Signed Cryptographic Program Verification with Typed
CRYPTOLINE

Yu-Fu Fu
Institute of Information Science
Academia Sinica
20919610611 @gmail.com

Ming-Hsien Tsai
Institute of Information Science
Academia Sinica
mhtsai208@gmail.com

ABSTRACT

We develop an automated formal technique to specify and verify
signed computation in cryptographic programs. In addition to new
instructions, we introduce a type system to detect type errors in
programs. A type inference algorithm is also provided to deduce
types and instruction variants in cryptographic programs. In order
to verify signed cryptographic C programs, we develop a translator
from the GCC intermediate representation to our language. Using
our technique, we have verified 82 C functions in cryptography

libraries including NaCl, wolfSSL, bitcoin, OpenSSL, and BoringSSL.

CCS CONCEPTS

« Security and privacy — Logic and verification; - Theory of
computation — Verification by model checking; « Software
and its engineering — Formal software verification.

KEYWORDS
cryptographic programs; formal verification; model checking

ACM Reference Format:

Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang,
and Bo-Yin Yang. 2019. Signed Cryptographic Program Verification with
Typed CRYPTOLINE. In 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’19), November 11-15, 2019, London, United
Kingdom. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3319535.3354199

1 INTRODUCTION

In 32-bit architectures, two 32-bit unsigned integers uy and up
represent a 64-bit unsigned integer U = ug x 232 + up. Let V =
v X232 +v1 be a 64-bit unsigned integer represented by two 32-bit
unsigned integers vy and vy . It is straightforward to compute the
64-bit unsigned product of U and V. Specifically, [U x V] % 264 =
[ur xvp +2%2 x (ug xvg +ug xv )] %24 In C99, such computation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6747-9/19/11.

https://doi.org/10.1145/3319535.3354199

Jiaxiang Liu
College of Computer Science and
Software Engineering
Shenzhen University
jlaxiang0924@gmail.com

Bow-Yaw Wang
Institute of Information Science
Academia Sinica
bywang@iis.sinica.edu.tw

Xiaomu Shi
College of Computer Science and
Software Engineering
Shenzhen University
xshi0811@gmail.com

Bo-Yin Yang
Institute of Information Science
Academia Sinica
byyang@iis.sinica.edu.tw

naturally arises when the unsigned product of two unsigned long
long variables is computed on 32-bit architectures. In this case,
only unsigned computation is required.

To obtain the signed product of two long long integers on
32-bit architectures is more involved. In 32-bit architectures, a 32-
bit signed integer sy together with a 32-bit unsigned integer s,
represent a 64-bit signed integer sy X 232 4 1. Let ty x 232 + 11 be
another 64-bit signed integer represented by a 32-bit signed integer
tg and a 32-bit unsigned integer t;. The 64-bit signed product
of two 64-bit signed integers sy X 232 451 and 1ty x 232 4+ 17 is
hence [sy X tf, + 232 X (sp Xty + sg X 11)] % 2%, Note that s X ¢,
is unsigned but sy X tg and sg X t, are signed. Both signed and
unsigned computation is needed to obtain the signed product.

Mixing signed and unsigned computation is in fact more compli-
cated than appeared. Since 32-bit signed and unsigned integers have
different ranges, one must ensure the absence of over- and under-
flow during computation. Moreover, signed integers have been used
to represent elements in large finite fields. In such representations,
mixing signed and unsigned computation is unavoidable. In order
to ensure functional correctness of cryptographic programs, a prac-
tical algorithm has to be developed to verify mixed computation in
various field and group operations used in cryptographic primitives.

In this paper, we propose an automated technique for verifying
mixed signed and unsigned computation in implementations of
various operations found in cryptographic primitives. We extend
the CrYPTOLINE language with signed instructions. In order to dif-
ferentiate signed and unsigned expressions, a simple type system
is introduced. Type inference moreover is provided to annotate
types of variables and variants of instructions automatically. We
also extend verification algorithms for CRYPTOLINE with signed
computation. Particularly, we employ Satisfiability Modulo Theo-
ries (SMT) solvers to verify the absence of overflow, underflow, and
range properties. Computer algebra systems also are used to check
algebraic properties in signed computation.

Our verification targets are signed C implementations of various
field and group operations in cryptographic primitives. Specifically,
we verify C implementations in NaCl, wolfSSL, bitcoin, OpenSSL,
and BoringSSL. To this end, we additionally build a translator from
the intermediate representation used in GNU compilers to CRYPTO-
LiNE. We identify a useful subset of the intermediate representation


https://doi.org/10.1145/3319535.3354199
https://doi.org/10.1145/3319535.3354199
https://doi.org/10.1145/3319535.3354199

termed GIMPLECRYPTOLINE, give formal semantics, and describe
how GIMPLECRYPTOLINE programs are translated to CRYPTOLINE.

During verification, we expose a potential programming error
in NaCl 20110221 and have reported it. We would also like to point
out that the bitcoin cryptographic library is used by various cryp-
tocurrency such as Ethereum [20], Zcash [27], Ripple [25], and
Litecoin [22]. We verify 24 C functions for various field and group
operations of the secp256k1 curve used by bitcoin. We are not aware
of any prior work on verifying cryptographic C functions from cryp-
tocurrency. Moreover, the 32-bit implementation of Curve25519 in
wolfSSL represents field elements as 10 signed integers. The same
implementation is also found in OpenSSL [24] and LibreSSL [21].
To the best of our knowledge, this is the first formal verification
of signed C implementations in cryptographic libraries used in
industry.

We summarize our contributions as follows.

e We extend the domain specific language CRYPTOLINE with
signed implementations for field and group operations in
cryptographic primitives;

e We develop practical techniques for verifying functional
correctness of signed CRYPTOLINE programs;

e We build a translator from the intermediate representation
of GNU compilers to CRYPTOLINE to enable the verification
of C implementations for cryptographic primitives;

e We report verification results of cryptographic C programs
from NaCl, wolfSSL, bitcoin, OpenSSL, and BoringSSL.

Related Work. The first semi-automatic verification work on real-
world cryptographic assembly implementations was proposed in [8].
The authors applied an SMT solver and a proof assistant to verify
an extensively annotated assembly implementation of the Mont-
gomery Ladderstep in 5 hours. The unsigned CRYPTOLINE language
and its verification algorithm were proposed in [18] by extending
BVCRYPTOLINE [28]. Our GIMPLE translation is motivated by the
translator from LLVM intermediate representation to CRYPTOLINE
developed in [14]. Vale [7, 10] is a tool and a high-level language for
the specification and verification of assembly codes. Jasmin [4] is
another framework for developing high-speed and high-assurance
cryptographic programs. Both tools use SMT solvers for verifica-
tion. When SMT solvers fail to verify a property, lemmas can be
added manually to help verification. In addition to SMT solvers,
our technique utilizes computer algebra systems to check algebraic
properties. We also verify widely used cryptographic C programs in
this work. HACL* [30] is a verified cryptography library implement-
ing the NaCl cryptographic API Its implementation is written in
the high-level language F*. Its main objective is correctness rather
than efficiency. Subsequently, HACL" is not highly optimized (yet).
We focus on verifying optimized implementations in existing cryp-
tography libraries. The Fiat-Crypto project synthesizes correct C
cryptographic programs [9]. The performance of synthesized 64-bit
C programs for Curve25519 is comparable to an x86_64 assembly
implementation in BoringSSL. The project exploits a number of
features in the proof assistant Coq and requires significant human
intervention. Various implementations of algebraic operations, hash
functions, and random number generators have been formalized
and manually verified in proof assistants (see [1-3, 5, 6, 16, 17, 29]

for examples). Our automated technique requires much less human
interaction and is friendlier to average cryptography programmers.

The paper is organized as follows. We review preliminaries in
Section 2. Section 3 presents CRYPTOLINE with signed computation.
The translation from GIMPLECRYPTOLINE to CRYPTOLINE is given in
Section 4. Section 5 reports experiments on cryptography libraries.

2 PRELIMINARY

Let Z and N denote the set of integers and positive integers respec-
tively. Using the binary representation of length w for integers, an
integer is represented by a bit string (byy—1bw—2 - - - b1bo)2 of w bits
bi € {0,1} for 0 < i < w. In the unsigned interpretation, the bit
string (byw—1bw—2 - - - b1bo)2 represents the integer Z}W:?)l b; x 2L In
the two’s complement signed interpretation, the same bit string
represents the integer —b,y_1 X w14 Z}W:BZ b; x 2. For instance,
the bit string (111); denotes 7(= 22 + 2! + 2°) under the unsigned
interpretation and —1(= —22 + 2! + 2°) under the two’s comple-
ment signed interpretation. To interpret bit strings correctly, it is
essential to know their intended interpretations. We only consider
the unsigned and two’s complement signed interpretations.

3 CRYPTOLINE WITH SIGNED ARITHMETIC

CRYPTOLINE is a domain specific language for modeling crypto-
graphic assembly programs and their specifications [18]. Modern
cryptography relies heavily on complex algebraic structures such
as large finite fields and groups. In elliptic curve cryptography,
for instance, a pair of field elements satisfying a curve equation
is a point on the elliptic curve. Points on the curve in turn form a
group. These field and group operations are frequently used and
thus critical to the performance of cryptosystems. In order to speed
up computation, assembly programs are written to implement vari-
ous field and group operations in practice. In OpenSSL, dedicated
ARMv8 assembly programs for NIST P256 can outperform corre-
sponding C implementations by 4 times! Indeed, a wide selection
of assembly programs can be found in OpenSSL for various cryp-
tosystems and architectures. If any of them computes incorrectly,
security of cryptosystems can be compromised. In order to improve
security of cryptosystems in use, CRYPTOLINE is developed to help
programmers write correct cryptographic assembly programs.

The first challenge in modeling assembly programs is diver-
sity. Different architectures have different instruction sets, register
banks, condition flags, and even word sizes. In CRYPTOLINE, a useful
set of instructions had been identified for modeling cryptographic
assembly programs [18]. Its semantics however assumed unsigned
representations. Programmers are hence forced to represent field
elements as limbs of unsigned integers. In order to allow signed
representations in cryptographic programs, we extend CRYPTOLINE
with signed instructions. It turns out that we have to introduce
a type system with a type inference algorithm for the signed ex-
tension. The verification algorithm also needs to be expanded ex-
tensively. In this section, we explain our signed extension to the
CrypTOLINE language and its verification algorithm.

3.1 Syntax

We introduce a type system to track interpretations of variables and
constants in CRYPTOLINE (Figure 1). Let w be a positive integer. The



Width
Type

1 | 2 | 3 |
uint Width | sint Width

Figure 1: CRYPTOLINE Type

type uint w corresponds to integers denoted by bit strings of length
w in the unsigned interpretation. Similarly, sint w corresponds to
integers denoted by bit strings of length w in the two’s complement
signed interpretation. A type only denotes a finite subset of integers.
Precisely, uint w denotes integers greater than —1 and less than 2";
sint w denotes integers greater than —2%~1 — 1 and less than 2% ~1.
We use 7 and 7 for the lower and upper bounds of integers denoted
by the type 7. The type 7 thus denotes the set {i € Z: 7 < i < T}.
For instance, uint 4 = —1 and uint 4 = 16; sint 4 = —9 and sint 4 =
8. If an integer belongs to the set denoted by the type 7, the integer
is representable in 7. For conveniences, bit is short for uint 1.

Constants in CRYPTOLINE are associated with a type. 15@uint 4
and (—1)@sint 4 denote the unsigned integer 15 and signed integer
—1 respectively. Both are represented by the bit string (1111)a,
though. Types of variables must be specified by declarations. For
instance, uint 32 x and sint 64 y declare a 32-bit unsigned variable
x and a 64-bit signed variable y respectively. An atom is either a
variable or a constant. A CRYPTOLINE program consists of variable
declarations followed by instructions (Figure 2).

A typical instruction retrieves values from sources and stores
results in destinations. In mov v a, the value of the source a is stored
in the destination v. Depending on the value of ¢, cmov v ¢ ag a;
stores either value of sources ag or a; in the destination v. Convert-
ing values between different types is explicit in CRYPTOLINE. The
cast (v@uint 16) x instruction casts the value of the source x to a
16-bit unsigned integer and stores the value in the destination v.

CRYPTOLINE instructions have both unsigned and signed vari-
ants. For instance, uadd r x (1@uint 32) stores the sum of the
32-bit unsigned variable x and the 32-bit unsigned constant 1 in
the 32-bit unsigned destination r whereas sadd s y (1@sint 32)
stores the sum of the signed variable y and the signed constant 1
in the 32-bit signed destination s. Typical arithmetic instructions
are supported in CRYPTOLINE. uadd and sadd are addition instruc-
tions; uadds and sadds are carrying addition instructions; uadc
and sadc are addition with carry instructions; uadcs and sadcs are
carrying addition with carry instructions. Various subtraction in-
structions (usub, usubs, usbb, usbbs) are allowed as well as their
signed variants (ssub, ssubs, ssbb, ssbbs). umul and umull are the
unsigned half- and full-multiplication instructions respectively. The
corresponding signed variants are smul and smull. Left bit-shift
instructions (ushl and sshl) are also provided for conveniences.

For bit masking in cryptographic programs, CRYPTOLINE of-
fers the uspl and sspl instructions. For instance, the instruction
uspl ugy ur, (0x1000@uint 16) 12 assigns 0x1 and 0x0 to the 16-bit
unsigned destinations upy and uy respectively. Observe that the
4(= 16 — 12) most and the 12 least significant bits of 0x1000 are
0x1 and 0x0 respectively. The corresponding signed instruction
stores most significant bits in a signed destination. Consider the
signed instruction sspl sy sz, (—0x1000@sint 16) 12. The 16-bit
unsigned destination sy, still gets the 12 least significant bits 0x0.
The signed 16-bit destination s however obtains —1. The join

instructions ujoin and sjoin have the reverse effect. For instance,
ujoin v (0x10@uint 8) (0x00@uint 8) stores the 16-bit value 0x1000
in the unsigned destination v.

Another common pattern in cryptography programming is bit
concatenation followed by shifting. Such a pattern is often found in
carry propagation in unsaturated representations of field elements.
The ucshl ug up (0x0011@uint 16) (0x2222@uint 16) 8 instruction
concatenates 0x0011 with 0x2222, shifts the concatenated result
(0x00112222) 8 bits to the left, splits the shifted result (0x11222200)
into two 16-bit unsigned values (0x1122 and 0x2200), right-shifts
the less significant value by 8 bits, then stores the results in the two
16-bit unsigned destinations. Thus ugy = 0x1122 and uj = 0x0022.
The corresponding signed instruction is almost identical except it
splits the shifted result into a signed and an unsigned 16-bit values.

Finally, an expression is an atom, or the sum, difference, prod-
uct of two expressions. An algebraic predicate is a conjunction of
equations or modulo equations. A range predicate is a conjunction
of comparisons on expressions. Given an algebraic predicate P and
a range predicate Q, assert P M\ Q aborts with an error if their
conjunction does not hold. assume P n Q aborts without error if
the conjunction does not hold.

3.2 Type System and Inference

Recall the computation of the product of two long long variables
in Section 1. Its mixed signed and unsigned computation must be
interpreted carefully to obtain correct results. If an unsigned bit
string is misinterpreted as a signed one or vice versa, incorrect
results will be computed and contaminate cryptographic primitives.
Keeping track of unsigned and signed interpretations can be te-
dious. Assembly programmers have to remember interpretations
of memory cells and registers so as to implement field and group
operations in cryptographic primitives correctly.

In order to identify misinterpretation, we introduce a simple
type system in CRYPTOLINE with signed computation. Let w be a
positive integer. An unsigned type p is of the form uint w; a signed
type o is of the form sint w. We also use 7 to denote a (signed or
unsigned) type. Two types 7, ¢’ are compatible (written 7||7’) if they
are of the same bit length. We also write 2 o 7 for the type with
double length of 7. For instance, sint 16/|uint 16 and 2 e (sint 16)
denotes sint 32. A variable typing relation v : T specifies the type
7 for the variable v. A type context T is a set of variable typing
relations. Figure 3 gives the type system for CRYPTOLINE.

Each declaration in CRYPTOLINE specifies a type for a variable
and hence defines a variable typing relation. Let T’ be the type
context composed of all variable typing relations in a CRYPTOLINE
program. An instruction inst is typable in T if T' + inst. Typable
expressions and predicates are defined similarly.

The mov v a instruction is typable if v and a are of the same
type. The conditional move instruction cmov v ¢ ag a; is typable
if v, ag, a1 are of the same type and c is of the type bit. The cast
instruction cast v@7 a expects v to be of the designated type 7.

Most arithmetic instructions require sources and destinations are
of the same type. uadd v ag a; expects v, ag, a; to have the same un-
signed type; uadds c v ag a; additionally requires c is of the type bit.
Addition with carry is similar. uadc v ag a; d is typable if v, ag, a;
have the same unsigned type and an additional carry d has the type



Num == .- |=2|-1]0|1]|2]| -+ Const == Num@Type Var u:= ---|x|ylz|--- Atom == Var| Const
Exp Atom | Exp + Exp | Exp — Exp | Exp X Exp
APred == Exp=Exp | Exp= ExpmodExp | APred A APred RPred := Exp=Exp | Exp <Exp | RPred A RPred

Inst == mov Var Atom | cmov Var Var Atom Atom | cast Var@Type Atom
| uadd Var Atom Atom | uadds Var Var Atom Atom | wuadc Var Atom Atom Atom | uadcs Var Var Atom Atom Atom
| sadd Var Atom Atom | sadds Var Var Atom Atom | sadc Var Atom Atom Atom | sadcs Var Var Atom Atom Atom
| usub Var Atom Atom | usubs Var Var Atom Atom | usbb Var Atom Atom Atom | usbbs Var Var Atom Atom Atom
| ssub Var Atom Atom | ssubs Var Var Atom Atom | ssbb Var Atom Atom Atom | ssbbs Var Var Atom Atom Atom
| umul Var Atom Atom | smul Var Atom Atom | umull Var Var Atom Atom | smull Var Var Atom Atom
| ushl Var Atom Num | sshl Var Atom Num | uspl Var Var Atom Num | ucshl Var Var Atom Atom Num
| ujoin Var Atom Atom | assert APred M RPred | sspl Var Var Atom Num | scshl Var Var Atom Atom Num
| sjoin Var Atom Atom | assume APred M RPred

Decl == Type Var Prog == Decl* Inst*

Figure 2: CRYPTOLINE Syntax

I'tEy:7 TVvrEi:T I'tEy:t TVvE:T
lv:tro:r T'tc@r:7 TrEy+E :t TrEy—FE :7
I'tEy:r TFrEj:7T 'tEy:7 TFrE;:7T I'tEy:t TFrEy:t TFrEy:T 'rEy:t TFrE;:7T
T'rEyXE :T 't Ey=E; T'+Ey=E; modEy I'rEy<Eq
'rPy T+Pg Tra:1 IF'ktc:bit Tray:tr Trap:t Tra:7r’
TrPyAP; Iv:tkFmovuva I,v:7Fcmovocayar T,v:7Fcastv@r a
Trap:p Traj:p Tray:p Traj:p IF'tap:p Traj:p Trd:bit Tray:p Tray:p Trd:bit
ILv:ptruaddovagag T,c:bit,v: p+uaddscovaga; ILv:pruadcvagad I,c:bit,v:pruadescovaga;d
T'tay:0 Ttraj:o F'tay:0 Traj:o 'tap:0 Traj:o Trd:bit Tray:o0 Trayj:o T rd:bit
T,v:0+sadd v ag a; I,c:bit,v: o+ saddscvag a; I'Nv:otrsadcvagar d T',c:bit,v:orsadcscvagar d
Trag:p Trar:p Trap:p Trai:p Ttay:p Tray:p Trd:bit Tray:p Traj:p Trd:bit
T,v:prusubvaga T,c:bit,v: p+ usubscvag a; T,v:prusbbvagard T,c:bit,o:prusbbscvagad
T'ray:0 Ttraj:o 'ray:0 Ttraj:o IF'tay:o0 Tray:oc Trd:bit Tray:oc Trai:oc Trd:bit
T,v:0+ssubvaga; I,c:bit,v: ok ssubscvaga; T,v:0Fssbbvayard I',c:bit,v:o+ssbbscovagayd
Tray:p Traj:p I'tay:0 Traj:o Trtay:p Traj:p T'tay:0 Traj:o olp
TF,v:pFumulvaga; ILv:o+smulvagag T,ug :p,or:prumull vy vr ag a1 I,og :0,vr : p+smullvg vr ag a1
Tra:p Tra:o Trag:p Trap:p T'rag:0 Trar:p olp
Iv:prushlvan T,bv:o+sshlvan I,ug : p,vr : p+ucshlvg vy ag ap n I,ug :o,vr : pt+scshlog vp agap n
I'tag:p Trar:p Trag:oc Trap:p olp T'ta:p T'rta:oc ollp
ILv:2epF ujoinvag ag ILv:2e0 Fsjoinvayag Ivg :p,ur:prusplvgoran Ivg :o,vp : prssplogoran
'rP TrQ 'rP TrQ T+ inst T+ insts

'k assert PmQ 'k assume P M\ Q

T'r T+ inst insts

Figure 3: CRYPTOLINE Type System

bit. uadcs ¢ v ag a1 d moreover requires the carry c to be of the type
bit. Signed addition instructions sadd, sadds, sadc, sadcs similarly
require sources and destinations are of the same signed type and
carries of the type bit. There is no surprise for subtraction instruc-
tions. Unsigned subtraction instructions usub, usubs, usbb, usbbs
are typable when sources and destinations have the same unsigned
type with additional borrow or borrowing bits if needed. Signed
subtraction instructions must have signed sources and destinations
instead. Unsigned half-multiplication umul v ag a; requires v, ag,
and a; to have the same unsigned type. Signed half-multiplication
smul is typable if sources and destinations are of the same signed

type. The left-shift instructions ushl v a n and sshl v a n are as
expected. The destination v is required to have the same type as a.

Full multiplication however is slightly surprising. The unsigned
full-multiplication umull vy vy ag a1 is typable if vy, vy, ap, a1
have the same unsigned type. Suppose ag and a; are of the type
uint w. Their product then needs bit length 2w. The w least signifi-
cant bits are put in vy, and the remaining bits are stored in vg. Thus
both vy and vy, are of the same unsigned type uint w. Now consider
the signed full-multiplication smull vg vy, a¢ a1. Suppose ag and
ap are of the signed type sint w. Their signed product therefore
has bit length 2w (2w — 1 bits for magnitude and 1 bit for sign).
The w least significant bits are unsigned and assigned to vr. The



w most significant bits are signed and stored in vy of the type
sint w. Using different interpretations for vy and vy, maintains the
equation vy X 2% + vp = agp X aj (see Section 3.3 for details).

For the source a of the type uint w, the uspl vy v a ninstruction
splits the bit string for a. The w — n most significant bits are stored
in vy and the remaining n bits are in vr. Both vy and vy are
required to have the type uint w. To split a source a of the type
sint w, sspl vy vy, a n is used. Similar to signed full-multiplication,
the w — n most significant bits are signed and put in vgy; the n least
significant bits are unsigned and stored in vr. Subsequently, v
and vy, must be of the types sint w and uint w respectively. For
sources ayy and ay, of the type uint w, ujoin v ay ay concatenates
the bit strings of afy and ay, and requires v to have the type uint 2w.
Similarly, v must have the type sint 2w in sjoin v ag ay, where ag
and ay are of the types sint w and uint w respectively.

Concatenation followed by left-shift instructions combine left-
shift and split instructions. The unsigned ucshl vy vy ag ar n
takes agy and ay of the type uint w and requires the destinations
vy and vy, to have the same type. On the other hand, the signed
scshl vy vr ag ap n requires ag and ay, to have the compatible
types sint w and uint w respectively. The destinations vy and vy
should also be of the types sint w and uint w respectively.

Finally, assert P m Q and assume P M Q require the algebraic
predicate P and range predicate Q to be typable in the given context.
A sequence of instructions is typable if each instruction is typable.

From Figure 3, it is not hard to see that types of destinations
are determined by instructions. It is subsequently not necessary
to declare types for all variables in a CRYPTOLINE program. Types
of variables containing intermediate computation results can be
inferred automatically. Figure 4 gives a type inference algorithm
for CRYPTOLINE type system.

Given a type context, each type inference rule updates the type
context with variable typing relations for destinations. For instance,
the [Cast] rule requires a to have the type 7’ in the type context
I'(T F a:7’). If so, the instruction cast v@t a updates the type
context and obtains a new type context I' ¥ {v : 7}. Compared to
the corresponding rule in CRYPTOLINE type system (Figure 3), the
inference rule does not require the destination v to be typable in
I'. Rather, it updates I' with the variable typing relation for v and
hence implicitly declares the type of v to be 7 (I'  cast v@7 a =
T'w {v: r}). All type rules can be reformulated as inference rules
straightforwardly. We illustrate the basic ideas in selected examples.

In uadcs ¢ v ag ay d, the sources ag, a1 need to have an unsigned
type p and d the type bit in the current type context. If so, the type
context is updated with the variable typing relations c : bit and
v : p. Thus ¢ and v effectively have the respective types bit and p
afterwards. Similarly, smull vy vy ag a; requires ag, a; to have a
signed type o. After the instruction, the type context is updated
with the variable typing relations v : o and v, : p where types o
and p are compatible. If ay : 0 and ay : p with compatible types o
and p are typable in the current type context, scshl vy vp ag ap n
adds vy : 0 and vy, : p to the type context. Finally, ujoin v ag ar
declares v to have the type 2 ® p if ayy and aj are of the type p.

Starting from the first instruction, the [Inst] rule updates the
given type context and uses the updated type context for the re-
maining instructions. With the type inference rules in Figure 4, it
suffices to declare types of uninitialized variables in the initial type

context. The type inference rules will annotate all variables used in
a CRYPTOLINE program automatically without user intervention.
The type inference rules hence greatly improve the usability.

Our implementation goes even further. In Figure 3 and 4, it is
easily seen that types of sources determine the variant of instruc-
tions. Intended variants of CRYPTOLINE instructions can hence be
decided automatically. Consider, for instance, a generic addition
instruction with two unsigned sources. The addition instruction
is easily seen to be unsigned because the signed addition requires
two signed sources. Subsequently, it suffices to write add v ag a;.
CRYPTOLINE type inference will determine whether the unsigned
uadd v ag a; or signed sadd v ag a; is needed. Users simply write
generic mnemonics for each instruction (say, add). CRYPTOLINE
will choose the intended variant (uadd or sadd) automatically.

Allowing generic mnemonics in CRYPTOLINE is more than for
users’ conveniences. When verifying cryptographic assembly pro-
grams, it is crucial to distinguish unsigned from signed interpre-
tations. Yet not all assembly instructions indicate variants of op-
erations clearly. The x86 add instruction, for example, is used for
both variants of addition. For such instructions, it is unclear which
variants of instructions are intended by programmers. CRYPTOLINE
users of course could guess programmers’ intention and annotate
instructions accordingly, but they might also misinterpret program-
mers’ intention and verify incorrectly annotated programs. Generic
mnemonics in CRYPTOLINE relieve tedious and possibly harmful an-
notations during verification. Users can greatly benefit from these
simple yet useful features in the CRYPTOLINE type system.

3.3 Semantics

CRYPTOLINE is designed to model cryptographic assembly pro-
grams. In order to model overflow, underflow, and even CPU flags
in such programs, we give a bit-accurate semantics for CRYpTO-
Line. Following the standard operational semantics of imperative
languages [12, 15], a program state is formalized by an environ-
ment. Formally, an environment € is a mapping from variables to bit
strings. Note that variables are mapped to bit strings, not values.

Using bit strings can be tedious sometimes. A bit string may
denote different values in different interpretations. Conversely, a
value can be represented by different bit strings under different
interpretations. For instance, (1111)2 denotes 15 in uint 4 but —1 in
sint 4; —1 can be represented by (1111); in sint 4 or (11111111); in
sint 8. It is essential to specify interpretations before representing
values in the semantics. Particularly, it is ambiguous to update the
variable v in an environment € with the value —1 since both (1111);
and (11111111); represent —1 in sint 4 and sint 8 respectively. One
has to specify the type of v so as to update its bit string correctly.
The CrYPTOLINE type system luckily provides the needed typing
information. Let € be an environment, v a variable, and V a value.
We write e[v - V] for the environment obtained by updating the
bit string for v in € with the bit string representing V (interpreted)
in the type of v. Thus €[v +— —1](v) = (1111) when v : sint 4 but
e[v — —1](v) = (11111111); when v : sint 8.

Figure 5 gives the semantics for CRYPTOLINE arithmetic instruc-
tions. Recall an atom a is either a variable v or a constant c@7 with
atype 7. When a : 7, [a]|Z denotes the value of a in € interpreted
in the type 7. The mov v a instruction simply updates the bit string



Tra:1’

Var  ___ Const Cast
Lovirro:r Trec@r: 7T Iltcastv@ra=>TW{v:r}
: : bi : : J : Tk :
lra:r Mov IF'ktc:bit Tray:z Traj:t CMov ap: p a:p UAdd
F'tmovva=TW{v:r1} IF'tcmovoucayag =>Tw{v:r} I'tuaddvagas = Tw{v:p}
TFag: Tkap: TFag: Trap: T +d: bit Tkag: Trap: T +d: bit
ap:o a:o SAdd 0:p 1:p ap:o ar:o i SAde
Il'tsaddvaga; =2TwW{v:0o} IFtuadcvagyard=Tw{v:p} I'tsadcvagaid=TwW{v:o}
T'kFap: T'ta;: T+ : T+ :
0P 1P UAdds %0 @i SAdds
I'tuaddscvaga; = T'w{c:bit,v: p} I'tsaddscvaga; = TW{c:bit,v:o}
Trag: T'rap: I'+d:bit TFap: T'rap: T'+d:bit
0P 1:p UAdcs d:9 hi:g : SAdcs
T'+tuadcscvagar d=Tw{c:bit,v:p} T'tsadecscovaga;d=TW{c:bit,v:o}
T'kap: I'tay: T'koag: F'tap: T'kag: I'kay: T+d:bit
0P P yswb 0 M9 ssub 0P 1P USbb
Trusubvaya =>TwW{v:p} I'tssubvagay =>Tw{v:0} T'rusbbvaga;d=TW{v:p}
I'kap: I'ka: TFap: TFai:
0P L:p USubs 9 hi:o SSubs
T'Fusubscvaga; = Tw{c:bit,v: p} T'+ssubscvaga; =T W{c:bit,v:o}
T'kFap: I'ka: I'+d:bit I'ta: Tra:
ap : o a :o 1 SSbb p UShl a:0 SShl
T'tssbbvayard=>Tw{v:o} IF'tushlvan=TW{v:p} Il'tsshlvan=Tw{v:o}
Trap: T'tag: I'+d:bit Trap: Ttrap: I'+d:bit
0P 1P USbbs B30 @0  SSbbs
I'+usbbscovaga; d=TW{c:bit,v: p} I'+ssbbscvaga; d=Tw{c:bit,v:o}
I'tag: I'tag: 'tag:0 Ttrag: o
H:p Lip — H Lip llp SCSh
T+ ucshlvg vy apr ap n = T W {vg : p,vr : p} I'+scshlog v agap n=TW{vyg : 0,01 : p}
I'ta: 'ta:0 o
P Uspl llp SSpl
Trusplvogovran=TW{vyg:p,uL:p} Ttssplogvran=Tw{vyg:0,vr:p}
T'tag: T'tar: T'kFagp: I'ta;:
0P 1P UMull i 1:0 olip SMull
I'Fumullvg vp ap a1 = TW{vyg : p,vr : p} I'+smull vg vp ap a1 = TW{vy : 0,v : p}
I'kag: I'taj: Trag: I'ta:
do:p ap UMul d0:9 o SMul Assert
T'rumulvaya; =TW{v:p} IF'rsmulvaya; =>TW{v:0o} I'rassert PM Q=T
T'rag: T'tag: T'tag:0 TFrag: o
Hp LP UJoin " L:P lp SJoin Assert

T'rujoinvagar =TW{v:2ep}

T'tsjoinvagar >TW{v:2e0}
T+ inst = T’

I'assumePM Q=T

T’ v insts = T’

Empt
'k r Py

Inst

T + inst insts = T’

Figure 4: CRYPTOLINE Type Inference

for v with the bit string representing the value of a in the type of v.
Similarly, cmov v ¢ ag a1 updates v with the bit string representing
the value of ag or a; depending on the value of the bit c.
Unsigned addition instructions are essentially those in [18] en-
riched with typing information. uadd v ag a; updates the bit string
for v with the bit string representing the sum of ag and a; if the
sum is representable in the type of v; otherwise, the instruction
yields the error environment L. The addition with carry instruction
uadc v ag a; d updates the bit string for v with the bit string repre-
senting the sum of ag, a1, d if the sum is representable in the type
of v; otherwise, it yields the error environment. Carrying addition
instructions uadds ¢ v ag a1 and uadcs ¢ v ag a1 d never err. The
bit c is 1 iff the sum is not representable in the unsigned type of v.
The signed uncarrying addition instructions sadd v ag a; and
sadc v ag a; d are similar. If the sum is representable in the signed
type of v, the bit string for v is updated accordingly. Otherwise,

these instructions yield the error environment. The signed carry-
ing addition instructions are slightly curious. The sadds c v ag a1
instruction updates the bit string for v if the sum of ap and a; is
representable in the type o of v. In contrast to its unsigned coun-
terpart, sadds will yield the error environment when the sum is
not representable in o. Moreover, the carrying bit ¢ is computed
by interpreting the bit strings of ap and a; in the unsigned type
p compatible with o. If the sum in the unsigned interpretation is
representable in p, the carrying bit c is set to 0; otherwise, it is set to
1. In assembly, the carry flag is computed as if sources are unsigned
since there is no typing information. Our bit-accurate semantics
is designed to mimic the semantics of assembly instructions. The
semantics of the signed carrying addition with carry instruction
sadcs c v ag a; d is defined similarly.

Unsigned subtraction instructions usub v ag ay, usubs c v ag ay,
usbb v ag a1 d, and usbbs ¢ v a¢ a1 d again are similar to those



[0]Z = the value represented by €(v) in 7 for v € Var
mov v a

e —— ¢elv [alf] (v,a:71)

cmov v ¢ ay a
— = elv - V] (c : bit;v,a9,a1 : 7)
uadd v ag a
—_— 2 ¢ (v,a9,a1 : p)

uadds ¢ v ag a
R €lc,v— C,V] (c : bit;v, a9, a1 : p)
uadc v ag a; d
— 7S ¢ (v, a9,a; : p;d : bit)

uadcs ¢ v ag a1 d
— 0 €lc,v - C,V] (c,d : bit;v, ag, a1 : p)
sadd v ay a; ,

—_— (v,a9,a1 : 0)
saddscomar (c : bit; 0, g, a1 : 0)
sadc v ag a1 d

R et Y (v, ag, ay : 0;d : bit)

sadcscvagard (C d: bit:o 2. a1 .O_)
usub v ay a; ,

— (v,a0,a1 : p)
usubs ¢ v ag a
b B €lc,v - C,V] (c : bit;v, a9, a1 : p)
usbb v ag a; d
— 275 ¢ (v, a9, ay : p;d : bit)

usbbs ¢ v ay a; d
— - 00 €lc,v > C,V] (c,d : bit;v, ag, ay : p)
ssub v ay a; ,

(v,a9,a1 : 0)
ssubs ¢ v ag a1 , (C - bit: v, ap. ay : 0)
ssbb v ag a; d
i i s Y (v, ag, a1 : 0;d : bit)
Ssmd / (c,d : bit;v, ag, a1 : o)
ushlvan ,
(v,a:p)
sshhvan
e’ (v,a:0)

umul v ay a; (va B p)
— ,4dp,ay :

smul v ap a
L (v,ao,a1 :O’)

umull vy v ag a1
—  ¢lvg,vL > Vg, VL] (vn,vL, 40,41 : p)
smull vy vr ag a;
—  €lvh, v o Vg, Vi](vg, a0, a1 : 030 2 pollp)

[c@z]lZ = c for c@7 € Const

|

if [e]Pit = 1
if [e]2t =0

llaollf
a1l

V = [laoll? + [a1]% and ¢’ = j_[v =Vl i)ft}‘:e:w’?se

V= IIGO]]Ie) + |Ial]]€’ V)= { E(l), g)— P) i)ft}‘fe:wl_i)se

V =[laol? + [a1]? + [d]2"* and €’ = { i_[v e ioft}‘fe:w’_i)se

7 = [ao]” + [ar]” + [4]"* and (C, V) = { 2(1) \‘;)_ ) i;ft}‘fe:wzi)se
V =[ao]|¢ + [a1]]¢ and €’ = { j_[v aad i)ft%e:w‘i/s: ’

V = [[all +[a1]¢.U = [aoll€ + [a1]E. ollp.

C= 0 1fU</? nde’ = elc,v > C, V] 1fg<V<J
1 otherwise L otherwise
_ . . bit , | elo—=V] ife<V <o
V= [[aO]]e + [[allle + [Id]]e and e’ = { n otherwise
V = [laoll + [ar]¢ + [d]2™, U = [[ao]? + [ ])Z + [d]2", o llp,
0 ifU<p , elc,v— C V] ifo<V<a
C= . and e’ = -
1 otherwise L otherwise
B P p , | elv=V] if£<V
V= llaolle = llarlle and €” = { 1 otherwise
. (0,V) ifp<V
V= 2 a1 and (C,V) = - =
laolle = flarlle and ( ) { (1,V+p) otherwise
. V] ifp<V
V= P _ P _ d bit de’ = E[U = F
laolle ~ llarlle — [d]le" and e { 1 otherwise
. . 0,V) ifp<V
V =[ao]l? - [a1]? - [d]2" and (C, V) = ©.v £
laolle ~llarlle ~ [d]" and ( ) (1,V+p) otherwise
_ o - , | el V] ifa<V <o
V =laoll¢ - a1]¢ and " = { 1 otherwise

V = llaoll¢ = [a11¢.U = [[aoll? ~ [la1 ], sllp,
0 if U i T
C={1 ifp < ande,z{e[c,vHC,V] ifo<V<o

otherwise 1 otherwise
V =[ao]lg - [a1]¢ - [d]2t and ¢’ = {

elom V] fea<V<o
L otherwise
V = [aoll? - [a1]¢ ~ [d12", U = [[ao]? - [a]? - 112", o llp

Cz{o ifp<U ande,z{e[c,vHC,V] ifo<V<o
1 otherwise L otherwise
V= [lall¢ x2" and e’ = j_[v =Y f)ftl‘llefwﬁise

V =[a]lg x2" and ¢’ = { j_[v add i)ft%e:w‘i/s: g

V= lanll xfal ande = | VY7

V= laolg x 1] and €” = { j_[v =Y i)ft%e:w‘i/s: ’

V= I[ao]]gx[[al]]g,VH Xp+Vp=Vandp <V, <p
V=[aollZ x[a1lZ.Vuxp+Vy=Vandp <V <p

Figure 5: CRYPTOLINE Semantics



in [18]. For usub and usbb, the error environment is yielded if the
difference is negative. On the other hand, the usubs and usbbs
instructions never yield the error environment. The signed subtrac-
tion instructions follow a similar line as signed addition instructions.
ssub v ag a; and ssbb v ag a; d update the bit string for v if the dif-
ferences ag — a1 and ag — aj — d are representable in the signed type
of v respectively. Otherwise, both instructions yield the error envi-
ronment. The borrowing subtraction instructions ssubs ¢ v ag a1
and ssbbs ¢ v ag a; d still yield the error environment if the differ-
ences are not representable in the type o of v. Otherwise, the bit
string for v is updated with the bit string representing differences
in 0. The borrowing bit ¢ moreover is updated as if the sources are
unsigned. This is the semantics consistent with assembly as well.

The left-shift (ushl v a n, sshl v a n) and half-multiplication
(umul v ag a1, smul v ag a1) instructions are as usual. If the result
is representable in the type 7 of v, the bit string for v is updated
with the bit string representing the result interpreted in the type 7.
Otherwise, the error environment is yielded.

Recall that the product of two integers representable in the type
7 is representable in the type 2e 7. In full-multiplication, the product
is splitted into two parts and stored in two destinations of types
compatible with 7. The following lemma will be useful in defining
the semantics of full-multiplication instructions.

LemMA 3.1. Consider bit stringsz = (byw—1bw—2 -+ - bo)2 of length
W, by = (bw-1bw-2 - - - bs1bi)2, and by, = (bg_1bk—3 - - - bo)2 with
0 <k < w. Let [b]]" be the value represented by b in the type T.

(1) [[E]]uint w = ok x II—EH]]uint (w=k) 4 [[_EL]]uint k. and
() [p]sint™ = 2k x Tog st (w=k) 4 [brJuint k.

Lemma 3.1 shows how to split a bit string of length w in differ-
ent interpretations into bit strings of lengths w — k and k. If the
interpretation is unsigned, both the w — k most significant bits and
k least significant bits use the unsigned interpretation. On the other
hand, if the interpretation is signed, then the w — k most significant
bits use the signed representation but the k least significant bits
use the unsigned interpretation.

With Lemma 3.1, it is now easy to explain the semantics of full-
multiplication instructions. For the unsigned full-multiplication
instruction umull vy vg, ag a1, the product of ag and a; is written
as Vg X p + Vi where vy, vr,ag, a1 are of the type p and Vp is
representable in p. The values Viy and Vy are thus representable in
p and stored in vy and vy, respectively. For the signed instruction
smull vy vy ag a; with vy, ag, a; : 0, vr @ p, and o||p, the product
of ap and a; is written as Viy X p+ V where V[ is representable in p.
Thus Vg and Vp are representable in o and p and stored in vy and
vy, respectively. Lemma 3.1 allows us to generalize the semantics
of unsigned full-multiplication instructions in [18] naturally.

Figure 6 gives the semantics of the remaining CRYPTOLINE in-
structions. Split instructions are another application of Lemma 3.1.
The unsigned uspl vy vy, a n instruction splits the bit string for a of
an unsigned type into destinations v and vy, of the same type. The
n least significant bits are stored in v and the remaining bits are
stored in vyy. When a is of a signed type, sspl vy v a n stores the
n least significant bits of a in the unsigned destination vy and the
remaining bits in the signed destination vg. The join instructions
are almost trivial with Lemma 3.1. The unsigned ujoin v af ar

stores the concatenated bit strings of unsigned ag and ay in v of
the type 2 o p. The signed sjoin v ag ay stores the concatenation
of the signed ayy and unsigned ay, in v of the type 2 e 0.

The unsigned concatenation followed by left-shift instruction
ucshl v v ag ar n concatenates the bit strings of unsigned ag
with ay, shifts the concatenated bit string to the left by n bits, and
keeps the value in V. It then decomposes V into two parts Vi and
Vp, with Vp representable in p. If Vi is also representable in p, the bit
strings representing Viy and Vy + 2" are stored in the destinations
vy and vy, of the type p respectively. Note that the n least significant
bits of V1, are 0 and V, + 2" shifts the bit string of V7, by n bits to
the right. The signed variant scshl vy vr ag ap n concatenates the
signed bit string of apy with the unsigned bit string of ay, shifts the
concatenated bit string to the left by n bits, and keeps the value in V.
V is again decomposed into Vi and Vi with V] representable in the
type p of vr. If Vi is representable in the compatible signed type
o, the bit strings of Vi and V1, + 2" are stored in the destinations
vy and vy, of the types o and p respectively. Both variants err if
VH is not representable in the type of vg.

The cast v@7 a updates v with the bit string representing the
value of a if the value is representable in the type 7 of v. Otherwise,
it yields the error environment.

A predicate ¢ holds in an environment ¢ (written € |= ¢) if
¢ evaluates to true by substituting its variables for the respective
values represented by their bit strings in their types. The assert P m
Q instruction checks if P A Q holds in the current environment. If
not, the error environment is yielded. The assume P M Q instruction
can only be executed when P A Q holds in the environment.

3.4 Specification and Verification

Let P, P’ be algebraic predicates and Q, Q’ range predicates. We
write = {P A Q}Prog{P’ A Q’} for the partial correctness of Prog
with the precondition PAQ and postcondition P’ AQ’. That s, if PAQ

holds in the environment € and € IE; €’ withe” # L, then P’ A Q’
must hold in the environment €’ [13]. | {P A Q}Prog{P’ A Q"}
only considers environments on termination and hence guaran-
tees the partial correctness of Prog. Given algebraic predicates
P, P’, range predicates Q,Q’, and a CRYPTOLINE program Prog,
the CRYPTOLINE verification problem is to determine whether |=
{P A Q}Prog{P’ A Q’} or not. In the remaining section, we briefly
describe our algorithm for the CRYPTOLINE verification problem and
focus on our signed extension to the algorithm developed in [18].

3.4.1 Checking Safety and Range Properties. Recall that the error
environment is yielded if computation results are not representable
in destinations (Figure 5 and 6). Intuitively, the error environment is
yielded when over- or underflow arises in computation. In order to
detect over- and underflow, the CRYPTOLINE verification algorithm
performs the safety check to ensure the absence of error environ-
ment. All over- and underflow in computation will be identified and
reported to programmers during verification. Although the idea
is simple, the safety check is proved to be a rather useful tool for
cryptography programming in practice.

For range properties in assertions or postconditions, the CRyp-
TOLINE verification algorithm simply formulates the negation of
the given range property in the bit vector theory of Satisfiability



uspl vy vp an

e ———— ¢€lvg,vp > Vg, VL] (vH,vL,a:p)

sspl vg vp an
e — e€lvg,vr > Vg, V1] (vg,a:o;0r : p;ollp)
ucshl vy vp ag aL n
e ——— € (vg,vr,am.ar : p)

scshl vy v ag ap n
€ —

€ (vg,ag : osvL.ar : p;ollp)
ujoin v ag a
e PmYana elv > V] (v:2ep;ap,ag:p)
sjoin v ay ar,
— el V] (v:2e05ay:0;ar :p)

cast v@r1 a
i (w:t,a:1’)

assert PMQ
€ _— €

assume PMQ
€ —_—— €
inst

1

Vgx2"+Vy=[a]landp <V <p

Vgx2"+Vy=[a]] andp <V <p

V= agl? x5+ [aL]?) x 2", Vg xp+Vy, =V, p < Vi <5, and

e = €lvg,vp > Vg, Vp+2™] Vg <p
L otherwise

V=lagll? xp+[arlf) x 2", Vg xp+ V. =V,p < Vi < p, and

o = elvg,vp > Vg, Vp+2"] ifo<Vyg <o
L otherwise

V =[lagl? x5 + [ar 117

V =[ag]? xp+ [ar]?

_ 7 , | el V] ifr<V<T
V=la]c and e’ = { 1 otherwise
, | e ifelEPAQ
" | L otherwise
ife EPAQ

inst € Inst

Figure 6: CRYPTOLINE Semantics (continued)

Modulo Theories Library (SMT-LIB2) and employs an SMT solver
to find errors. If the SMT solver finds the negated range property is
satisfiable, an error is found. Otherwise, the range property cannot
be falsified and thus must hold in all computation.

3.4.2 Checking Algebraic Properties. Verifying non-linear algebraic
properties is notoriously hard for SMT solvers [8]. In [18], the au-
thors formulated the verification problem as the ideal membership
problem and solved it with computer algebra systems. The idea is
to formulate the computation of each CRYPTOLINE instruction by
roots of multivariate polynomial equations. The computation of
CRYPTOLINE programs thus corresponds to common roots of sys-
tems of polynomial equations. Algebraic properties about roots of
these equations can then be verified by computer algebra systems.

To see how to formulate computation as roots of polynomial
equations, consider a CRYPTOLINE program in static single assign-
ment (SSA) form. Destination and source variables in an instruction
are then distinct. Figure 7 characterizes each instruction by roots
of multivariate polynomial equations.

For mov v a, v will be equal to a after executing the instruction.
The equation v — a = 0 suffices to characterize the computation.
The cmov v ¢ ag a; instruction will assign ag or a; to v if ¢ = 1
or 0 respectively. Observe that (c,v) = (1, ag) and (c,v) = (0, a1)
are roots of v — (¢ X ap + (1 — ¢) X a1) = 0. The computation is
characterized by the equation soundly. Both variants of addition
instructions uadd v ag a1 and sadd v ag a; are characterized by
v — (ap + a1) = 0 because their normal computation satisfies the
same equation. The unsigned carrying addition uadds ¢ v ap a1
sets ¢ to 1 if ap + a1 > p when v is of the unsigned type p; other-
wise, it sets ¢ to 0. Subsequently, (v + ¢ X p) — (ap + a1) = 0 and
¢ X (1 —¢) = 0 suffice to characterize the computation. The signed
carrying addition sadds ¢ v ag a; differs slightly. The equations
v—(ap+a1)=0andcX(1-c)=0do not characterize the compu-
tation precisely. For instance, ¢ can be 0 or 1 regardless of the sum

ap + ai. Nonetheless, all normal computation does satisfy the equa-
tions. Other addition and subtraction instructions are characterized
similarly. The computation of both variants of half-multiplication
instructions satisfies the equation v — (a9 X a1) = 0. Both ushlvan
and sshl v a n use the same equation v — (a x 2") = 0. For full-
multiplication, the computation of both variants is characterized
by (vyg X p +vr) — (a0 X a1) = 0 when vy is of the type p.

The same equation (vg X 2" + vr) — a = 0 is used for both
uspl vy v a n and sspl vy vr a n. Similarly, ujoin v ag ay and
sjoin v apy ay, are characterized by v—(agXp+ar) = 0whenay : p.
Concatenation followed by left-shift instructions are slightly more
complicated. Consider ucshl vy vy ag ap n with vy, ay, : p. The
concatenated result (agy X p +ar ) is shifted to the left by multiplying
2™, The intermediate result ((agy X p + ar) X 2™) is splitted into two
parts: v and v, X 2". Hence the equation (vyg Xp+ovp X2™)—(apg X
p+arp)x2" = 0is used. The signed scshl vy v agy ay, ninstruction
has the same equation. The cast v@7 a simply uses the equation
v —a = 0 since v is assigned to a in successful computation.

LEmMA 3.2. Consider inst < eqns in Figure 7 where inst is a CRYP-
TOLINE instruction and eqns are multivariate polynomial equations.

inst . .
Ife — €’ and €’ # L, then the values of source and destination
variables of inst in the environment €’ are a root of eqns.

THEOREM 3.3. Let Prog be a CRYPTOLINE program in static single
assignment form and Eqns a system of multivariate polynomial equa-
tions obtained by converting each instruction in Prog using Figure 7.

Prog
Ife — €’ and €’ # L, then the values of all variables of Prog in the
environment €’ are a common root of Eqns.

Let V be a set of variables. We write Z[V] for the set of multivari-
ate polynomials in v with integer coefficients. An ideal I in Z[V]
is a set of polynomials in Z[v] such that (1) f+g e I'if f,g € ;
and 2) hf € I'if h € Z[v] and f € I Let fi, f2,..., fn € Z[V].
We write (fi, f2,. .., fn) for the ideal generated by fi, f2, ..., fa.



(vgx2"+vp)—a=0
v—(agXp+ar)=0
v—a=0

usplvg vy an
ujoin v ag ar,
cast v@r1 a

(ar : p)

mov v a — v-a=0
uadd v ag a1 — v-—(ap+a)=0
(w+cexp)—(ap+a;)=0
uadds ¢ v ag a1 — | ex(1-0)=0 (0 p)
uadc v ag a1d — v—(ap+a1+d)=0
(w+exp)—(ap+a;+d)=0
uadcs ¢ v ag a1d — | ex(1-¢)=0 @ p)
usub v ag a1 — v-(ap—a;)=0
(v=—cxp)—(ap—a1)=0
usubs ¢ v agy a1 — | ex(1-0)=0 (0 p)
usbb v ag a1 d — wv-(ag—a;—-d)=0
(v-—cxp)-(ap—ar-d)=0
usbbscvagard — | ex(1-0)=0 @ p)
umul v ag a1 — v-—(apXay)=0
umullvgvp agpar — (vg Xp+or)—(apxay))=0 (vr : p)
ushlvan — wv-—ax2"=0 ucshl vy vp ag ap n
sshlvan — v-—ax2"=0 scshl vy v ag ap n
—
[N
[N

v—(cXay+(l—-c)Xay)=0
v—(ap+a;)=0

[ v—(ag+a1)=0

| cx(1-¢c)=0
v—(ag+a;1+d)=0

[ v—(ag+a1+d)=0

| cx(1-¢)=0

v—(ap—a1)=0
>v—(a0—a1)=0

| cx(1-¢c)=0
v—(ag—a;—-d)=0
>U—(a0—a1—d)=0

| cx(1-¢c)=0

smul v ag a1 v—(apXxXay)=0

smull vy v ag a1 (vg xXp+or)—(ap X a1) =0(vg : p)
— (vgXp+opx2")—(agXp+ap)x2" =0 (vr,ar :p)
— (vgXp+opx2")—(agXp+ap)x2"=0 (vp,ar:p)
ssplog vpan — (vgx2"+ov)—a=0

sjoin v agy ar, — v-(agXp+ar)=0 (ar : p)

cmov v ¢ ag ai
sadd v ag a1

sadds ¢ v ag a1
sadc v ag a1d
sadcs ¢ v ag a1d
ssub v ag a1
ssubs c v ag a1
ssbb v ag ay d

ssbbs cv ag a; d

L A

Figure 7: Polynomial Equations

Given h, fi, fa, ..
determine whether h € (fi, f2, ..

., fn € Z[V], the ideal membership problem is to

o fn)-

THEOREM 3.4. Leth, fi, fo,..., fn € Z[V]. Ifh € {(f1, fo, .. -, fn),
thenVv.fi=0Afo=0A---ANfp=0 = h=0.

Intuitively, Theorem 3.4 says that if h is in the ideal generated by
fi, f2,. .., fn, then all common rootsof f1 =0,f2=0,...,f, =0
are also roots of h = 0. Let us consider the system of polynomial
equations Eqns corresponding to the CRYPTOLINE program Prog
(Theorem 3.3). An algebraic equality on CRYPTOLINE program vari-
ables is but a polynomial equation over these variables. To verify
a given algebraic equality is hence to check if all common roots
of Eqns are also roots of the algebraic equality. By Theorem 3.4, it
suffices to solve the corresponding ideal membership problem. Al-
gebraic modulo equalities can be reduced to the ideal membership
problem as well [18]. Through Theorem 3.3, algebraic properties in
our signed extension to CRYPTOLINE can be verified algebraically.

4 GIMPLECRYPTOLINE

An important application of CRYPTOLINE with signed computation
is to verify cryptographic C programs. The 32-bit C implementation
of Curve25519 field operations in wolfSSL uses a signed representa-
tion. A 255-bit field element is represented by 5 26-bit and 5 25-bit
signed limbs. In order to verify such programs, we develop a transla-
tor from the intermediate representation GIMPLE in GNU Compiler
Collection (GCC) to CRYPTOLINE. Not all GIMPLE statements are
needed for cryptographic C programs however. We identify a subset
(called GiMPLECRYPTOLINE) after inspecting GIMPLE code for such
programs. We describe GIMPLECRYPTOLINE and its translation here.

4.1 Syntax and Semantics

Figure 8 shows the syntax of GIMPLECRYPTOLINE. An operand is
either a variable or a constant. A Vec({) (denoted by v1(£), v2(¢), . . .)

Type == int32_t|uint32_t|int64_t |uint64_t]|---
Const == 1]2]|3--- Var == x|ylz---
Vec(¢) == Var| Const’ Op == Var| Const
Stmt == Var=0p+ Op | Var = Op - Op
|  Var=0Op=* Op | Var = Op wx Op
|  Var = Op >> Const | Var = Op << Const
| Var = (Type)Var | Var = Vec({) +, Vec(£)
| Var = Vec({) - Vec(£)
Decls == Type Var;| Type Var; Decls

Stmts u=  Stmt;| Stmt; Stmts
Prog == Decls Stmts

Figure 8: GiMPLECRYPTOLINE Syntax

is a vector variable or a vector of £ constants. In GIMPLECRYPTOLINE,
each operand has a type with its bit width information.

Let op be an operand. We write ¢, and wo,, for the type and bit
width of op. wy(¢) on the other hand denotes the bit width of an
element in the vector v({). The addition statement x = op; + opa
computes the sum of op; and opy and assigns it to x. The subtraction
statement x = op; - opy assigns the difference of op; and op; to x.
In addition and subtraction, tx, top,, and top, must be the same.

The multiplication statement x = op; * opy stores the product
of op1 and opy in x. It requires x, op;, and opy to have the same
type. The wide multiplication statement x = op; w* op is similar.
The types of x, op1, and op must be all signed or unsigned with
Wx = 2Wop, = 2Wop,. The arithmetic shift statements x = op; << n
and x = op1 >> n shift op; to the left or right by n bits respectively
and assign to x the result. x and op; must be of the same type.
Since GIMPLE statements are typed, type casting is essential. The
statement x = (T)y casts y to the type T and assigns the result to x.

In cryptography library binary codes, we find Single Instruction
Multiple Data (SIMD) assembly instructions are generated from



Table 1: Translation

GIMPLECRYPTOLINE CRYPTOLINE

X = op1 + op adds dc x op1 op2

X = op1 - op2 subs dc x op; op2

X = op1 * opz mull dc x op1 op2
mull xg x1 op1 op2

X = op1 Wx op2 join x xp x,

X =op1 > n splx dcopi n

= op << spl dct op; (wx —n)
shlxtn

v1(€0) = va(€) +, v3(€) | sequence of adds

v1(€0) = va(€) -, v3(€) | sequence of subs

sequential C source codes through compiler optimization. GCC sup-
ports SIMD instructions via vector statements. The vector addition
statement v1(€) = v2(€) +4, v3(£) assigns to v1(€) the elementwise
sum of v(€) and v3(£). Similarly, the vector subtraction statement
01(€) = v2(€) - v3(£) stores the elementwise difference of v2(£)
and v3(£) in v1(€). In vector statements, v1(£), v2(£), and v3(€) must
have the same element type and length.

Figure 9 gives the operational semantics of GIMPLECRYPTOLINE.
In the figure, a state 0 : Var — Z is a mapping from variables to
values. Each rule specifies the effects of a statement on a state. Gen-
erally, each statement performs its computation by interpreting all
operands in unsigned types. Unsigned intermediate results are trun-
cated to the bit width of the destination variable. Finally, truncated
results are converted to correct types and stored in states.

The addition statement x = op; + opz computes the unsigned
sum of op; and ops, truncates to the bit width of x, converts to the
type of x, and assigns the result to x. Subsequently, x will not be the
sum of op; and opy if over- or underflow occurs. Other statements
are similar except the wide multiplication and arithmetic right
shift statements. In wide multiplication, the product of operands is
always computed accurately. The semantics of the arithmetic right
shift statement uses the floor function to discard fractional parts.
Let v({) be a vector. v(£)[i] denotes the i-th element of v(£) for
0 < i < . For any integer function f, 0[v()[i] « f(z)]f:_(} is short
for 0[v1(£)[0] « f(0),...,v1(O)[€ — 1] « f(€ — 1)]. The vector
addition statement v1(£) = v2(£) +, v3(£) computes the unsigned
sum of v (€)[i] and v3(£)[i], truncates to the bit width of elements,
converts the truncated sum to the type of elements, and stores the
result in v1(€)[i]. The vector subtraction statement is similar.

The type conversion x = (T)y compares the bit widths of x and
y. If wy < wy, we convert the wy least significant bits of y to the
type of x and store the converted value in x. Otherwise, we simply
convert the value of y to the type of x and update the value of x.

4.2 From GIMPLECRYPTOLINE to CRYPTOLINE

The translation from GIMPLECRYPTOLINE to CRYPTOLINE is sum-
marized in Table 1. Addition and subtraction statements are trans-
lated to corresponding CRYPTOLINE instructions. The GIMPLECRYP-
TOLINE multiplication statement is translated to the CRYPTOLINE
full-multiplication by discarding the more significant half. On the
other hand, the wide multiplication statement is translated to a

O RN R W N =

[N I N R R N e el e e i e e
R ON R SOV h WD RO

o N B RS I NI TR O

N e s
S VN A WN RO

full-multiplication followed by a join instruction. The GIMPLECRYP-
TOLINE right shift statement is translated to the spl instruction by
discarding the least significant bits. For the left shift statement, only
the wy — n least significant bits are shifted to the left by n bits to
prevent errors in CRYPTOLINE. Observe that the translation rules do
not specify variants of CRYPTOLINE instructions. The CRYPTOLINE
type system will infer the intended variant automatically.

4.3 Example

Consider the following C function fe_sub for Curve25519 field op-
erations in wolfSSL (some comments and whitespace are removed):

/*h=f-¢g

Preconditions:

|f| bounded by 1.1%2425,1.1%2%24,1.1%2%25,1.1%2%24 ,etc.

|g| bounded by 1.1%2425,1.1%2%24,1.1%2225,1.1%2%24 ,etc.

Postconditions:

|[h| bounded by 1.1%2426,1.1%2%25,1.1%2%26,1.1%2%25,etc.

*/

typedef int32_t fel[10];

void fe_sub(fe h, const fe f, const fe g) {
int32_t fo=f[@]; int32_t f1=Ff[1]; int32_t f2=f[2];
int32_t f3=f[3]; int32_t f4=f[4]; int32_t f5=f[5];
int32_t f6=f[6]; int32_t f7=Ff[7]; int32_t f8=f[8];
int32_t f9=f[9];
int32_t go=g[0]; int32_t gl=g[1]; int32_t g2=g[2]
int32_t g3=g[3]; int32_t g4=gl[4]; int32_t g5=g[5]
int32_t g6=g[6]; int32_t g7=g[7]; int32_t g8=gl[8]
int32_t g9=g[9];
int32_t ho=f0-g0; int32_t h1=f1-g1; int32_t h2=f2-g2;
int32_t h3=f3-g3; int32_t h4=f4-g4; int32_t h5=f5-g5;
int32_t h6=f6-g6; int32_t h7=f7-g7; int32_t h8=f8-g8;
int32_t h9=f9-g9;
h[0]1=h0; h[1]1=h1; h[2]=h2; h[3]=h3; h[4]=h4; h[5]=h5;
h[61=h6; h[7]=h7; h[8]1=h8; h[9]=h9;

In wolfSSL, a field element is stored as an array of 10 32-bit
signed integers. The fe_sub function computes the difference of
two field elements f and g and stores it in the field element h. GCC
transforms the C function to the following GIMPLE program:

fo_3 = *f_2(D);

f1_4 = MEM[(const int32_t *)f_2(D) + 4BI;

f2_5 = MEM[(const int32_t *)f_2(D) + 8BI;
f9_12 = MEM[(const int32_t *)f_2(D) + 36BI;
g0_14 = *g_13(D);

g1_15 = MEM[(const int32_t *)g_13(D) + 4B1;
g2_16 = MEM[(const int32_t *)g_13(D) + 8BI;
g£9_23 = MEM[(const int32_t *)g_13(D) + 36B1;
he_24 = fo_3 - go_14; h1_25 = f1_4 - g1_15;
h2_26 = f2_5 - g2_16; h3_27 = f3_6 - g3_17;
h4_28 = f4_7 - g4_18; h5_29 = f5.8 - g5_19;
h6_30 = f6_9 - g6_20; h7_31 = f7_10 - g7_21;
h8_32 = f8_11 - g8_22; h9_.33 = f9_12 - g9_23;
*h_34(D) = ho_24;

MEML(int32_t *)h_34(D) + 4B] = h1_25;
MEM[(int32_t *)h_34(D) + 8B] = h2_26;
MEM[(int32_t *)h_34(D) + 36B] = h9_33;

In the program, the 32-bit signed variables f@_3,f1_4,...,f9_12
represent the field element f in the C code; g0_14,g1_15,...,89_23
represent the field element g. The difference of f and g is stored
in h@_24,h1_25,...,h9_33. Using our tool, the GIMPLE program is
translated to the following CRYPTOLINE program automatically:



00 N U R W N

e
W N = O 0

15
16
17
18
19
20

for ¢ € Const

cle = ¢

W
u(z,w) = { z+2 1fz<0. forzeZ,weN
z otherwise
[[v]]g = u([v]g,ws,) forve Var
_ u(z, wy)
covt(v,z) = { s(z. wy)

X =o0p; t opz

if t,, is unsigned
if ¢, is signed

[vl¢ = 6(v) forv e Var
—2% i w-1 _
s(z,w) = Z-2 lfz>2. ! forzeZ,weN
z otherwise
[U]]SG = 5([[0]]07 Wv) for v € Var

for v € Var

x = opi - ops
6 —————  Olx < cvi(x, ([op1]ly - [opally) mod 2%%)]
0 M Q[X «— [[Opl]]ﬁ X |[0p2]]9]

x=op; <<n

0 ————  0x — cvt(x, ([opr] x 2I"10) mod 2¥x))]

if wy < wy
otherwise

Figure 9: The semantics of GIMPLECRYPTOLINE

., fe[9]) gives the field element represented by fe where

FE(feo, fel,...,fe9) = fed x 20 + fel x 22°+
fe2 x 271 + fe3 x 277 + fed x 2102 4 fe5 x 21284
feb x 2193 + fe7 x 2179 + fe8 x 2204 4 fe9 x 2230,

That is, a field element is represented by 5 26-bit limbs (fe[@],
fe[21, ..., fe[81) and 5 25-bit limbs (fe[1], fe[3], ..., fe[9]).
From programmers’ comments, define the output limb ranges by

R'(feo, fel,...,fe9) =
(=73819751@sint 32 < fed A fed < 73819751 @sint 32
A —36909876@sint 32 < fel A fel < 36909876@sint 32

A =36909876@sint 32 < fe9 A fe9 < 36909876@sint 32).
The postcondition for fe_sub is therefore

FE(h34_0,...,h34_36) =

6 Olx — cvi(x, ([op1]ly + [op2]lyy) mod 2~)]
X = 0p1 * op;
0 EEE— Olx — cvi(x, ([op1llyy x [op2]lyy) mod 2¥*)]
xX=op>>n
0 0[x «— [[op1]g = 21716 |]
= +
o 202000, iy 0)li) e evitwr (O], AvaOTIS + Fos(@)li11) mod 2%ex))<-]
p OO 2O ooy o)]i]  evier(©)il (e2(OLTE - [os(Ol]E) mod 2%10)]¢=}
= u Wx
0 x=(T)y O[x — Y] where Y = { cvi(x, [[y]]g mod 2%x)
evi(x, [yllg)
mov f@3 f2_0 21 sub he24 fo3 go14
mov f14 f2_4 22 sub h125 f14 g115
mov f25 f2_8 23 sub h226 f25 g216
mov f36 f2_12 24 sub h327 f36 g317
mov f47 f2_16 25 sub h428 f47 g418
mov f58 f2_20 26 sub h529 f58 g519
mov f69 f2_24 27 sub h630 f69 g620
mov f71@ f2_28 28 sub h731 f710 g721
mov f811 f2_32 29 sub h832 f811 g822
mov f912 f2_36 30 sub h933 f912 g923
mov g014 gl13_0 31 mov h34_0 ho24
mov gl115 g13_4 32 mov h34_4 h125
mov g216 g13_8 33 mov h34_8 h226
mov g317 g13_12 34 mov h34_12 h327
mov g418 gl13_16 35 mov h34_16 h428
mov g519 g13_20 36 mov h34_20 h529
mov g620 gl13_24 37 mov h34_24 h630
mov g721 g13_28 38 mov h34_28 h731
mov g822 gl13_.32 39 mov h34_32 h832
mov g923 gl13_36 40 mov h34_36 h933

Let fe be an array representing a field element. From program-
mers’ comments in the fe_sub function (not shown), it is seen
that |fe[0]]<1.1%2225, |fe[1]|<1.1%x2424, |fe[2]|<1.1%225,
| fe[3]1]<1.1%2*24, and so on are required for each field element.
Now 1.1 x 22% = 36909875.2 and 1.1 X 22* = 18454937.6. Define

R(feo,fel,...,fe9) =
(—36909876@sint 32 < fed A fed < 36909876@sint 32
A —18454938@sint 32 < fel A fel < 18454938@sint 32
A —18454938@sint 32 < fe9 A fe9 < 18454938@sint 32).
The precondition for the C function is therefore
true M R(f2_0, 2 4,...,f2 36) AR(g13_0,g13_4,..
To specify the postcondition, it is necessary to understand how

a 255-bit field element is represented by an array of signed integers.
Let fe be an array representing a field element. FE(fe[0], fe[1],

.,g13_36).

FE(f2_0,...,f2_36) — FE(g13_0,...,g13_36) mod 2%°° — 19
MR’(h34_0,...,h34_36).

Using a laptop, our verification tool verifies the fe_sub function
in 2 seconds. The C function computes the difference of two field
elements correctly. There cannot be any over- or underflow if limbs
of input field elements are in ranges specified in the comments.
Each limb of the output field elements is always in ranges too.

Our translator handles memory and pointer arithmetic automat-
ically. Several heuristics are implemented for better usability (such
as translating x = op; — op, to sub x op; op,). Our verification
technique supports bitwise logical operations, comparators, and
branches as well. See [14] for a corresponding translation from
LLVM intermediate representation to CRYPTOLINE.

5 EVALUATION

We implement our signed extension to CRYPTOLINE and the GIMPLE-
CrYPTOLINE translator. The GIMPLECRYPTOLINE is implemented as
a GCC plugin. Our plugin translates the GIMPLE representation of
any indicated C function after the machine-independent optimiza-
tion pass. If an unrecognized GIMPLE statement is encountered, the
plugin simply copies the GIMPLE statement for manual translation.



Table 2: Experimental Result

Function | Lk | Ler | D | P | TRyy | MRy | TApn | MApn | TRma | MRy | TAmz | MAwms
nacl/curve25519/donna_c64/curve25519.c (MathSAT, SMT-LIB2 format)
fdifference_backwards 69 69 66 0 - - 0.23 6.3 - - 0.14 9.1
fmul 91 127 10 14 12.51 452.2 0.20 6.3 4.05 486.6 0.14 9.3
fscalar_product 38 38 7 10 2.75 104.4 0.20 5.6 0.95 108.4 0.12 8.6
fsquare 68 116 10 12 7.44 288.1 0.22 6.3 2.61 301.0 0.13 9.3
fsum 20 20 0 0 0.48 5.6 0.15 4.8 0.22 10.0 0.10 8.2
fmonty 1147 | 1493 | 361 | 127 - - OOM | OOM - - 353.66 | 32764
wolfssl/fe_operations.c (Boolector with Lingeling, BTOR format)
fe_add 40 40 0 0 1.48 6.5 0.19 5.6 0.61 9.5 0.11 8.6
fe_mul 305 305 20 24 O0T Oo0T 0.32 7.0 13178 883.3 0.15 9.9
fe_mul121666 91 91 20 20 19.68 17.9 0.26 6.4 3.75 13.8 0.13 9.4
fe_neg 30 30 0 0 1.24 6.5 0.18 5.3 0.63 9.3 0.10 8.3
fe_sq 204 204 20 24 | 13411.84 | 351.9 0.33 6.7 2033 355.6 0.14 9.6
fe_sq2 214 214 20 24 | 18252.02 | 388.9 0.30 6.8 2763 385.5 0.14 9.6
fe_sub 40 40 0 0 1.31 6.5 0.16 5.7 0.64 9.4 0.11 8.6
curve255191 2770 | 2770 | 200 | 236 00T 00T 12.06 385.6 | 68140 | 796.7 8.26 382.1
bitcoin/field_5x52_impl.h (MathSAT, SMT-LIB2 format)
secp256k1_fe_add 13 20 0 0 0.33 5.3 0.14 4.8 0.22 10.0 0.09 8.3
secp256k1_fe_cmov 29 49 13 20 1.35 28.7 0.29 6.4 0.46 29.6 0.17 9.3
secp256k1_fe_from_storage 24 32 6 14 0.53 6.4 0.15 5.2 0.31 10.7 0.09 8.4
secp256k1_fe_mul_int 16 16 2 0 0.52 26.1 0.14 4.7 0.28 28.0 0.10 8.4
secp256k1_fe_negate 20 20 2 0 0.52 5.7 0.18 4.9 0.27 9.9 0.11 8.6
bitcoin/field_5x52_impl.h (Boolector with Lingeling, BTOR format)
secp256k1_fe_normalize 52 60 21 0 117.18 45.3 0.12 5.3 91.89 31.5 0.08 8.3
secp256k1_fe_normalize_var 63 63 29 0 120.80 47.1 0.12 5.4 95.65 34.1 0.08 8.3

secp256k1_fe_normalize_weak 26 26 15 0 63.85 40.0 0.25 5.3 51.51 28.3 0.13 8.8

secp256k1_fe_normalizes_to_zero | 34 39 10 0 203.12 60.3 0.16 5.2 151.03 | 429 0.08 8.2

bitcoin/field_5x52_int128_impl.h (MathSAT, SMT-LIB2 format)

secp256k1_fe_mul_inner 111 137 17 24 16.09 461.0 0.22 6.5 4.00 489.1 0.14 9.5
secp256k1_fe_sqr_inner 90 116 21 22 9.91 284.5 0.20 6.4 2.72 303.2 0.14 9.3
bitcoin/scalar_4x64_impl.h (MathSAT, SMT-LIB2 format)
secp256k1_scalar_add 81 102 55 22 2.03 10.1 0.21 6.5 1.11 14.1 0.13 9.4
secp256k1_scalar_eq 17 17 23 0 0.29 9.2 0.10 4.7 0.26 14.5 0.07 7.6
secp256k1_scalar_mul_512 273 384 | 136 | 90 13.75 263.3 0.26 7.1 4.96 280.0 0.16 9.9
secp256k1_scalar_mul 652 947 | 379 | 228 128.19 453.9 0.84 19.8 741.35 2219 0.43 16.3
secp256k1_scalar_negate 41 55 4 1 28.50 132.4 0.10 5.0 40.31 135.5 0.08 8.0
secp256k1_scalar_reduce_512 379 563 | 243 | 138 31.84 127.5 0.37 8.7 8.25 128.2 0.23 11.7
secp256k1_scalar_reduce 34 32 11 8 1.52 11.7 0.18 6.4 0.88 15.2 0.14 9.3
secp256k1_scalar_sqr_512 235 333 | 145 | 88 23.75 212.9 0.26 7.2 7.39 204.8 0.17 10.1
secp256k1_scalar_sqr 614 896 | 388 | 226 234.87 349.1 0.82 19.8 26.69 341.5 0.45 16.5
bitcoin/group_impl.h (MathSAT, SMT-LIB2 format)
secp256k1_ge_from_storage 48 65 12 28 0.93 6.5 0.19 6.3 0.48 10.7 0.12 9.2
secp256k1_ge_neg 33 31 0 10 0.76 6.6 0.19 54 0.44 11.2 0.13 8.7
secp256k1_gej_add_ge_var 2109 | 2457 | 371 | 396 574.39 3166.9 | OOM | OOM 75 3354 9363 70156
secp256k1_gej_double_var 899 | 1042 | 154 | 160 163.30 1703.0 0.77 18.4 25.27 1806 0.57 22.7
openssl/curve25519.c (MathSAT, SMT-LIB2 format)
fe51_add 20 20 0 0 0.85 6.0 0.19 4.9 0.36 10.0 0.10 8.3
fe51_mul 96 105 11 20 17.95 381.2 0.26 6.4 3.69 409.3 0.13 9.2
fe51_mul121666 44 44 11 14 1.3 17.3 0.25 5.8 0.63 20.2 0.12 8.7
fe51_sq 73 82 11 20 8.07 227.0 0.23 6.3 2.22 247.6 0.14 9.2

Table 2 — continued on next page




Table 2 — continued from previous page

Function L[R LCL D P TRM1 MRM1 TAMl MAM1 TRM2 MRM2 TAM2 MAM2
fe51_sub 25 25 10 10 0.37 6.8 0.24 5.4 0.26 11.4 0.13 8.9
x25519_sca1ar_mult1 923 | 1047 | 110 | 194 558.56 1419.8 | 187.40 | 5538 119.89 1472 | 145.12 5511
openssl/ecp_nistp224.c (MathSAT, SMT-LIB2 format)
felem_diff_128_64 24 36 0 0 0.56 6.4 0.23 5.1 0.32 10.7 0.14 8.6
felem_diff 24 24 0 0 0.55 5.8 0.19 4.9 0.33 10.4 0.11 8.8
felem_mul 40 40 0 0 2.24 83.2 0.15 5.2 0.65 88 0.09 8.2
felem_mul_reduce 82 121 15 16 10.65 321.8 0.20 6.4 3.11 322.5 0.13 9.1
felem_neg 47 58 5 10 0.95 6.8 0.19 5.8 0.55 11.1 0.12 8.7
felem_reduce 56 95 6 18 1.67 13.7 0.20 6.3 0.88 17.3 0.13 9.3
felem_scalar 12 12 0 0 0.48 26.7 0.14 4.6 0.24 28.9 0.09 8.1
felem_square 27 27 0 0 1.11 45.1 0.15 4.9 0.43 47.6 0.10 8.2
felem_square_reduce 69 108 | 14 | 18 6.36 195.8 0.21 6.4 1.81 198.8 0.13 9.2
felem_sum 16 16 0 0 0.41 5.4 0.15 4.7 0.26 10.0 0.10 8.3
widefelem_diff 41 63 0 0 0.90 6.5 0.19 5.7 0.46 10.6 0.12 8.7
widfefelem_scalar 21 21 0 0 2.58 87.7 0.14 4.8 0.70 88.3 0.10 8.4
openssl/ecp_nistp256.c (MathSAT, SMT-LIB2 format)
felem_diff 24 36 0 0 0.59 7.6 0.18 5.1 0.35 11.7 0.12 8.6
felem_scalar 13 13 0 0 0.70 47.7 0.17 4.6 0.31 48.8 0.10 8.2
felem_shrink 65 95 18 16 1.78 14.0 0.20 6.4 0.95 17.1 0.13 9.3
felem_small_mul 145 95 17 46 4.75 123.0 0.23 7.0 2.29 123.2 0.14 9.8
felem_small_sum 20 20 0 0 0.41 5.8 0.14 4.8 0.25 10.2 0.10 8.4
felem_sum 16 16 0 0 0.41 5.6 0.14 4.7 0.24 10.3 0.09 8.2
smallfelem_mul 88 136 0 30 2.80 91.9 0.17 6.4 1.22 95.4 0.11 9.4
smallfelem_neg 26 28 0 0 0.1 5.4 0.19 4.9 0.27 9.7 0.12 8.6
smallfelem_square 60 | 108 | 0 | 20 1.92 55.8 0.15 6.3 0.85 55.5 0.10 9.2
openssl/ecp_nistp521.c? (MathSAT, SMT-LIB2 format)
felem_diff64 45 45 18 18 0.81 6.9 0.20 6.4 0.48 11.4 0.13 9.3
felem_diff128 45 72 18 18 1.13 7.9 0.21 6.4 0.47 11.9 0.12 9.2
felem_neg 27 27 0 0 0.77 6.4 0.18 53 0.48 10.0 0.12 8.6
felem_reduce 122 155 74 | 72 4.10 7.8 0.24 6.7 2.06 10.8 0.14 9.6
felem_scalar 27 27 0 0 0.80 28.4 0.14 5.0 0.36 29.0 0.09 8.3
felem_scalar64 27 27 0 0 0.82 28.2 0.15 4.9 0.35 28.9 0.09 8.3
felem_scalar128 27 27 0 0 1.26 48.4 0.14 5.0 0.41 48.8 0.09 8.4
felem_sum64 36 36 0 0 0.49 6.0 0.14 5.2 0.29 10.0 0.10 83
felem_diff_128_64 54 54 0 0 1.34 7.2 0.29 6.0 0.68 11.4 0.15 8.7
felem_mul 188 188 0 0 23.92 187.0 0.22 6.6 3.13 182.5 0.13 9.5
felem_square 111 111 0 0 7.38 95.5 0.21 6.4 0.99 103.9 0.13 9.3
boringssl/fiat/curve25519.c (MathSAT, SMT-LIB2 format)
fe_add 11 20 0 0 0.33 5.3 0.14 4.8 0.20 10.0 0.10 8.2
fe_mul_impl 96 108 9 22 18.39 452.9 0.21 6.4 5.11 473.9 0.13 9.2
fe_mul121666 43 43 9 14 1.12 18.4 0.20 5.7 0.62 21.2 0.11 8.6
fe_sqr_impl 73 85 9 22 10.59 278.7 0.26 6.3 3.11 293.0 0.12 9.2
fe_sub 15 25 0 0 0.51 5.9 0.19 5.0 0.28 10.4 0.11 8.8
X25519_scalar_mult_generic1 927 | 1073 | 161 | 212 470.68 1489.0 | 120.33 5726 118.95 1579 91.99 5766

10nly an iteration of Montgomery Ladder step is verified.
Zhttps://github.com/openssl/openssl commit 13fbcel



https://github.com/openssl/openssl

To illustrate the usability of our tools, the experiments are car-
ried out on two machines: a Macbook Pro and a dedicated Linux
server. Table 5 in Table 5 lists experimental results. We extract GCC
8.1.0 GimpLE code of C functions in NaCl 20110221, wolfSSL 3.15.5,
bitcoin 0.17.0.1, OpenSSL 1.1.1, and BoringSSL master branch with
git commit hash f36c3ad. Machine M1 is a Macbook Pro running
OS X 10.11.6 with a dual-core 2.7GHz CPU and 16GB RAM. M2
is a Linux server running Ubuntu 16.04.5 LTS with two octa-core
3.20GHz CPU and 1024GB RAM. The SMT solvers Boolector 3.0.0
and MathSAT 5.5.4 are used. We also use the computer algebra
system SINGULAR 4.1.1. Columns Ljg and Ly, are the numbers
of GIMPLE statements and CRYPTOLINE instructions respectively.
Columns D and P are the numbers of manually translated Cryp-
ToLINE and annotated assert and assume instructions respectively.
TR and MR are the time (in seconds) and the peak memory usage
(in MB) when checking safety and range properties. TA and MA
are for the algebraic properties. Subscripts of TR, MR, TA, and MA
denote the machine used. OOM means out of memory and OOT
means out of time (greater than 86400 seconds).

Our experiments show that almost all functions can be verified
on a laptop in 15 minutes. Particularly, the C implementations of
the Montgomery ladder step for Curve25519 in OpenSSL and Bor-
ingSSL are verified in 13 and 10 minutes respectively. If a dedicated
server is used, the verification time shortens to 5 and 4 minutes
respectively. 25 functions can be checked without manual transla-
tion nor annotation; 39 (=25 + 14) functions require less than 10%
of manual translation (column D). Although our technique is not
fully automatic, it does not require much human intervention.

We have verified 82 C functions implementing field and group
operations for cryptographic primitives in 5 cryptography libraries:
NaCl [23], wolfSSL [26], bitcoin [19], OpenSSL [24], and BoringSSL [9,
11]. The 32-bit C implementations in wolfSSL’s Curve25519 is found
in OpenSSL and LibreSSL [21] as well. The secp256k1 cryptography
library in bitcoin is also used by other cryptocurrency including
Ethereum [20], Zcash [27], Ripple [25], and Litecoin [22].

The elliptic curve Curve25519 is defined over the field Z,255_19
and implemented in NaCl, wolfSSL, OpenSSL, and BoringSSL. Our
verification exposes a potential missing carry in NaCl 20110221.
We have reported our finding. The BoringSSL implementation is
synthesized by Fiat-Crypto [9]. The synthesized 64-bit unsigned C
implementation is verifiably correct at the C source level. We extract
its GIMPLE representation after machine-independent optimization.
Interestingly, vector statements are used in the optimized sequential
implementation of Montgomery ladder step. Our result shows that
the implementation is still correct after vectorization. Due to errors
in the computer algebra system SINGULAR, the 32-bit signed imple-
mentation in wolfSSL is almost verified except one algebraic prop-
erty. We are exploring other means to solve the corresponding ideal
membership problem. The bitcoin secp256k1 cryptography library
uses a Koblitz curve over the field Zyzs6_532_99_o8_97_56_94_1.24 C
functions for various field and group operations in the curve are
verified. We also verify field operations in 3 NIST curves (P224, P256,
and P521) over different fields (Zyz24_96 ;. 1, Zg256 _g224 4 9192 4 99 _1, and
Zys21_4 respectively) from OpenSSL. To the best of our knowledge,
this is the first verification result of cryptographic programs in
NaCl, wolfSSL, and bitcoin.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their
valuable comments and suggestions. This work is supported by
Academia Sinica under the Grant Numbers AS-IA-104-M01 and
AS-TP-106-M06; the Ministry of Science and Technology of Taiwan
under Grant Numbers 105-2221-E-001-014-MY3, 107-2221-E-001-
004, 108-2221-E-001-009-MY2, 108-2221-E-001-010-MY3; and the
National Natural Science Foundation of China under the Grant
Numbers 61802259 and 61836005.

REFERENCES

[1] Reynald Affeldt. 2013. On construction of a library of formally verified low-level
arithmetic functions. Innovations in Systems and Software Engineering 9, 2 (2013),
59-77.

[2] Reynald Affeldt and Nicolas Marti. 2007. An Approach to Formal Verification
of Arithmetic Functions in Assembly. In Advances in Computer Science (LNCS),
Mitsu Okada and Ichiro Satoh (Eds.), Vol. 4435. Springer, Heidelberg Dordrecht
London New York, 346-360.

[3] Reynald Affeldt, David Nowak, and Kiyoshi Yamada. 2012. Certifying assembly
with formal security proofs: The case of BBS. Science of Computer Programming
77, 10-11 (2012), 1058-1074.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryp-
tography. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, New York, NY, USA, 1807-1823.

[5] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256.
ACM Transactions on Programming Languages and Systems 37, 2 (2015), 7:1-7:31.

[6] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015.
Verified Correctness and Security of OpenSSL HMAC. In USENIX Security Sym-
posium 2015. USENIX Association, 207-221.

[7] B.Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane,
S. Setty, and L. Thompson. 2017. Vale: Verifying High-Performance Cryptographic
Assembly Code. In USENIX Security Symposium 2017. USENIX Association, 917-
934.

[8] Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien

Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. 2014. Verifying

Curve25519 Software. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, Gail-Joon Ahn, Moti Yung, and Ninghui

Li (Eds.). ACM, New York, NY, USA, 299-309.

A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. 2019. Simple High-

Level Code for Cryptographic Arithmetic - With Proofs, Without Compromises.

In 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society, Los

Alamitos, CA, USA.

Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem

Rastogi, and Nikhil Swamy. 2019. A Verified, Efficient Embedding of a Veri-

fiable Assembly Language. In 46th ACM SIGPLAN Symposium on Principles of

Programming Languages. ACM, New York, NY, USA, 63:1-63:30.

Google. 2019. BoringSSL. https://boringssl.googlesource.com/boringssl/.

Carl A. Gunter. 1993. Semantics of Programming Languages: Structures and

Techniques. The MIT Press, Cambridge, MA, USA.

Charles Antony Richard Hoare. 1969. An axiomatic basis for computer program-

ming. Commun. ACM 12, 10 (1969), 576-580.

[14] Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang.
2019. Verifying Arithmetic in Cryptographic C Programs. In 34th IEEE/ACM
International Conference on Automated Software Engineering, Julia Lawall and
Darko Marinov (Eds.). IEEE, San Diego, CA, USA.

[15] John C. Mitchell. 1996. Foudations for Programming Languages. The MIT Press,

Cambridge, MA, USA.

Magnus O. Myreen and Gregorio Curello. 2013. Proof Pearl: A Verified Bignum

Implementation in x86-64 Machine Code. In Certified Programs and Proofs (LNCS),

Vol. 8307. Springer, Heidelberg Dordrecht London New York, 66-81.

Magnus O. Myreen and Michael J. C. Gordon. 2007. Hoare Logic for Realistically

Modelled Machine Code. In International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (LNCS), Orna Grumberg and Michael

Huth (Eds.), Vol. 4424. Springer, Heidelberg Dordrecht London New York, 568—

582.

Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2018. Veri-

fying Arithmetic Assembly Programs in Cryptographic Primitives (Invited Talk).

In 29th International Conference on Concurrency Theory (LIPIcs), Sven Schewe and

Lijun Zhang (Eds.), Vol. 118. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

Beijing, China, 4:1-4:16.

[

[10

[11
1

D=

(13

[16

[17

[18


https://boringssl.googlesource.com/boringssl/

[19] The Bitcoin Developers. 2019. Bitcoin Source Code. https://github.com/bitcoin/ [27] The Zcash Developers. 2019. Zcash Source Code. https://github.com/zcash/zcash.
bitcoin. [28] Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2017. Certified Verification
[20] The Ethereum Developers. 2019. Ethereum Source Code. https://github.com/ of Algebraic Properties on Low-Level Mathematical Constructs in Cryptographic
ethereum/go-ethereum. Programs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
[21] The LibreSSL Developers. 2019. LibreSSL. https://www.libressl.org/. Communications Security, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM,
[22] The Litecoin Developers. 2019. Litecoin Source Code. https://github.com/litecoin- New York, NY, USA, 1973-1987.
project/litecoin. [29] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam
[23] The NaCl Developers. 2011. NaCl: Networking and Cryptography library. https: Petcher, and Andrew W. Appel. 2017. Verified Correctness and Security of
//macl.cr.yp.to/. mbedTLS HMAC-DRBG. In Proceedings of the 2017 ACM SIGSAC Conference on
[24] The OpenSSL Developers. 2019. OpenSSL. https://www.openssl.org/. Computer and Communications Security. ACM, New York, NY, USA, 2007-2020.
[25] The Ripple Developers. 2019. Ripple Source Code. https://github.com/ripple/ [30] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Ben-
rippled. jamin Beurdouche. 2017. HACL*: A Verified Modern Cryptographic Library. In
[26] The wolfSSL Developers. 2019. wolfSSL Source Code.  https://github.com/ Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

wolfSSL/wolfssl. Security. ACM, New York, NY, USA, 1789-1806.


https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://www.libressl.org/
https://github.com/litecoin-project/litecoin
https://github.com/litecoin-project/litecoin
https://nacl.cr.yp.to/
https://nacl.cr.yp.to/
https://www.openssl.org/
https://github.com/ripple/rippled
https://github.com/ripple/rippled
https://github.com/wolfSSL/wolfssl
https://github.com/wolfSSL/wolfssl
https://github.com/zcash/zcash

	Abstract
	1 Introduction
	2 Preliminary
	3 CryptoLine with Signed Arithmetic
	3.1 Syntax
	3.2 Type System and Inference
	3.3 Semantics
	3.4 Specification and Verification

	4 gimpleCryptoLine
	4.1 Syntax and Semantics
	4.2 From gimpleCryptoLine to CryptoLine
	4.3 Example

	5 Evaluation
	Acknowledgments
	References

