a random location σ of the main process is reachable
on all paths:

12

µX.([A]tt ∨ [Act]X), where A is the specific set of actions for σ.

The safety property checks if a random process Pi is never called on all paths:

νX.([A]ff ∧ [Act]X), where A is the specific set of actions for δi.

#process/ avg.
#location

liveness safety

ans. BDD (sec.) SAT (sec.) ans. BDD (sec.) SAT (sec.)

3/1k No 0.02 0.03 Yes 0.02 0.12

4/2k No 0.10 0.14 No 0.12 0.24

5/4k No 0.09 0.16 Yes 0.18 1.70

6/8k No 0.38 0.54 Yes 0.54 7.78

7/16k No 1.51 1.44 No 2.57 3.54

8/32k No 19.07 7.07 No 35.22 7.61

9/64k No 23.44 9.21 No 46.89 8.31

10/128k No O/M 49.17 No O/M 55.11

(measured in a 1.6 GHz Intel machine with 512Mb memory)

Table 1. Performance Comparison

In table 1, the performance data of our SAT-based algorithm and the BDD-
based algorithm are shown. Our SAT-based algorithm outperforms the BDD-
based algorithm for larger context-free process systems (8/32k, 9/64k, 10/128k)
on both properties. For the largest case (10/128k), our SAT-based algorithm is
capable of finding errors while the BDD-based algorithm running out of memory.

Our experiments show that the execution time of the BDD-based algorithm
increases consistently with the sizes of the context-free process systems. On
the other hand, SAT-based algorithms are known to be very efficient in bug
detection [4, 3]. Indeed, our SAT-based algorithm takes more time in proving
the safety property for the 6/8k system than falsifying it for the 7/16k system.

Table 2 gives time distribution of our implementation. We measure the time

– for reading the input file and model building;
– for creating instances of Boolean satisfiability; and
– for solving the instances.

When the property does not hold, our implementation spends most of the time
reading the input and building models. For the verification of the safety property
on 5/4k, 6/8k, and 7/16k, the majority of time is used for creating instances.
This suggests further improvement could still be possible for our implementation.

6 Conclusion

Because of its capacity and scalability, SAT solvers have found many applications
in hardware verification. On the other hand, alternative computational models

13

#process/ avg.
#location

liveness safety

read create solve read create solve

3/1k 0.02 0.01 <0.01 0.05 0.07 <0.01

4/2k 0.14 0.00 <0.01 0.16 0.08 0.01

5/4k 0.15 0.01 <0.01 0.18 1.27 0.24

6/8k 0.52 0.01 <0.01 0.58 4.56 2.63

7/16k 1.42 0.01 <0.01 1.53 1.68 0.32

8/32k 7.03 0.03 <0.01 6.94 0.59 0.06

9/64k 9.17 0.03 <0.01 8.21 0.08 0.01

10/128k 48.69 0.39 0.08 50.78 4.04 0.35

(execution time in seconds)

Table 2. Profiling data

have shown their promises in software verification. In this paper, a complete
SAT-based model checking algorithm is developed to take advantages of SAT
solvers and context-free processes. By combining the scalability of SAT solvers
and the succinctness of context-free processes, the proposed algorithm could
potentially analyze more programs. To the best of our knowledge, this is the
first SAT-based model checking algorithm for context-free processes.

In comparison with other SAT-based techniques, our proof-theoretic ap-
proach is very general. Instead of exploiting characteristics in specification logics
or computational models, we reduce the proof search in local model checking al-
gorithms to the satisfiability problem. The same idea is used to develop an SAT-
based model checking algorithm for finite-state models in [18]. The present work
demonstrates the applicability of our approach even for context-free processes.

In the experiments, we show that our SAT-based algorithm outperforms in
some cases. We would like to conduct more experiments to support our prelim-
inary findings in the future.

Although we believe context-free processes should be sufficient for program
analysis, a scientific study will be very welcome. Finally, it would be interesting
to see if our technique can be applied to other infinite-state models.
Acknowledgment. The authors would like to thank anonymous reviewers for
their comments and suggestions in revising the paper.

References

1. Awedh, M., Somenzi, F.: Proving more properties with bounded model checking.
In Alur, R., Peled, D.A., eds.: CAV. Volume 3114 of LNCS., Springer Verlag (2004)
96–108

2. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs. In
Havelund, K., Penix, J., Visser, W., eds.: SPIN 2000 Workshop on Model Checking
of Software. Volume 1885 of LNCS., Springer-Verlag (2000)

3. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: DAC, ACM Press (1999) 317–320

14

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In Cleaveland, W.R., ed.: TACAS. Volume 1579 of LNCS., Springer-Verlag
(1999) 193–207

5. Boujjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Applications to model checking. In Mazurkiewicz, A.W., Winkowski, J., eds.:
CONCUR. Volume 1243 of LNCS., Springer-Verlag (1997) 135–150

6. Burkart, O., Steffen, B.: Model checking for context-free processes. In Cleaveland,
R., ed.: CONCUR. Volume 630 of LNCS., Springer-Verlag (1992) 123–137

7. Burkart, O., Esparza, J.: More infinite results. In Paun, G., Rozenberg, G., Salo-
maa, A., eds.: Current Trends in Theoretical Computer Science, Entering the 21th
Century. World Scientific (2001) 480–503

8. Caucal, D., Monfort, R.: On the transition graphs of automata and grammars. In
Möhring, R.H., ed.: Graph-Theoretic Concepts in Computer Science. Volume 484
of LNCS., Springer-Verlag (1990) 311–337

9. Christensen, S., Hüttel, H.: Decidability issues for infinite-state processes - a survey.
Bulletin of the European Association for Theoretical Computer Science 51 (1993)
156–166

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella,
A., eds.: SAT. Volume 2919 of LNCS., Springer (2003) 502–518

11. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In Emerson, E.A., Sistla, A.P., eds.: CAV. Volume
1855 of LNCS., Springer-Verlag (2000) 232–247

12. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In
Berry, G., Comon, H., Finkel, A., eds.: CAV. Volume 2102 of LNCS., Springer-
Verlag (2001) 324–336

13. Hungar, H., Steffen, B.: Local model checking for context-free processes. Nordic
Journal of Computing 1(3) (1994) 364–385

14. Leroy, X.: The Objective Caml system: Documentation and user’s manual (2000)
With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.

15. McMillan, K.L.: Interpolation and sat-based model checking. In Jr., W.A.H.,
Somenzi, F., eds.: CAV. Volume 2725 of LNCS., Springer Verlag (2003) 1–13

16. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and sceond-
order logic. Theoretical Computer Science 37 (1985) 51–75

17. Walukiewicz, I.: Pushdown processes: Games and model-checking. Information
and Computation 164(2) (2001) 234–263

18. Wang, B.Y.: Proving ∀µ-calculus properties with SAT-based model checking. In
Wang, F., ed.: FORTE. Volume 3731 of LNCS., Springer-Verlag (2005) 113–127

15

