
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–0. DOI:XXXXXXXX

Verified NTT Multiplications for NISTPQC KEM
Lattice Finalists: Kyber, SABER, and NTRU

Vincent Hwang1,2, Jiaxiang Liu3, Gregor Seiler4, Xiaomu Shi3, Ming-Hsien
Tsai5, Bow-Yaw Wang1 and Bo-Yin Yang1

1 Academia Sinica, Taipei, Taiwan
bywang@iis.sinica.edu.tw,by@crypto.tw

2 National Taiwan University, Taipei, Taiwan
vincentvbh7@gmail.com

3 Shenzhen University, Shenzhen
{jiaxiang0924,xshi0811}@gmail.com

4 IBM Research Zurich, Zurich, Switzerland
gseiler@inf.ethz.ch

5 National Applied Research Labs, Taipei, Taiwan
mhtsai208@gmail.com

Abstract. Postquantum cryptography requires a different set of arithmetic routines
from traditional public-key cryptography such as elliptic curves. In particular, in
each of the lattice-based NISTPQC Key Establishment finalists, every state-of-
the-art optimized implementation for lattice-based schemes still in the NISTPQC
round 3 currently uses a different complex multiplication based on the Number
Theoretic Transform. We verify the NTT-based multiplications used in NTRU,
Kyber, and SABER for both the AVX2 implementation for Intel CPUs and for
the pqm4 implementation for the ARM Cortex M4 using the tool CryptoLine.
We extended CryptoLine and as a result are able to verify that in six instances
multiplications are correct including range properties.
We demonstrate the feasibility for a programmer to verify his or her high-speed
assembly code for PQC, as well as to verify someone else’s high-speed PQC software
in assembly code, with some cooperation from the programmer.
Keywords: NIST PQC · NTT · verification · NTRU · Kyber · Saber

1 Introduction
Shor’s algorithm [Sho97] on a large-scale (“cryptographically relevant”) quantum computer
will solve today-intractable integer factorizations and discrete logarithms, hence breaking
RSA and Elliptic Curve Cryptography (ECC) which make up almost all currently deployed
public-key cryptography. The U.S. National Institute of Standards and Technology (NIST)
has preemptively initiated a process (NISTPQC) to select new cryptosystems that withstand
quantum computing. This research area is known as Postquantum Cryptography (PQC).
This process naturally divides into categories of digital signatures and key encapsulation
mechanisms (KEMs) [NIS] and is currently in the third round with 7 finalists and 8
alternate candidates still competing [AASA+20]. Schemes will be standardized when
NISTPQC concludes. These will no doubt be important future computational workloads.

Since individual cryptographic operations are often slow themselves, and cryptography
is then applied to much, much data, cryptography is always under a lot of pressure to be
efficient. A common narrative has cryptographers developing new, faster, cryptographic
primitives in reaction to this pressure. However, this is not an accurate depiction. Much

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:bywang@iis.sinica.edu.tw,by@crypto.tw
mailto:vincentvbh7@gmail.com
mailto:{jiaxiang0924,xshi0811}@gmail.com
mailto:gseiler@inf.ethz.ch
mailto:mhtsai208@gmail.com
http://creativecommons.org/licenses/by/4.0/

2 Verified NTT Multiplications

of the actual speed comes from optimization research that actually takes a mathematical
function then finds faster ways to compute that function. This research then feeds back
into cryptographic designs. Performance pressure also results in a vastly more complex
cryptographic software ecosystem. Herein we find many different intricate and often
cutting-edge speedups using new mathematical algorithms or new microarchitecture-
specific optimizations.

Every round-3 submission in NISTPQC includes hand-optimized software. Contrary
to common impression, this is usually solidly faster than generic code compiled with a
state-of-the-art “optimizing” compiler. Because PQC needs to survive quantum attacks,
they also tend to be also more complex than pre-quantum public-key cryptography. Thus,
post-quantum public-key software is usually even more complicated than pre-quantum
public-key software like ECC, which can be complicated already. This aggravates any
implementation problems. Because we shall be forced to roll PQC software out in a few
years, we are also forced to ask ourselves: How do we minimize bug in PQC software?
Traditional tests will miss many bugs, as exemplified by the following quote:

Produced signatures were valid but leaked information on the private
key. . . . The fact that these bugs existed in the first place shows that the
traditional development methodology (i.e. ‘being super careful’) has failed.

— “OFFICIAL COMMENT” https://tinyurl.com/y5w46bde

Testing only checks that an implementation is correct on a fixed set of selected inputs.
There is no guarantee on untested inputs. Given the essentially infinite possibilities in
inputs to PQC software, the proportion of tested inputs is always negligible. The obvious
answer when we look for a better mousetrap is formal verification. This is a process
wherein a conclusion can be reached that the software computes the correct outputs for
all possible inputs—there are no rare (corner) cases that are handled incorrectly.

CryptoLine was developed to help programmers write correct cryptographic assembly
programs. In particular, it is designed to verify arithmetic subroutines that make up the
operations between elements of finite algebraic structures (rings, finite fields, elliptic curve
groups). Such arithmetic subroutine is a common feature to most public-key cryptosystems.
It is usually the case that if you run some tests in symmetric crypto, it will catch the
bugs. In general, arithmetic operations that make up public-key crypto are harder to test,
because a carry or an overflow — the kind of errors in arithmetic that happens when the
programmer overlooks something — might happen very, very rarely, and we do not know
if a potential attacker has a way to trigger such an event. Biham et al discuss scenarios
where hardware bugs result in attacks [BCS16]. Software bugs can have the same effect,
and the attackers can identify bugs in the programs using CryptoLine, just like us.

1.1 Our Contributions
First verification of NTT multiplications in assembly. We produce the first (semi-
automatic) verification result for postquantum crypto software. More precisely, we verify
the highly complex polynomial multiplications based on the Number Theoretic Transform
(NTT) in one instance of each in the NISTPQC Round 3 finalists Kyber, Saber, and NTRU.
Our technique is applicable to any other software implementing small ideal-lattice-based
cryptosystems, such as NTRU Prime, LAC, or NewHope [LLZ+18, PAA+19, BBC+20],
that also use NTT-based multiplications.

As illustrative examples, we picked the fastest software for one instance (parameter
set) of each of the three NISTPQC lattice KEM finalists (to the best of our knowledge):

NTRU Intel AVX2: ntt-polymul1 build 3e42ffa ARM Cortex-M4: pqm42, build d26fee0,
1https://github.com/ntt-polymul/ntt-polymul
2https://github.com/mupq/pqm4

https://tinyurl.com/y5w46bde
https://github.com/ntt-polymul/ntt-polymul
https://github.com/mupq/pqm4

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 3

pull request https://github.com/mupq/pqm4/pull/219.

Kyber Intel AVX2: PQClean3 build 688ff2f ARM Cortex-M4: pqm42, build 944b3c3

Saber Intel AVX2: ntt-polymul1 build 3e42ffa ARM Cortex-M4: Strategy A by [ACC+22]4

As shown in Section 5 the time used for these verification efforts is quite tolerable and
would have been even less had the programmer been verifying his or her own code.

Extension of the CryptoLine tool. We extend CryptoLine, in particular we introduce
nonlocal compositional reasoning in order to be able to finish all six instances. Without
these extensions, the verification becomes either much slower or impossible.

1.2 Related Work
Faulty multiplication has been exploited as bug attacks [BCS08]. Formal verification
on cryptographic programs aims to prove the absence of bugs and hence prevent such
attacks. There exist many projects that (e.g. HACL [ZBPB17], Jasmin [ABB+17] and
Fiat [EPG+19]) apply a correct-by-construction approach to build correct cryptography
programs. This work is about verifying existing programs that have been not written in
such a manner.

Various cryptography primitives have been formalized and manually verified in proof
assistants (e.g. [Aff13, ANY12, AM07, MG07, MC13, App15, BPYA15, YGS+17]). We
are trying to verify software in an automated or at least semi-automated fashion. Note
that these are code “in the wild”, programs written with an objective of speed or small
size, and not with verifiability in mind.

The only verification result to our knowledge that is specifically conducted for postquan-
tum crypto today is EasyCrypt [BBF+21] which verifies protocols, not programs.

Many if not most of the verifications mentioned above use CoQ. We instead use the
tool CryptoLine [TWY17, PTWY18, LST+19, FLS+19], described in detail in Section 3.

Because Intel CPUs (“Haswell”) and the ARM Cortex-M4 architectures were specified
by NISTPQC as standard benchmarking platforms, there is so much literature on optimizing
lattice-based cryptography and also so much software available for these chips that we do
not claim that the implementations we verified are the best or fastest. They were merely
the fastest among the implementations conveniently at hand.

2 Preliminaries
We briefly describe the targets of our verification, then some mathematics involved (modular
reductions, and the Number Theoretic Transform).

2.1 NISTPQC3 Finalist Lattice Candidates
We only include enough detail for the reader to understand what we are verifying. For
comprehensive coverage, see [NIS].

2.1.1 Kyber

The NISTPQC finalist candidate Kyber [ABD+20b] is a KEM based on the Module
Learning With Errors (M-LWE) problem, using a dimension ℓ × ℓ module over the ring
Rq = Fq[X]/⟨Xn + 1⟩, with q = 3329 and n = 256. Kyber is derived from a CPA-secure

3https://github.com/PQClean/PQClean
4https://github.com/multi-moduli-ntt-saber/multi-moduli-ntt-saber

https://github.com/mupq/pqm4/pull/219
https://github.com/PQClean/PQClean
https://github.com/multi-moduli-ntt-saber/multi-moduli-ntt-saber

4 Verified NTT Multiplications

Table 1: Kyber and Saber Parameter Sets
name l (d1, d2) η(s|s′) η(e|e′|e”)

Kyber512 2 (10, 4) 6 4
Kyber768 3 (10, 4) 4 4
Kyber1024 4 (11, 5) 4 4

name l T = 2ϵT η
LightSaber 2 23 10

Saber 3 24 8
FireSaber 4 26 6

Public-Key Encryption (PKE) scheme via a Hofheinz–Hövelmanns–Kiltz CCA-transform
[HHK17]. For a detailed PKE description see [ABD+20b].

There is 1 (ℓ×ℓ)×(ℓ×1) matrix-to-vector polynomial multiplication (MatrixVectorMul)
and 0, 1, and 2 (ℓ×1) inner products of polynomials (InnerProd) in each of key generation,
encapsulation, and decapsulation respectively. This is because decapsulation needs a full
re-encryption. [ABD+20b] specifies that we do all multiplications via incomplete NTT, and
NTT results are in bit-reversed order. All polynomial multiplications involve one random
polynomial modq and one polynomial (s or s′) with coefficients between ±η/2, with some
multiplicands already in NTT form. E.g., the public matrix A is sampled in (incomplete)
NTT domain from a seed via the extendable-output function (XOF) SHAKE128.

Parameters. See Table 1 for parameters: Module dimensions ℓ, and widths of the centered
binomial distribution η (twice the bound of the coefficients in “small” polynomials; rounding
parameters (d1, d2) need not concern us), vary according to the parameter sets Kyber-512,
-768 (what we verified), and -1024 (targeting NIST security levels 1, 3, and 5).

2.1.2 Saber

The NISTPQC finalist candidate Saber [DKRV20] is a KEM based on the Module Learning
With Rounding (M-LWR) problem, using a module of dimension ℓ × ℓ over the ring
Rq = Zq[X]/⟨Xn + 1⟩, with q = 213 and n = 256.

Saber KEM is also built on top of a CPA-secure PKE via the CCA-transform of
Hofheinz-Hövelmanns-Kiltz [HHK17]. For an algorithmic description see [DKRV20].

Just in as Kyber, there is 1 MatrixVectorMul in key generation; 1 MatrixVectorMul
+ 1 InnerProd in encapsulation; and 1 MatrixVectorMul + 2 InnerProd in decapsulation.
All polynomial multiplications involve one random polynomial modq and one polynomial
(marked s or s′) with coefficients between ±η/2,

In the Saber base ring Z213 , 2 is not invertible and there are no appropriate principal
roots (see 2.3.3 below), making it NTT-unfriendly. Accordingly, the specification samples
the public matrix A in the polynomial domain.

Parameters. Module dimensions l and secret distribution parameters η (twice the bound
of the coefficients in “small” polynomials; the rounding parameter T need not concern us)
vary according to the parameter sets Lightsaber, Saber, and Firesaber (targeting the
NIST security levels 1, 3, and 5, cf. Table 1). We verified Saber.

2.1.3 NTRU

The NISTPQC finalist NTRU [CDH+20] is a KEM based on the hardness of the Ring-LWE
and NTRU problems. It is based on NTRU as proposed by Hoffstein, Pipher, and Silverman
in 1998 [HPS98]. It operates in the three polynomial rings Z3[X]/Φn, Zq[X]/Φn, and
Zq[X]/(Φ1 · Φn) with Φ1 = (X − 1) and Φn = (Xn−1 + Xn−2 + · · · + 1).

For algorithmic descriptions see [CDH+20]. NTRU achieves its CCA-secure KEM
with a variation [SXY18] on the FO transform [FO99], avoiding having to re-encrypt the
message during the decapsulation. NTRU is also not NTT-friendly by design, and one of
the multiplicands in each product always has coefficients in {−1, 0, +1}.

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 5

Table 2: NTRU Parameter Sets
name q n

ntruhps2048509 2048 = 211 509
ntruhps2048677 2048 = 211 677

ntruhrss701 8192 = 213 701
ntruhps4096821 4096 = 212 821

Parameters. NTRU proposes 4 parameter sets (Table 2) of which we verified ntruhps2048509.

2.2 Modular Reductions
Reductions modulo a small prime q is usually conducted through signed Montgomery
Reduction [Sei18]: We pick a power of 2 as the “radix” R > q, and pre-compute Q =
1/q mod R. We can then compute L = (A mod R)Q mod R, then (A − Lq)/R ≡ A/R
(mod q). Since R|(A − Lq), computing (A − Lq)/R does not require a real division, and in
fact only needs a high-limb multiplication (if available) when R has exactly the limb size.

In NTTs we are usually multiplying by known constants ω (mod q), and Seiler went
further, introducing Montgomery Multiplication [Sei18]: Pre-compute ω′ = ωQ mod R,
then bω can be computed as follows: H = ⌊bω/R⌋ (multiply, high), then L = bω′ mod R
(multiply, low), then bω/R ≡ H − ⌊Lq/R⌋ (mod q) (again multiply, high and subtract).

Notice that the result of Montgomery reduction and multiplication (mod q) is between
±q, not ±q/2. This is an example of lazy reductions. In high-speed implementations, the
programmer never does any full reductions unless and until absolutely forced to.

2.3 The Number Theoretic Transform (NTT) and Butterflies
NTTs are critically important for speed in long multiplications. Classic works on integer
multiplications [SS71, Für09, HVDH21] use them as basic blocks. NISTPQC 3rd round
candidates Dilithium, Falcon, and Kyber [ABD+20b, ABD+20a, FHK+17] wrote NTTs
into their specs to squeeze out extra efficiency improvements. NTRU, Saber, and NTRU
Prime [DKRV20, CDH+20, BBC+20] can also use NTTs for speed [ACC+21, CHK+21].

2.3.1 Standard Fast Fourier Transform (FFT) and NTT

The “usual” radix-2 NTT/FFT means recursively using this ring isomorphism [CT65]:

F[X]/⟨X2n − c2⟩ ∼= F[X]/⟨Xn − c⟩ × F[X]/⟨Xn + c⟩;
2n−1∑
i=0

fiX
i ↔

(
n−1∑
i=0

(fi + cfn+i) Xi,

n−1∑
i=0

(fi − cfn+i) Xi

)
.

which holds if 2c is invertible. Considered as an “in-place” operation, starting with a
size-2n array of elements of F representing an element of F[X]/

(
X2n − c2) and ending

with the bottom and top half of that array representing the element of F[X]/ (Xn − c)
and of F[X]/ (Xn + c) respectively, then with a little change of notation we may depict
the map in Figure 1a and its inverse map, up to a factor of 2, in Figure 1b. We refer to c
as a twiddle factor (of the butterfly). If 2|n and

√
c ∈ F can be found we can repeat the

process.
As described by Cooley–Tukey, this only stops at linear factors, when we have reduced

a polynomial multiplication in F[X]/⟨X2k − c⟩ to many independent multiplications in F.
An FFT/NTT as described outputs in a “bit-reversed” order. When the NTT (FFT)

is strictly to multiply two polynomials, we can ignore the different output order as long as
the inverse NTT takes this into account.

6 Verified NTT Multiplications

fi
//

((

+ // fi + cfn+i

fn+i
// ×c

??

// − // fi − cfn+i

(a) Cooley–Tukey (CT) Butterfly

gi
//

��

+ // fi = gi + hi

hi
//

??

− // × 1
c

// fn+i = 1
c (gi − hi)

(b) Gentleman–Sande (GS) Butterfly

Figure 1: The “Butterflies” of Fast Fourier Transforms

2.3.2 “Twisted” FFT and NTT

Gentleman–Sande proposed a slightly different procedure [GS66] in which with the help of
a such that an = −1 we apply recursively the following transformation

F[X]
⟨X2n − 1⟩

∼=
F[X]

⟨Xn − 1⟩
× F[X]

⟨Xn + 1⟩
X=aY∼=

F[X]
⟨Xn − 1⟩

× F[Y]
⟨Y n − 1⟩

.

Mapping X = aY from F[X]/⟨Xn − c⟩ to F[Y]/⟨Y n − 1⟩ is called twisting. Twisted
(Gentleman–Sande) NTTs (FFTs) apply GS butterflies and its inverse apply CT butterflies.

One can see from Figure 1 that if Montgomery Multiplication is used, starting from
values bounded by ±q/2, after ℓ layers of CT butterflies, the new values are bounded by
±(ℓ + 1

2)q whereas GS butterflies return values between ±2ℓ−1q. In general CT butterflies
are better for lazy reduction, and as a result some implementations do normal NTTs going
forward and twisted NTTs in inverse so as to be able to use CT butterflies both ways.

2.3.3 Principal Roots and Incomplete NTTs

To split F[X]/⟨Xn − c⟩ and repeat it k times requires that there is a a ∈ F such that
an = c. Obviously we need 2k|n, and when c = 1, we need a to be a principal root of
1: Let [n]q =

∑n−1
i=0 qi be the q-analog of n. A principal n-th root of unity ω is an n-th

root of unity satisfying the orthogonality [n]ωi = 0 for 1 ≤ i < n [Für09, HVDH21]. The
existence of a principal root (mod m) means that n|(p − 1) for all primes p|m. This
definition coincides with primitive roots when m is prime.

If we stop short in our sequence of mappings prior to reaching linear factors, we have
what is called an “incomplete” NTT/FFT and we are left with modular multiplications of
low-degree polynomials. Sometimes we are forced to stop because the appropriate roots
do not exist, sometimes because of efficiency considerations.

3 The CryptoLine tool
CryptoLine [TWY17, PTWY18, LST+19, FLS+19] is a tool intended for a programmer
to verify his (or her) own arithmetic programs. It was developed with the idea that a
programmer need not write within a fixed framework or depend on the whims of the
compiler, as in [EPG+19]. Instead, the programmer codes any which way as desired. The
main program of CryptoLine is written in OCaml while some subsidiary scripts are in
Python.

3.1 The CryptoLine Language
Cryptoline is a domain-specific language for modeling cryptographic assembly programs
and their specifications [PTWY18]. Cryptoline is a strongly-typed language. Constants
in cryptoline are associated with a type. Variables must have specific types according
to declarations. Operations can only be between specific types. All casts are explicit.

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 7

Let w be a positive integer. The type uint w comprises unsigned integers denoted by
bit strings of length w. Similarly, sint w are signed integers denoted by bit strings of length
w (2’s complement). So uint w denotes integers greater than −1 and less than 2w and
sint w denotes integers greater than −2w−1 − 1 and less than 2w−1. bit is short for uint 1.
So in these verifications, we deal with (mostly) uint32, sint32, uint16, sint16, and bit.

Num ::= · · · | −2 | −1 | 0 | 1 | 2 | · · · Const ::= Num@Type
Var ::= · · · | x | y | z | · · · Atom ::= Var | Const

Exp ::= Atom | Exp + Exp | Exp − Exp | Exp × Exp
APred ::= APred ∧ APred | Exp = Exp | Exp ≡ Exp mod [Exp, Exp, . . . , Exp]
RPred ::= Exp < Exp | Exp = Exp | Exp ≡ Exp mod Exp

| RPred ∧ RPred | ¬RPred
Inst ::= mov Var Atom | cmov Var Var Atom Atom

| add Var Atom Atom | adds Var Var Atom Atom
| adc Var Atom Atom Atom | adcs Var Var Atom Atom Atom
| sub Var Atom Atom | subs Var Var Atom Atom
| sbb Var Atom Atom Atom | sbbs Var Var Atom Atom Atom
| mul Var Atom Atom | mull Var Var Atom Atom
| shl Var Atom Num | spl Var Var Atom Num
| cshl Var Var Atom Atom Num | join Var Atom Atom
| cast Var@Type Atom | assert APred && RPred
| assume APred && RPred | ghost Var@Type : APred && RPred
| cut APred && RPred

Decl ::= Type Var Prog ::= Decl∗ Inst∗

Figure 2: CryptoLine Syntax

3.1.1 General Instructions

Figure 2 shows the syntax of CryptoLine. An arithmetic instruction retrieves values
from sources and stores results in destinations. For example, mov v a copies the source a
to the destination v; while depending on the value of c, cmov v c a0 a1 stores either value
of sources a0 or a1 in the destination v.

To model arithmetic in cryptographic assembly programs, many instructions involve
flags. For example, adds c d a b means to take two atomic inputs a, b of (equal) size w,
add them into an integer of size w + 1, then splits the top bit off into the first destination
variable (c, the carry) and the second destination variable (d, the destination register of
the instruction). “Short” instructions not covering the apparent output range require that
overflows did not happen. For example, add d a b says to add atomic inputs a, b of the
same size w and checks that the result fits in the destination variable d of the same size w.
Recall that signed and unsigned integers have different bounds when they are of size w.
CryptoLine type system infers the types of sources to decide if their sum is representable
by the destination variable.

In addition to additions and subtractions, to deal with multi-word arithmetic, Cryp-
toLine also includes multi-word constructs for example, those that split (spl) or join (join)
words, as well as multi-word shifts (cshl). Finally, there are long multiplications (mull) as
well as their “short” version (mul). When a signed integer of size w + v is split into two
integers of size w and v respectively, the more significant destination is signed but the
less significant destination is unsigned. CryptoLine type system again infers types of
destination variables to ensure all arithmetic computation is within proper bounds.

Finally, the cast instruction casts the source to a designated type. CryptoLine
checks whether integers in all executions are within the bounds of the designated type.

8 Verified NTT Multiplications

Type inference and bound checking are useful in detecting over- and under-flow. They
are especially helpful when a signed Montgomery reduction is used. Particularly, both
signed and unsigned integers coexist after a signed Montgomery reduction in various NTT
implementations. All arithmetic instructions must be without over- or under-flow.

3.1.2 Asserts and Assumes

As a modeling language, CryptoLine also provides special instructions for verification
purposes. The assert P && Q instruction checks if both the algebraic predicate P and
range predicate Q are true among all executions. An algebraic predicate is a conjunction
of equations or modular equations. A range predicate is an arbitrary Boolean formula over
comparisons, equations, or modular equations. In CryptoLine, algebraic predicates are
verified by CASs; and range predicates are verified by SMT solvers. When programmers
would like to check if their programs compute as expected, they can add assert instructions
with intended algebraic or range predicates at suitable locations. CryptoLine will verify
these predicates automatically.

The assume P && Q instruction on the other hand imposes the algebraic predicate P
and range predicate Q on all executions. Effectively, P and Q become premises after the
assume instruction. assume P && Q are used to summarize previously verified predicates in
assert P && Q to save verification time. Another frequent use of assume is to pass verified
predicates between CASs and SMT solvers. Recall that different techniques are applied to
verify algebraic and range predicates in CryptoLine respectively. When a range predicate
is verified, the established property is unknown to CASs and vice versa. CASs nevertheless
can be informed of verified range predicates with assume. Consider the following sequence
of instructions

assert true && Q assume Q && true.

CryptoLine first verifies the predicate Q with SMT solvers in the assert instruction.
If Q holds for all executions, the predicate is passed to CASs via the assume instruc-
tion. Particularly, the short add d a b instruction is implicitly adds c d a b followed by
assert true && c = 0 and assume c = 0 && true. CryptoLine first asserts the carry c = 0
with SMT solvers and assumes c = 0 in CASs.

3.1.3 Compositional Reasoning with Ghost Variables and Cuts

Compared with programs for field or group operations in elliptic curve cryptography, NTT
implementations are significantly larger. Montgomery ladderstep in Curve25519 takes
four 255-bit field elements and one 256-bit exponent as its inputs. There are roughly
1.3 × 103 input bits. Kyber768 NTT, on the other hand, takes 256 12-bit coefficients
(≈ 3.0 × 103 bits) as the inputs. Saber NTT takes 256 13-bit coefficients (≈ 3.3 × 103 bits).
NTRU2048509 takes 509 11-bit coefficients (≈ 5.6 × 103 bits). Since input bits of various
NTTs are multiples of those in Montgomery ladderstep, the information to be processed is
significantly larger. It is perhaps natural to expect much longer cryptographic programs
in post-quantum cryptography.

Lengthy cryptographic programs pose new challenges to formal verification. Since
verification aims to establish program correctness for all inputs, an extra input bit can
double the number of inputs. Longer computation induced by lengthy programs also
increases program states for analysis. The infamous state explosion problem severely limits
the applicability of formal verification in practice. To verify various NTT implementations
formally, new techniques are added to improve the scalability of CryptoLine significantly.

Ghost Variables Computation in a cryptographic program often runs in clearly de-
marcated stages. The verifier often needed to specify mid-conditions to summarize the

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 9

computation “so far” by stages as well. Sometimes, one would like to specify the mid-
condition by relating variable values before and after the stage. When the program
computes “in place”, variable values prior to the stage would be overwritten. Ghost
variables in CryptoLine allow verifiers to store values for later reference.

Consider, for instance, the computation of NTT by levels. For efficiency, cryptographic
assembly programs often load data at level 0 and compute in registers for later levels. At
the beginning of each level, verifiers can store register values in ghost variables. At the
end of the level, verifiers specify the relation between ghost variables and registers in the
mid-condition. The computation can then be verified by levels.

Cuts Compositional reasoning is a divide-and-conquer technique widely used for ame-
liorating the state explosion problem in formal verification. The basic idea is to reduce
large verification problems into smaller problems. If small problems can be solved, large
problems are verified as well. The question, of course, is how to perform such a reduction
soundly to avoid incorrect verification results.

CryptoLine provides a simple mechanism to reason about cryptographic programs
compositionally. The cut P && Q instruction allows CryptoLine to verify a program by
parts. Let Π0 and Π1 be sequences of instructions. Consider the following CryptoLine
program

Π0 cut P && Q Π1.

CryptoLine transforms the program into the following two programs

Π0 assert P && Q and assume P && Q Π1.

In other words, CryptoLine first verifies the predicates P and Q at the end of Π0. If both
predicates hold, CryptoLine then uses P and Q as premises to verify Π1. The program
Π0 Π1 is divided into two smaller programs: Π0 assert P && Q and assume P && Q Π1.
If any of them fails to verify, the original program Π0 Π1 fails as well. The reduction is
clearly sound. Both predicates P and Q are verified before they are assumed as premises.
Effectively, P and Q can be seen as a summary of the computation in Π0. The sub-program
Π1 is in turn verified with respect to the summary. Observe that cut P && Q divides
a program Π0 Π1 into two sub-programs Π0 and Π1 by locality. Since computation
dependency often coincides with code locality, the predicates P and Q suffice to summarize
the computation of Π0 and verify the computation of Π1. We therefore call the condition
P && Q in the cut instruction as a mid-condition.

Despite of its applicability in verification, classical compositional reasoning with cut s is
insufficient for verifying NTT implementations for post-quantum cryptosystems effectively.
For lattice-based cryptosystems, input polynomials for NTTs have degrees in hundreds
or even thousands. Consider the 7-level NTT used in Kyber768 as an example. Since
different levels have different patterns of computation, implementations naturally compute
Kyber768 NTT by levels. A naïve decomposition for Kyber768 NTT implementations
would be as follows.

Π0 (* first level *)
cut P0 && Q0 (* summary of first level *)

...
Π5 (* sixth level *)

cut P5 && Q5 (* summary of sixth level *)
Π6 (* seventh level *)

Using cut’s, Kyber768 NTT is divided into seven sub-programs by levels; each level has
256 12-bit coefficients. Verifying all 256 coefficients are computed correctly at each level is
certainly better than verifying seven levels of computation. Yet it is far from ideal. In

10 Verified NTT Multiplications

mov b 0@bit
cut 0 : b = 0 && b = 0
mov b 1@bit
cut 1 : b = 1 && b = 1
cmov x b 3142@uint16 2718@uint16
cut 2 : x = 42 && x = 42 prove with 0, 1

(a) Before SSA Transformation

mov b0 0@bit
cut 0 : b0 = 0 && b0 = 0
mov b1 1@bit
cut 1 : b1 = 1 && b1 = 1
cmov x0 b1 3142@uint16 2718@uint16
cut 2 : x0 = 42 && x0 = 42 prove with 0, 1

(b) After SSA Transformation

Figure 3: CryptoLine Fragments

Kyber768 NTT, recall that a coefficient at level ℓ depends only on two coefficients at
level ℓ − 1 for 0 < ℓ ≤ 6. If Kyber768 NTT implementations could be decomposed by
dependencies, it would further reduce the size of verification problems and improve the
efficiency of formal verification.

Such decompositions however are not attainable through classical compositional rea-
soning with cut’s. Since Kyber768 NTT implementations compute by levels, a coefficient
may be computed long after its dependent coefficients were computed. Code locality
is therefore different from computation dependency. The cut instruction on the other
hand requires the correspondence between code locality and computation dependency.
Classical compositional reasoning with cut’s cannot further decompose the Kyber768
NTT computation at each level. More sophisticated compositional reasoning is needed.

To verify NTT implementations in lattice-based post-quantum cryptosystems, we
extend the CryptoLine cut instruction to support non-local compositional reasoning. To
see how it works, consider a Kyber768 NTT implementation again as follows.

Π0,0 (* 1st pair of coefficients in first level *)
cut 0 : P0,0 && Q0,0 (* summary of 1st pair *)

...
Π0,127 (* 128th pair of coefficients in first level *)

cut 127 : P0,127 && Q0,127 (* summary of 128th pair *)
Π1,0 (* 1st pair of coefficients in second level *)

cut 128 : P1,0 && Q1,0 prove with 0, 64 (* summary of 1st pair *)
...

Now the NTT implementation is decomposed by coefficient pairs. Additionally, each cut
instruction is assigned to a number for reference. When a cut instruction is verified, our
extension allows verifiers to add more premises by cut numbers. In the above example, the
first coefficient pair of the second level depends on the first and sixty-fifth coefficient pairs
of the first level. We therefore add the corresponding cut numbers as additional premises
to verify the coefficients in the second level of Kyber768 NTT. Other coefficient pairs are
verified similarly. Our extension admits more refined compositional reasoning. It allows us
to verify NTT implementations with several hundreds of input coefficients effectively.

In cryptographic assembly implementations, registers are necessarily reused in compu-
tation. Care must be taken to avoid unsound verification results. Consider the fragments
in Figure 3. In Figure 3a, the bit variable b is set to 0 and the computation is summarized
by cut 0. Then b is set to 1 and summarized by cut 1. The conditional assignment then
sets the variable x to either 3142 or 2718 by the value of b. At cut 2, CryptoLine is
asked to verify whether x is 42 with premises b = 0 (from cut 0) and b = 1 (from cut 1).
Since the conjunctive premise b = 0 and b = 1 is always false, cut 2 is verified vacuously.
That is, x is 42. This is unsound.

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 11

To avoid unsoundness, our extension transforms CryptoLine programs to the static
single assignment (SSA) form before formal analysis (Figure 3b). The SSA transformation
allows our analysis to identify different versions of the same variable uniquely. After SSA
transformation, the premises for cut 2 are b0 = 0 and b1 = 1. Their conjunction is not
false. CryptoLine fails to verify x = 42 and finds a counterexample easily. In fact, x0 is
always 3142, and independent of b0 as expected.

3.1.4 Techniques of Using CryptoLine

Using itrace.py and to_zdsl.py, a CryptoLine program can be obtained rather easily.
Verifiers need to annotate the CryptoLine program with a proper pre-condition, post-
condition, and possibly several mid-conditions. These conditions can be derived with
the help of programmers or by inspecting the program. Verifiers may choose to specify
these conditions with algebraic or range predicates. Since CryptoLine employs different
techniques to verify different predicates, its effectiveness varies by the choice of verifiers’
specification.

Range predicates are verified by SMT solvers. Very roughly, CryptoLine translates
programs into Boolean circuits whose free inputs are the input parameters of main. The
pre-condition is an additional constraint on free inputs. The negation of the post-condition
is another constraint on the Boolean circuits. The verification tool then calls an SMT solver
to check if the Boolean circuit with constraints is satisfiable. If the answer is “SAT”, the
negation of the post-condition holds for certain input values satisfying the pre-condition.
The verification fails (and we can output those inputs as counterexamples). If the answer
is “unSAT”, the SMT solver has determined that there are no input value satisfying the
pre-condition but falsifying the post-condition at the end of the program. The verification
succeeds.

This is a well-established technique widely used in hardware and bit-accurate software
verification. Verifying range predicates requires minimal human guidance, verifiers are
recommended to write range predicates in general. SMT solvers however do have limitations.
For instance, it is widely known that SMT solvers are ineffective in verifying non-linear
computation. Cryptographic programs almost surely perform non-linear computation. A
more effective verification technique is needed for such programs.

CryptoLine employs CASs to verify algebraic predicates. Particularly, non-linear
equations and modular equations can be verified easily by the algebraic technique. The
verification tool essentially translates every CryptoLine instruction into polynomial
equations. For example, adds c d a b is translated to 2wc + d = a + b and c(1 − c) = 0 when
a and b are unsigned integers of size w; cmov d c a b is translated to d = ca + (1 − c)b.
Note that all possible executions of the instructions adds c d a b or cmov d c a b are
roots of corresponding polynomial equations. A CryptoLine program is thus translated
to a set of polynomial equations. All program executions are also roots of the set of
polynomial equations. To verify if all program executions must satisfy the post-condition,
it suffices to verify if all roots of polynomial equations for the program are also roots of
the polynomial equations in the post-condition. CryptoLine calls a CAS to solve this
algebraic problem. Instead of logical techniques, non-linear computation is thus verified by
algebraic techniques.

Verifiers are recommended to write algebraic predicates to verify non-linear computation.
Algebraic predicates nevertheless are very restrictive. They do not allow comparison and
must be conjunctive. It is sometimes necessary to combine both CASs and SMT solvers
to verify conditions. Verifiers need to be creative to pass information between the two
techniques via assert and assume. Human guidance is still needed during verification.

Consider, for example, the signed Montgomery reduction in Section 2.2. We have
A − Lq = A − ((A mod R)Q mod R)q ≡ A − AQq ≡ 0 (mod R). To compute A − Lq
requires a full multiplication, its value is stored in two registers rH and rL where the

12 Verified NTT Multiplications

low-limb register rL is always zero. Because of non-linear computation, SMT solvers show
rL = 0 but require some effort. CASs easily show rL ≡ 0 (mod R) but not rL = 0 on
the other hand. Since the radix R is precisely the word size, rL ≡ 0 (mod R) is actually
rL = 0. Verifiers can safely assume rL = 0 after CASs assert rL ≡ 0 (mod R).

3.2 Walkthrough: How the AVX2 Kyber768 NTT is Verified
Notations. NTT layers go up from 0, and inverse NTT (iNTT) layers count down to 0.

• F =
∑n−1

k=0 fkXk ∈ Zq[X] is the polynomial we began with. If we central-reduce F

first before the NTT, the result is marked with a “hat” (F̂ , f̂k).

• After NTT level i, the j-th polynomial is Gi,j =
∑n/2i+1−1

k=0 gi,j,kXk, 0 ≤ j < 2i+1.

• ζi,j is the roots of unity used at the end of level i (counting up).

• Zq[X]/⟨Xn/2L − ζ0⟩ × · · · × Zq[X]/⟨Xn/2L − ζ2L−1⟩ contains the NTT result, so
ζL−1,j = ζj , where 0 . . . (L − 1) number the L levels.

• The NTT result comprises polynomials Pj =
∑

k=0 pj,kXk (we see the array of
pj,k’s).

• After iNTT level i, the j-th polynomial is Hi,j =
∑n/2i−1

k=0 hi,j,kXk , 0 ≤ j < 2i.

• F is the result of the inverse NTT.
We will first give an overview of what is involved in verifying a high-speed NTT in

assembly — handwritten by somebody else — with this walk-through. The Intel AVX2
Kyber768 NTT is chosen because it is simplest and illustrates our points well.

Starting from the executable, a running trace of a subroutine is extracted to be verified,
using the script itrace.py that calls gdb. The extracted trace looks like the following:
$ itrace.py test ntt PQCLEAN_KYBER768_AVX2_polyvec_ntt.gas
$ more PQCLEAN_KYBER768_AVX2_polyvec_ntt.gas

#PQCLEAN_KYBER768_AVX2_polyvec_ntt:
:
[some bookkeeping information]
:
vmovdqa (%rsi),%ymm0 #! EA = L0x5555556395e0; Value = 0x0d010d010d010d01; PC = 0x55555556eb4f
vpbroadcastq 0x140(%rsi),%ymm15 #! EA = L0x555555639720; Value = 0x7b0a7b0a7b0a7b0a; PC = 0x55555556eb53
vmovdqa 0x100(%rdi),%ymm8 #! EA = L0x7fffffffb080; Value = 0xffff0000ffff0001; PC = 0x55555556eb5c
:
vpbroadcastq 0x148(%rsi),%ymm2 #! EA = L0x555555639728; Value = 0xfd0afd0afd0afd0a; PC = 0x55555556eb7c
vpmullw %ymm15,%ymm8,%ymm12 #! PC = 0x55555556eb85
:
vpmulhw %ymm2,%ymm8,%ymm8 #! PC = 0x55555556eb99
:
vmovdqa (%rdi),%ymm4 #! EA = L0x7fffffffaf80; Value = 0x0000ffff00000000; PC = 0x55555556eba9
:
vpmulhw %ymm0,%ymm12,%ymm12 #! PC = 0x55555556ebbc
:
vpaddw %ymm8,%ymm4,%ymm3 #! PC = 0x55555556ebcc
vpsubw %ymm8,%ymm4,%ymm8 #! PC = 0x55555556ebd1
:
:

test was a test program compiled to use the routine in question. Most instructions
start with vp indicating the Intel AVX2 instruction set. We note that the above code loads
two sets of 64 coefficients into %ymm4–7 and %ymm8–11, then a set of twiddle factors (in
Montgomery form) into %ymm15 and starts butterflies using Montgomery multiplications.
The program actually does 4 butterflies at a time, the snippet above only contains code
pertaining to just one butterfly (the dots here as below stand for cut material).

We put a set of translation rules on top of a running trace with a set of translation
rules and then run another script, to_zdsl.py. The rules to the above program looks like

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 13

#! $1c(%rsi) = %%EA
#! (%rsi) = %%EA
#! $1c(%rdi) = %%EA
#! (%rdi) = %%EA
#! %ymm$1c = %%ymm$1c
#! vpbroadcastq $1ea, $2v -> mov $2v_0 $1ea;\nmov $2v_1 $1ea[+2];\nmov $2v_2 $1ea[+4];\nmov $2v_3 $1ea[+6]; \

\nmov $2v_4 $1ea;\nmov $2v_5 $1ea[+2];\nmov $2v_6 $1ea[+4];\nmov $2v_7 $1ea[+6]; ...
#! vmovdqa $1ea, $2v -> mov $2v_0 $1ea;\nmov $2v_1 $1ea[+2];\nmov $2v_2 $1ea[+4];\nmov $2v_3 $1ea[+6]; ...
#! vmovdqa $1v, $2ea -> mov $2ea $1v_0;\nmov $2ea[+2] $1v_1;\nmov $2ea[+4] $1v_2;\nmov $2ea[+6] $1v_3; ...

The initial lines specify variables. The lines #! $1c(reg)=%%EA and #! (reg)=%%EA
map register-indirect-offset addressed memory to more memory variables. Each line after
that describes an instruction. For example, vpbroadcastq $1ea, $2v means to broadcast
the 64-bit memory location $1ea into each 64-bit limb of the target register $2v; vpmullw
means to multiply each pair of matching 16-bit limbs in the two source registers into
the corresponding limb in the target register, etc. Note we have to read the source and
understand what is going on to annotate the program appropriately. For example the
multiplication instructions require special care:

#! vpmullw $1v, $2v, $3v -> smull mulH$2v_0 mulL_0 $1v_0 $2v_0;\n ...;\ncast $3v_0@sint16 mulL_0;\n ...
#! vpmulhw %%ymm0, $1v, $2v -> smull mulH_0 red_0 $1v_0 ymm0_0;\nassert true && red_0 = mulLymm_0; \

\nassume red_0 = mulLymm_0 && true;\n ... \nmov $2v_0 mulH_0;\n ...
#! vpmulhw $1v, $2v, $3v -> smull mulH_0 mulL$2v_0 $2v_0 $1v_0;\n ...\nmov $3v_0 mulH_0;\n ...

In CryptoLine, multi-limb multiplications always return unsigned lower parts, but
we are using signed integers throughout, so in the translation rules for vpmullw, we need
to typecast @sint16 for each limb. A high-limb multiplication is often troublesome either
with the matching lower-limb multiplication somewhere else in the code, or something
assumed about the lower limb. Here, in a signed Montgomery multiplication, what is
assumed is that particular pairs of unused lower-limbs are equal, and we can translate
appropriately as %ymm0 has always 16 q’s. One can find this in the code, captured in the
CryptoLine program by vmovdqa (%rsi),%ymm0 #! EA = L0x5555556395e0; and (see
below) mov L0x5555556395e0 (3329)@sint16; ..., allowing us to annotate correctly.5

At this point, the script to_zdsl.py converts each actual CPU instruction into one or
more lines in CryptoLine instructions, usually the latter in AVX2 code.

$ to_zdsl PQCLEAN_KYBER768_AVX2_polyvec_ntt.gas > PQCLEAN_KYBER768_AVX2_polyvec_ntt.cl

(* #! -> SP = 0x7fffffffa358 *)
:
(* many bookkeeping instructions deleted *)
:
(* vmovdqa (%rsi),%ymm0 #! EA = L0x5555556395e0; Value = 0x0d010d010d010d01; PC = ...
mov ymm0_0 L0x5555556395e0;
mov ymm0_1 L0x5555556395e2;
:
mov ymm0_f L0x5555556395fe;
(* vpbroadcastq 0x140(%rsi),%ymm15 #! EA = L0x555555639720; Value = 0x7b0a7b0a7b0a7b0a; PC = ...
mov ymm15_0 L0x555555639720;
mov ymm15_1 L0x555555639722;
:
..............

After some irrelevant bookkeeping instructions, each vector instruction splits into 16×
word-sized (16-bit) actions by our translation rules. Now, we set down what the constants
(copied from source code) are, the entering conditions (inputs, assumptions/pre-conditions),
and the concluding conditions (outputs, requirements/post-conditions). Again this requires
understanding what the code does, and some scripts to generate the annotations.

proc main (
sint16 f000, sint16 f001, sint16 f002, sint16 f003,
...

5This is a benefit of handwritten assembly; equivalent intrinsics compiled code would migrate the q
values from register to register over the course of the whole program, making our annotations much harder.

14 Verified NTT Multiplications

sint16 f252, sint16 f253, sint16 f254, sint16 f255
) =
{
true && and [
(-3329)@16 <s f000, f000 <s (3329)@16, (-3329)@16 <s f001, f001 <s (3329)@16,
...
(-3329)@16 <s f254, f254 <s (3329)@16, (-3329)@16 <s f255, f255 <s (3329)@16
]
}
(*********** initialization ***********)
mov L0x7fffffffaf80 f000; mov L0x7fffffffaf82 f001; mov L0x7fffffffaf84 f002;
...
mov L0x7fffffffb17e f255;

We declare the entering conditions. Each “condition” actually comprises two specifica-
tions: an algebraic part, to be checked with a Computer Algebra System (CAS; defaults
to Singular but can be Magma, Mathematica, or maple), and a range part, to be checked
using an SMT (Satisfiability Module Theory) solver, here via Boolector. In the preamble
above, the first true specifies that there are no restrictions algebraically on the input array,
but the second portion restricts each entering polynomial coefficient to be between ±q.
Then “initialization” assign each starting 16-bit limb in memory, represented by L(hex
address), to an input variable f###.

(*********** constants ***********)
mov L0x5555556395e0 (3329)@sint16; mov L0x5555556395e2 (3329)@sint16;
...
mov L0x555555639600 (-3327)@sint16; mov L0x555555639602 (-3327)@sint16;
...
mov L0x555555639620 (20159)@sint16; mov L0x555555639622 (20159)@sint16;
...
mov L0x555555639adc (32)@sint16; mov L0x555555639ade (32)@sint16;
(*********** ghost polynomial ***********)
ghost x@bit, inp_poly@bit : inp_poly**2 =
f000*(x**0) + f001*(x**1) + f002*(x**2) + f003*(x**3) +
...
f252*(x**252) + f253*(x**253) + f254*(x**254) + f255*(x**255)
&& true;

(* main body of program goes here ... *)

Each PQClean NTT uses an array of twiddle factors that already resides in memory,
and we copy the numbers (as in the snippet) directly from the source, inserted using a
python script. The ghost polynomial is a compositional reasoning gadget that combines
the entering coefficients into one entity (cf. Section 3.1.3). After level 0 is completed, we
fill in the conditions according to the description of the NTT in Section 2.3.1.

:
(*********** SUMMARY OF LEVEL 0 ***********)

cut and [
eqmod (inp_poly**2)
(L0x7fffffffaf80*(x**0) + L0x7fffffffaf82*(x**1) + L0x7fffffffaf84*(x**2) +
:
L0x7fffffffb07c*(x**126) + L0x7fffffffb07e*(x**127))

[3329, x**128 - (1729)],
eqmod (inp_poly**2)
(L0x7fffffffb080*(x**0) + L0x7fffffffb082*(x**1) + L0x7fffffffb084*(x**2) +
:
L0x7fffffffb17c*(x**126) + L0x7fffffffb17e*(x**127))

[3329, x**128 - (1600)]]
&&
and [
(-6658)@16 <s L0x7fffffffaf80, L0x7fffffffaf80 <s (6658)@16,
:
(-6658)@16 <s L0x7fffffffb17e, L0x7fffffffb17e <s (6658)@16];

(*********** LEVELS 1..6, explained below ***********)
:

The incomplete NTT in the Intel AVX2 implementation from PQClean [PQC21] does

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 15

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦

...
...

...
...

F ≡ G0,0 mod [q, X128 − ω4] F ≡ G0,1 mod [q, X128 + ω4]

F ≡ Gi,j mod [q, X
256

2i+1 − ζi,j], 0 ≤ j < 2i F ≡ Gi,j mod [q, X
256

2i+1 − ζi,j], 2i ≤ j < 2i+1

F ≡ G6,j mod [q, X2 − ζ6,j], 0 ≤ j < 64 F ≡ G6,j mod [q, X2 − ζ6,j], 64 ≤ j < 128

Figure 4: Workflow of verifying AVX2 implementation for Kyber NTT.

the following map (where ζi denote all the primitive 256-th roots of unity in Zq):

Zq[X]/⟨X256 + 1⟩ → Zq[X]/⟨X128 − ω4⟩ × Zq[X]/⟨X128 + ω4⟩
→ · · · → Zq[X]/⟨X2 − ζ0⟩ × · · · × Zq[X]/⟨X2 − ζ127⟩

In this AVX implementation, a 256-bit vector register contains 16 16-bit signed integer
coefficients. NTT multipliers (roots of unity) moreover are in Montgomery form. Each
multiplication is hence always combined with a signed Montgomery reduction. Because of
Montgomery reductions and the small magnitude of q, all coefficients are representable in
16 bits at all seven levels. There is no overflow. No extra reduction is needed.

However, one notes that the Intel AVX2 implementation does not compute NTT strictly
by levels. There is level 0, in which all 256 coefficients are used together. Then from level
1 onward, at most 128 coefficients are needed at a time. The implementation therefore
uses eight 256-bit vector registers to hold the coefficients of the NTT at each level. After
level 6 for the first 128 coefficients is done, the last 128 coefficients are loaded and then
the NTT levels 1 through 6 for these coefficients are performed.

We follow the same strategy in verification. The mid-conditions that we see at the end
of level 0 specify that

F ≡ G0,j mod [q, X128 − ζ0,j] for all 0 ≤ j < 2

and
−2q < g0,j,k < 2q for all 0 ≤ j < 2, 0 ≤ k < 128.

Here the ζ0,j are 1729 and 1600, the principal 4th roots of unity (denoted as ±ω4 in the
map above). At level i > 1, we specify these mid-conditions for the first 128 coefficients

F ≡ Gi,j mod [q, X256/2i+1
− ζi,j] for all 0 ≤ j < 2i

and
−(2 + i)q < gi,j,k < (2 + i)q for all 0 ≤ j < 2i, 0 ≤ k < 256/2i+1.

We show the cut at level 1 as an example, first half of coefficients:

16 Verified NTT Multiplications

:
(*********** SUMMARY OF LEVEL 1 0 ***********)

cut
and [
eqmod (inp_poly**2)
(ymm3_0*(x**0) + ymm3_1*(x**1) + ymm3_2*(x**2) + ymm3_3*(x**3) +
:
ymm6_c*(x**60) + ymm6_d*(x**61) + ymm6_e*(x**62) + ymm6_f*(x**63))

[3329, x**64 - (2580)],
eqmod (inp_poly**2)
(ymm8_0*(x**0) + ymm8_1*(x**1) + ymm8_2*(x**2) + ymm8_3*(x**3) +
:
ymm11_c*(x**60) + ymm11_d*(x**61) + ymm11_e*(x**62) + ymm11_f*(x**63))

[3329, x**64 - (749)]]
&&
and [
(-9987)@16 <s ymm3_0, ymm3_0 <s (9987)@16,
:
(-9987)@16 <s ymm11_f, ymm11_f <s (9987)@16];

The 128 coefficients at the end of the first half level 1 form two degree-63 polynomials
related to the input polynomial by modular equivalence. At the same time, each coefficient
is guaranteed to be less than 3q in magnitude. As above, at level i, the polynomials are
split further with equivalence modulo various X256/2i+1 − ζi,j and bound by ±(2 + i)q.
Similarly, the following mid-conditions are used for the last 128 coefficients at level i > 1:

F ≡ Gi,j mod [q, X256/2i+1
− ζi,j] for all 2i ≤ j < 2i+1

with ranges

−(2 + i)q < gi,j,k < (2 + i)q for all 2i ≤ j < 2i+1, 0 ≤ k < 256/2i+1.

Figure 4 is an illustration. We probably need not repeat ourselves. At the end of the
second half level 6, we fill in the following concluding conditions:

#retq #! 0x55555556f751 = 0x55555556f751;

{
and [
eqmod (inp_poly**2)
(L0x7fffffffaf80 + L0x7fffffffafa0*x) [3329, x**2 - (17)],
eqmod (inp_poly**2)
(L0x7fffffffafc0 + L0x7fffffffafe0*x) [3329, x**2 - (3312)],
...
(L0x7fffffffb15e + L0x7fffffffb17e*x) [3329, x**2 - (1175)]]
prove with 6 &&
and [
(-26632)@16 <s L0x7fffffffaf80, L0x7fffffffaf80 <s (26632)@16,
...
(-26632)@16 <s L0x7fffffffb17e, L0x7fffffffb17e <s (26632)@16]
prove with 6
}

The range portion of the ending condition says that every output limb is supposed to
be between ±8q(= 26632). The algebraic portion of the ending condition says that every
two output coefficients make up a linear polynomial equal to the remainder of the entering
polynomial modulo X2 − ζi, with each ζi an appropriate root of unity. The “prove with”
is another compositional reasoning gadget (also see Section 3.1.3). We do not need any
of the shorthands that express integers formed of multiple words and their arithmetic
operations and algebraic relations in CryptoLine as they are not used here.

Finally we can run CryptoLine. It will obtain from the starting conditions and
each CryptoLine instruction corresponding algebraic relations, then verify each safety
condition using SMT solvers, then attempt to deduce the conclusions from the premises. It

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 17

does so by expressing each algebraic relation as an element in a polynomial ring (one which
should be zero when the relation holds), then the algebraic part of the conclusions is also
converted to polynomial ring elements, and a CAS reduces the ring element representing
the conclusion using the ideal spanned by our collection of relations. If the reduction
results in zero, then the verification is successful.

$ cv -v -isafety -jobs 24 -slicing -no_carry_constraint PQCLEAN_KYBER768_AVX2_polyvec_ntt.cl
Parsing Cryptoline file: [OK] 0.089273 seconds
Checking well-formedness: [OK] 0.031599 seconds
Transforming to SSA form: [OK] 0.019121 seconds
Rewriting assignments: [OK] 0.020577 seconds
Verifying program safety: [OK] 183.994889 seconds
Verifying range assertions: [OK] 42.385435 seconds
Verifying range specification: [OK] 200.594131 seconds
Rewriting value-preserved casting: [OK] 0.001421 seconds
Verifying algebraic assertions: [OK] 0.007455 seconds
Verifying algebraic specification: [OK] 26.648724 seconds
Verification result: [OK] 453.802915 seconds

As shown in the depiction above, the verification has succeeded.

The Inverse NTT The inverse NTT Intel AVX2 implementation for Kyber is symmetric
to the description above. The first 128 coefficients are first computed in inverse levels 6 to
1. The computation for the last 128 coefficients then follows. Finally, all 256 coefficients
are computed in the inverse level 0. In Kyber inverse NTT, extra Montgomery reductions
are needed to make coefficients representable in 16 bits to avoid over- or under-flow. Let
Pj = pj,0 + pj,1X for 0 ≤ j < 128 be the 128 input polynomials for the inverse NTT.

We have the following

−q < pj,k < q for all 0 ≤ j < 128, 0 ≤ k < 2.

We specify the following mid-conditions at inverse level i for 6 ≥ i > 0, 0 ≤ j < 127:

Hi,⌊j/27−i⌋ ≡ 216−iPj mod [q, X − ζj]

Similarly, the mid-conditions for the last 128 coefficients the same but for 128 ≤ j < 256.
Finally, Kyber inverse NTT has the following post-conditions

F = H0,0 ≡ 216Pj mod [q, X − ζj]

and −8q < h0,0,k < 8q for 0 ≤ k < 256. Note that the output polynomial has an extra
factor of 216 after the Kyber inverse NTT because the point multiplication is Montgomery,
introducing an extra factor of 2−16 that needs balancing out.

3.3 Differences on the Cortex-M4
The ARM Cortex-M4 is a microcontroller with usually no OS to run, so we must use a PC
connected to a development kit (here, a STM32F429I-disc1). The itrace.py has support
for Cortex-M4 that uses gdb-multiarch, the multi-architectural gdb. The translation
rules differ, but it is otherwise the same process.

4 Verifying the Implementations
In each implementation of NTT multiplication, we set out what transformations/mappings
are done and what butterflies are used, as well as pointing out any potential pitfalls.
Section 3.2 already detailed the procedure to verify the NTT for Intel AVX2 Kyber.

18 Verified NTT Multiplications

4.1 Saber, Intel AVX2 implementation
Recall that Saber uses a module of dimension ℓ×ℓ over the ring Rq = Zq[x]/⟨Xn +1⟩, with
q = 213 and n = 256. For performing only a single polynomial multiplication it is usually
advantageous to use an incomplete NTT but for Saber wherein the matrix-vector product
the vector of polynomials only needs to be transformed once and the inner products can
be computed in the NTT basis, a complete NTT is preferable.

The Intel AVX2 implementation uses prime moduli q0 = 7681 and q1 = 10753 for the
NTTs of length 256 and maps:

Rqs = Zqs [X]/⟨X256 + 1⟩ → Zqs [X]/⟨X − ζ0⟩ × · · · × Zqs [X]/⟨X − ζ255⟩

where qs ∈ {q0, q1}. A polynomial multiplication over Rq is performed by the following
steps. First, the implementation applies two complete 256-NTTs over Rq0 to the input
polynomials, performs coefficient-wise multiplication, and then applies an inverse NTT
over qq0 . Second, the first step is repeated once but this time all operations are over Rq1 .
Finally, the Chinese remainder theorem (CRT) is applied to obtain the multiplication
result over Rq.

4.1.1 Forward NTT

The input of the NTT routine is a degree-256 polynomial with each coefficient ranging
between ±q/2. Let F (X) =

∑255
k=0 fkXk ∈ Zq[X] be the input polynomial. We specify the

following range preconditions

−q/2 ≤ fk < q/2, for all 0 ≤ k < 256

where the algebraic precondition is simply true.
The NTT routine first performs three levels (levels 0, 1, and 2) of CT butterflies, and

then twists all the polynomials. This is followed by another three levels (levels 3, 4, and
5) of CT butterflies, and then all polynomials are twisted again. Finally, two additional
CT butterflies (levels 6 and 7) are performed. Extra Montgomery reductions are applied
when needed to make coefficients representable in 16 bits to avoid over- or under-flow. We
detailed the postcondition and the mid-conditions in the following paragraphs.

Let Gi,j(X) =
∑256/2i+1−1

k=0 gi,j,kXk ∈ Zqs
[X] be the polynomials at the end of level

i for 0 ≤ i ≤ 7 and 0 ≤ j < 2i+1. Let ζi,j be the roots of unity in Rqs
at level i with

0 ≤ i ≤ 7 and 0 ≤ j < 2i+1. The first three levels map

Zqs [X]/⟨X256 + 1⟩ →
1∏

j=0
Zqs [X]/⟨X128 − ζ0,j⟩

→
3∏

j=0
Zqs

[X]/⟨X64 − ζ1,j⟩

→
7∏

j=0
Zqs

[X]/⟨X32 − ζ2,j⟩.

At the end of level i for 0 ≤ i ≤ 2, we specify the algebraic mid-conditions for 0 ≤ j < 2i+1:

F (X) ≡ Gi,j(X) mod [qs, X256/2i+1
− ζi,j].

Polynomials G2,j(X) are then twisted before the next three levels of CT butterflies.
Consider a polynomial G2,j(X) ∈ Zqs

[X]/⟨X32 − ζ2,j⟩ at the end of level 2. Let αj be
a 32-th root of ζ2,j . The polynomial is twisted by multiplying each coefficient g2,j,k with
αk

j based on the following mapping:

Zqs [X]/⟨X32 − ζ2,j⟩ → Zqs [Yj]/⟨Y 32
j − 1⟩

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 19

with X = αjYj . Define

ζ ′
i,j =

 1 if j = 0
−1 if j = 1

ζi−1,j−2 if i ≥ 1 and j ≥ 2

The one level CT butterfly in level 3 after twisting is based on the following mappings:

Zqs [Yj]/⟨Y 32
j − 1⟩ → Zqs

[Yj]/⟨Y 16
j − ζ ′

0,0⟩ × Zqs
[Yj]/⟨Y 16

j − ζ ′
0,1⟩

where 0 ≤ j < 8. Thus we have

F (X) ≡ G3,j(Y) mod [qs, X − αjYj , Y 16
j − ζ ′

0,j mod 2].

for 0 ≤ j < 16 at the end of level 3. Since polynomials over Y can be rewritten as
polynomials over X based on the following mappings:

Zqs [Yj]/⟨Y 16
j − ζ ′

0,0⟩ × Zqs [Yj]/⟨Y 16
j − ζ ′

0,1⟩
→ Zqs

[X]/⟨X16 − α16
j ζ ′

0,0⟩ × Zqs
[X]/⟨X16 − α16

j ζ ′
0,1⟩.

We have the algebraic mid-conditions at the end of level 3 for 0 ≤ j < 16:

F (X) ≡ G3,j(α−1
⌊j/2⌋X) mod [qs, X16 − α16

⌊j/2⌋ζ ′
0,j mod 2].

Level 4 is based on the following mappings:

Zqs [Yj]/⟨Y 16
j − ζ ′

0,0⟩ × Zqs [Yj]/⟨Y 16
j − ζ ′

0,1⟩ →
3∏

t=0
Zqs [Yj]/⟨Y 8

j − ζ ′
1,t⟩

where 0 ≤ j < 8. Again, polynomials over Y at the end of level 4 can be rewritten as
polynomials over X based on the following mappings:

3∏
t=0

Zqs
[Yj]/⟨Y 8

j − ζ ′
1,t⟩ →

3∏
t=0

Zqs
[X]/⟨X8 − α8

j ζ ′
1,t⟩

We have the algebraic mid-conditions at the end of level 4 for 0 ≤ j < 32:

F (X) ≡ G4,j(α−1
⌊j/4⌋X) mod [qs, X8 − α8

⌊j/4⌋ζ ′
1,j mod 4].

The CT butterfly in Level 5 is applied in the same way. In general, at the end of level i
for 3 ≤ i ≤ 5, we specify the algebraic mid-conditions for 0 ≤ j < 2i+1:

F (X) ≡ Gi,j(α−1
⌊j/2i−2⌋X) mod [qs, X256/2i+1

− α
256/2i+1

⌊j/2i−2⌋ζ ′
i−3,j mod (2i−2)].

Polynomials after level 5 are twisted again before the last two levels of CT butterflies.
Let βj be the 4-th root of ζ ′

2,j mod 8 for 0 ≤ j < 64. Similar to the twisting after level 2,
each polynomial G5,j for 0 ≤ j < 64 is twisted by multiplying g5,j,k with βk

j . For 6 ≤ i ≤ 7
and 0 ≤ j < 2i+1, we specify the algebraic mid-conditions:

F (X) ≡ Gi,j(α−1
⌊j/2i−2⌋β−1

⌊j/2i−5⌋X) mod [qs, X256/2i+1
− α

256/2i+1

⌊j/2i−2⌋β
256/2i+1

⌊j/2i−5⌋ ζ ′
i−6,j mod 2i−5].

Specifically the algebraic mid-conditions after level 7 are

F (X) ≡ G7,j(α−1
⌊j/32⌋β−1

⌊j/4⌋X) mod [qs, X − α⌊j/32⌋β⌊j/4⌋ζ ′
1,j mod 4]

20 Verified NTT Multiplications

for 0 ≤ j < 256. Define ζj = α⌊j/32⌋β⌊j/4⌋ζ ′
1,j mod 4. The algebraic postconditions specified

are:

F (X) ≡ G7,j(X) mod [qs, X − ζj]

for 0 ≤ j < 256.
The ranges of coefficients do not simply increase by q after each CT butterfly because of

twisting polynomials after levels 2 and 5 and extra Montgomery reductions. Instead, ranges
of coefficients are computed by the program test_range256n from the ntt-polymul repo
(see footnote 1) and are asserted in the mid-conditions after each CT butterfly.

CryptoLine successfully verifies all the mid-conditions and the postconditions we
specify for the NTT routine.

4.1.2 Inverse NTT

The inverse NTT Intel AVX2 implementation for Saber is symmetric. It first computes
two layers of GS butterflies in inverse levels 7 to 6 followed by a twisting (at the end
of level 6), and then three layers of GS butterflies in inverse levels 5 to 3 followed by
another twisting (at the end of level 3). Finally, three layers of GS butterflies are computed
in levels 2 to 0. Let Pj = pj for 0 ≤ j < 256 be the 256 input polynomials for the
inverse NTT. The algebraic precondition for the inverse NTT routine is simply true. Let
Hi,j(X) =

∑256/2i−1
k=0 hi,j,kXk be the polynomials obtained at the end of inverse level i for

7 ≥ i ≥ 0. We specify the mid-conditions at the end of inverse level 7:

2Pj ≡ H7,j(α−1
⌊j/32⌋β−1

⌊j/4⌋X) mod [qs, X − ζj].

for 0 ≤ j < 256. Inverse level 6 contains one layer GS butterfly followed a twisting. At the
end of inverse level i for 6 ≥ i ≥ 4, the mid-conditions are:

28−iPj ≡ Hi,j(α−1
⌊j/32⌋X) mod [qs, X − ζj].

for 0 ≤ j < 256. Inverse level 3 contains one layer GS butterfly followed by another
twisting. At the end of level i for 3 ≥ i ≥ 0, the mid-conditions are:

28−iPj ≡ Hi,j(X) mod [qs, X − ζj].

0 ≤ j < 256. Define F = H0,0. The algebraic postconditions of the inverse NTT routine
are then:

F ≡ 28−iPj mod [qs, X − ζj]

for 0 ≤ j < 256.
To speed up verification, algebraic mid-conditions at the ends of inverse levels 7 to 4

are actually removed because the algebraic mid-conditions at the end of inverse level 3 can
be easily verified without any preceding mid-condition. Moreover, we apply the non-local
compositional reasoning technique in inverse levels 3 to 0. Consider for example an inverse
level i for 2 ≥ i ≥ 0. Every modular equation at the end of inverse level i is only related
to one modular equation at the end of inverse level i + 1. However, the mid-conditions
at the end of inverse level i + 1 are specified in a single cut and thus, all of them are
taken into account by computer algebra systems when proving a modular equation at
the end of inverse level i. To improve performance, following the mid-conditions at the
end of inverse level i + 1, we add one cut for each modular equation appearing in the
mid-conditions. We are then able add one prove with to refer to the only one related
modular equation in inverse level i + 1 for each modular equation to be verified in the
mid-conditions at the end of inverse level i. Therefore hundreds of modular equations are

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 21

eliminated from the problems submitted to computer algebra systems. Such application of
non-local compositional reasoning drastically reduces the verification time.

The ranges of coefficients again are computed by the program test_range256n and
are asserted in the range mid-conditions after each GS butterfly.

CryptoLine successfully verifies all the mid-conditions and the postconditions except
the range mid-conditions at the end of level 6. This failure is due to a mismatch of
the extra reduction in level 6. The implementation of inverse NTT applies one extra
reduction at the end of level 6 while the programmer’s own range computation program
test_range256n applies the extra reduction at the beginning of level 7. After the fix of
the range computation program, we specify new ranges at the end of level 6 and then
CryptoLine successfully verifies all the mid-conditions and the postconditions. Note that
the program was correct; it was the programmer’s range-checker that was wrong. As a
result of our work, the range-checking tool was fixed in commit https://github.com/
ntt-polymul/ntt-polymul/commit/7d88aa6b051bd076cc054eafd257c4ae8c10617c.

4.2 NTRU, ARM Cortex-M4 implementation (ntruhps2048509)
The ntruhps2048509 M4 implementation leverages the following mapping, where ζi denote
all the 256-th roots of unity in Zq′ with q′ = 1043969:

Zq′ [X]/⟨X1024 + 1⟩ → Zq′ [X]/⟨X4 − ζ0⟩ × · · · × Zq′ [X]/⟨X4 − ζ255⟩.

The implementation first transforms the polynomial via incomplete size-1024 NTT
comprising 2 sets of 4-layer NTTs (CT butterflies), and performs each 4-coefficient multi-
plication (modulo a degree-3 polynomial) with schoolbook. Then it does 2 sets of 3-layer
inverse NTTs (GS butterflies), followed by a final stage. The final stage consists of the
following operations: 2 layers of inverse NTTs, taking mod(X509 − 1), Montgomery mul-
tiplication by R2NTT−1

N mod q′, and reducing coefficients to the ring Zq [CHK+21]. The
constants R and NTTN are 232 and 256, respectively. Coefficients in the implementation use
the signed 32-bit representation.

4.2.1 Forward NTT

The input of the NTT routine is a degree-508 polynomial with each coefficient ranging
between ±q. Let F =

∑508
k=0 fkXk be the input polynomial. The pre-conditions are

−q ≤ fk < q, for all 0 ≤ k ≤ 508.

The implementation first performs central reduction for each coefficient to normalize
the range between ±q/2 before NTT. The 8-level NTT is then computed in two phases:
4-layer NTTs from level 0 to level 3 are calculated first, followed by 4-layer NTTs from
level 4 to level 7.

Define polynomial F̂ =
∑508

k=0 f̂kXk to be the result of the central reduction. Let
Gi,j =

∑1024/2i+1−1
k=0 gi,j,kXk denote the polynomials obtained at the end of level i, where

0 ≤ i ≤ 7, 0 ≤ j < 2i+1, and ζi,j with 0 ≤ j < 2i+1 the roots of unity at level i. The output
polynomials of the NTT routine are therefore G7,j =

∑3
k=0 g7,j,kXk with 0 ≤ j < 256.

The post-conditions to be verified are

F ≡ F̂ mod q and F̂ ≡ G7,j mod [q′, X4 − ζ7,j], for all 0 ≤ j < 256

with ranges
−128q′ < g7,j,k < 128q′, for all 0 ≤ j < 256, 0 ≤ k < 4.

The first part of the algebraic post-conditions represents the correctness of the central
reduction, while the second part specifies the correctness of the 8-level NTT. CryptoLine

https://github.com/ntt-polymul/ntt-polymul/commit/7d88aa6b051bd076cc054eafd257c4ae8c10617c
https://github.com/ntt-polymul/ntt-polymul/commit/7d88aa6b051bd076cc054eafd257c4ae8c10617c

22 Verified NTT Multiplications

successfully verifies the correctness of the NTT routine with respect to the aforementioned
pre- and post-conditions.

In order to improve the verification efficiency, we further utilize the compositional
reasoning mechanism provided by the cut instruction. As the 8-level NTT is clearly
demarcated into two phases, we specify the following mid-conditions at the end of the first
phase (level 3) to split the whole verification problem into two smaller sub-problems:

F ≡ F̂ mod q and F̂ ≡ G3,j mod [q′, X64 − ζ3,j], for all 0 ≤ j < 16 (1)

with ranges
−5q′ < g3,j,k < 5q′, for all 0 ≤ j < 16, 0 ≤ k < 64.

In fact, we divide the sub-problems into even smaller pieces to achieve more efficiency,
thanks to the non-local compositional reasoning feature supported by the cut instruction.
For example in the first phase, the 4-layer NTTs are performed iteratively. Each iteration
only transforms 16 coefficients. We thus insert the following mid-conditions at the end of
the e-th iteration for 0 ≤ e < 64 to specify the computation of that iteration:

f64k+e ≡ f̂64k+e mod q, for all 0 ≤ k < 16

and g3,j,eXe ≡
15∑

k=0
f̂64k+eX64k+e mod [q′, X64 − ζ3,j], for all 0 ≤ j < 16,

(2)

where we assume fk = f̂k = 0 when k > 508. Accordingly, we use the “prove with”
extension of cut in the mid-conditions (1) to add mid-conditions (2) as extra premises to
ease the verification.

4.2.2 Inverse NTT

The inverse NTT routine consists of three phases. Phases I and II transform all 1024
coefficients by 3-layer GS butterflies from inverse levels 7 to 5 and from inverse levels
4 to 2, respectively. In phase III, 2-layer inverse NTTs from inverse levels 1 to 0 are
performed iteratively, with 4 coefficients at each iteration. In the same iteration, for each
resulting coefficient, the mapping Zq′ [X]/⟨X1024 + 1⟩ → Zq′ [X]/⟨X509 − 1⟩ is calculated
immediately, followed by Montgomery multiplication by the factor R2NTT−1

N mod q′ and
finally reduction to the ring Zq.

To formalize appropriately the post-conditions, we denote several polynomials by the
following notations:

• Pj =
∑3

k=0 pj,kXk with 0 ≤ j < 256, the input polynomials for the inverse NTT
routine;

• F =
∑1023

k=0 fkXk, the polynomial obtained at the end of 8-level inverse NTT;

• F ∗ =
∑508

k=0 f∗
k Xk, the remainder polynomial after taking mod(X509 − 1) and Mont-

gomery multiplication by R2NTT−1
N mod q′ in phase III;

• F̃ =
∑508

k=0 f̃kXk, the output polynomial of the inverse NTT routine.

The post-conditions to be verified are therefore specified as follows:

F ≡ 256Pj mod [q′, X4 − ζ7,j], for all 0 ≤ j < 256 (3)
NTTNF ∗ ≡ RF mod [q′, X509 − 1] (4)

F̃ ≡ F ∗ mod q (5)

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 23

with appropriate ranges. Conditions (3) constitute the correctness of the 8-level inverse
NTT, while condition (4) ensures the correctness of both the modulo operation by X509 −1
and Montgomery multiplication by R2NTT−1

N mod q′ in phase III. Condition (5) means the
final reduction is correct.

Similarly, we construct mid-conditions to make the verification more efficient, thanks
to the clear three-phase structure of the implementation. Let Hi,j =

∑1024/2i−1
k=0 hi,j,kXk

be the polynomials obtained at the end of inverse level i with 7 ≥ i ≥ 0 and 0 ≤ j < 2i.
Then we have the following mid-conditions at the end of phase I (inverse level 5)

H5,⌊j/8⌋ ≡ 23Pj mod [q′, X4 − ζ7,j], for all 0 ≤ j < 256;

and the following mid-conditions at the end of phase II (inverse level 2)

H2,⌊j/64⌋ ≡ 26Pj mod [q′, X4 − ζ7,j], for all 0 ≤ j < 256.

Moreover, we define more refined mid-conditions in a similar way to the verification of
the NTT routine, since the phases in the inverse NTT routine are also implemented by
iterations. We refer the interested readers to the supplementary material for the detailed
mid-conditions that have been used.

Interestingly, when verifying the post-condition (4), CryptoLine reports “failed”. This
post-condition corresponds to the correctness of both the modulo operation by X509 −1 and
Montgomery multiplication by R2NTT−1

N mod q′ in phase III. The failure indicates either
that these computations are flawed, or that the computations are correct yet CryptoLine
is not able to verify with existing premises. After inspecting the error and related code,
we found that the following modular equation can be verified with CryptoLine:

NTTNf∗
2 ≡ R(f2 + f511 + f1017) mod [q′].

Nevertheless, note that condition (4) requires the following modular equation:

NTTNf∗
2 X2 ≡ R(f2X2 + f511X511 + f1020X1020) mod [q′, X509 − 1].

Since X1017 ̸≡ X2 mod [X509 − 1], the code does not appear to calculate the coefficient
f∗

2 correctly. Yet the problem evades all test inputs. There must be a simple explanation.
It turns out that additional premises are needed to verify post-condition (4). Recall

that the inverse NTT routine is only for ntruhps2048509. As a part of NTT multiplication
between two degree-508 polynomials, the modulo operation by X509 − 1 in phase III will
take as input a polynomial of degree less than 1017. Thus fk = 0 for 1017 ≤ k ≤ 1023 in
this context. Since f1020 = f1017 = 0, we have

f2X2 + f511X511 + f1020X1020 ≡ f2X2 + f511X511 + f1017X1017 mod [q′, X509 − 1].

The routine is correct only if it is used in ntruhps2048509! With the observation, we add
these assumptions with the following instructions:

assume fk = 0 && true, for all 1017 ≤ k ≤ 1023.

Then CryptoLine successfully verifies all the post-conditions. These assume’s illustrate
that the inverse NTT routine in question, in particular the modulo operation by X509 − 1
in phase III, is not generally correct. It is correct when being a part of NTT multiplication
between two degree-508 polynomials. CryptoLine forces the verifier to specify precisely
all the premises required to show correctness, hence helps the programmer and the users
to better understand both the generality and limitations of the code.

24 Verified NTT Multiplications

4.3 Other implementations
As aforementioned in Section 1.1, verification has been carried out on six chosen NTT
implementations. We have explained the details on how to verify the three of them,
including the AVX2 NTT implementations for Kyberand SABER, and the Cortex-M4
NTT implementation for NTRU. Although the remaining implementations are optimized
differently, they are built with basic blocks such as CT/GS butterflies, twisting and Mont-
gomery reductions that we have seen already. The techniques to construct the verification
conditions are similar. We demonstrate briefly the primary verification conditions for
them in the following. The details of all the conditions employed can be found in our
supplementary material.

4.3.1 Kyber, ARM Cortex-M4 implementation (Kyber768)

The Kyber M4 implementation from pqm42 maps

Zq[X]/⟨X256 + 1⟩ → Zq[X]/⟨X2 − ζ0⟩ × · · · × Zq[X]/⟨X2 − ζ127⟩

with ζj for the primitive 256-th roots of unity. The 7-level NTT is structured with 2
sets of 3-layer CT butterflies and then a set of 1-layer CT butterflies followed by Barrett
reductions. The inverse NTT is symmetric with GS butterflies.

For the forward NTT routine, let F =
∑255

k=0 fkXk be the input polynomial, Gi,j =∑256/2i+1−1
k=0 gi,j,kXk the polynomials at the end of level i with 0 ≤ i ≤ 6 and 0 ≤ j < 2i+1,

and ζi,j be the roots of the unity at the end of level i. As for the inverse, Pj = pj,0 + pj,1X

(0 ≤ j < 128) denote the 128 input polynomials, and Hi,j =
∑256/2i−1

k=0 hi,j,kXk for the
polynomials at the end of inverse level i with 6 ≥ i ≥ 0 and 0 ≤ j < 2i+1, where the
output polynomial F = H0,0.

The range pre-condition −q ≤ fk < q is used for each coefficient fk with 0 ≤ k < 256
when verifying the NTT routine. We specify the following algebraic mid-conditions at the
end of levels i = 2 and i = 5:

F ≡ Gi,j mod [q, X256/2i+1
− ζi,j], for all 0 ≤ j < 2i.

The above equations with i = 6 are the algebraic post-conditions to be verified. On the
other hand, the range post-conditions are 0 ≤ g6,j,k ≤ q due to Barrett reductions.

For the inverse NTT, the algebraic mid-conditions inserted at the end of inverse levels
i = 6 and i = 3 become

Hi,⌊j/27−i⌋ ≡ 27−iPj mod [q, X2 − ζj], for all 0 ≤ j < 128.

Finally, the algebraic post-conditions at the end of inverse level 0 are

F ≡ 216Pj mod [q, X2 − ζj], for all 0 ≤ j < 128

with an extra factor 29 being the effect of Montgomery multiplication by R2NTT−1
N . The

range mid-conditions and post-conditions are all −q ≤ hi,j,k < q for each coefficient hi,j,k.

4.3.2 SABER, ARM Cortex-M4 implementation

The implementation from [ACC+22] maps

Zq[X]/⟨X256 + 1⟩ → Zq[X]/⟨X4 − ζ0⟩ × · · · × Zq[X]/⟨X4 − ζ63⟩.

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 25

Thus the NTT routine performs 2 sets of 3-layer NTTs via CT butterflies. To use CT
butterflies as well in the inverse NTT, the mapping is rewritten as follows:

Zq[X]/⟨X256 + 1⟩ → Zq[X, Y]/⟨X4 − Y ⟩⟨Y 64 + 1⟩
Y =ζY0,0→ Zq[X, Y0,0]/⟨X4 − ζY0,0⟩⟨Y 64

0,0 − 1⟩
...

→
63∏

j=0
Zq[X, Y6,j]/⟨X4 − ζjY6,j⟩⟨Y6,j − 1⟩

→
63∏

j=0
Zq[X]/⟨X4 − ζj⟩

where Yi,j are the fresh variables introduced by the i-th twisting. The twisted inverse NTT
routine therefore consists of 2 sets of 3-layer CT butterflies, followed by a twisting mixed
with Montgomery multiplication by R2NTT−1

N , and a central reduction at last.
For the forward NTT, let F =

∑255
k=0 fkXk again be the input polynomial, Gi,j =∑256/2i+1−1

k=0 gi,j,kXk the polynomials at the end of level i for 0 ≤ i ≤ 5 and 0 ≤ j < 2i+1.
For the inverse routine, define Pj =

∑3
k=0 pj,kXk (0 ≤ j < 64) as the 64 input polynomials,

Hi,j =
∑256/2i−1

k=0 hi,j,kX(k mod 4)Y
⌊k/4⌋

i,j with 0 ≤ j < 2i the polynomials obtained at the
end of inverse level i (5 ≥ i ≥ 0), and F =

∑255
k=0 fkXk the output polynomial of the

inverse NTT routine.
As standard NTTs, the NTT routine should satisfy

F ≡ Gi,j mod [q, X256/2i+1
−ζi,j], for 0≤j <2i+1, and −(i+2)q ≤ gi,j,k < (i+2)q, (6)

at the end of level i. The post-conditions are condition (6) with i = 5, and the instances
when i = 2 are inserted as mid-conditions at the end of level 2 for verification efficiency.

As for the inverse routine, the following mid-conditions are specified at the end of
inverse level 3:

H3,⌊j/8⌋ ≡ 23Pj mod [q, X4 − ζjY6,j , Y6,j − 1], for 0≤j <64, and − 8q ≤ h3,j,k < 8q.

Before post-conditions, the following algebraic mid-conditions are inserted:

F ≡ RPj mod [q, X4 − ζjY6,j , Y6,j − 1], for all 0 ≤ j < 64.

Note that, unlike Section 4.1, we did not eliminate the variables Y ’s in the above mid-
conditions when dealing the twisting. CryptoLine allows both ways of formulating the
conditions. Finally, the algebraic post-conditions are verified:

F ≡ RPj mod [q, X4 − ζj], for all 0 ≤ j < 64,

with explicitly instantiating Y6,j with 1 using assume’s for 0 ≤ j < 64 before to prove
the algebraic post-conditions. Because of central reductions at the end, the range post-
conditions are −q/2 ≤ fk < q/2 for all output coefficients fk.

4.3.3 NTRU, Intel AVX2 implementation (ntruhps2048509)

The ntruhps2048509 AVX2 implementation from [CHK+21] maps

Zq[X]/⟨X1024 − 1⟩ → Zq[X]/⟨X2 − ζ0⟩ × · · · × Zq[X]/⟨X2 − ζ511⟩,

26 Verified NTT Multiplications

with ζi again ranging over all the primitive 512-th roots of unity. Both the 9-level NTT
and inverse NTT are implemented layer by layer.

As usual, for the forward NTT routine, we use F =
∑511

k=0 fkXk to denote the input
polynomial of degree 511, Gi,j =

∑1024/2i+1−1
k=0 gi,j,kXk for the polynomial obtained at the

end of level i with 0 ≤ i ≤ 8 and 0 ≤ j < 2i+1, and ζi,j with 0 ≤ j < 2i+1 for the roots of
unity at level i. As for the inverse NTT routine, Pj = pj,0 + pj,1X (0 ≤ j < 512) represent
the input polynomials, Hi,j =

∑1024/2i−1
k=0 hi,j,kXk the resulting polynomials at the end

of inverse level i with 8 ≥ i ≥ 0 and 0 ≤ j < 2i, and F =
∑1023

k=0 f̄kXk for the output
polynomial. In this implementation, F = H0,0.

As standard NTTs, the NTT routine should satisfy

F ≡ Gi,j mod [q, X1024/2i+1
− ζi,j], for all 0 ≤ j < 2i+1 (7)

at the end of level i. Thus the algebraic post-conditions to be verified are

F ≡ G8,j mod [q, X2 − ζ8,j], for all 0 ≤ j < 512.

On the other hand, the inverse NTT routine should satisfy

Hi,⌊j/29−i⌋ ≡ 29−iPj mod [q, X2 − ζ8,j], for all 0 ≤ j < 512 (8)

at the end of inverse level i. The algebraic post-conditions of the inverse NTT routine are

F ≡ 29Pj mod [q, X2 − ζ8,j], for all 0 ≤ j < 512.

Range conditions of the coefficients are computed by the program test_range1024
from the ntt-polymul repository (see footnote 1).

For efficiency, mid-conditions (7) are only added at the end of level 2 when verifying
the NTT routine, while mid-conditions (8) are only inserted at the end of inverse level 3 for
the inverse NTT routine. Moreover, since the implementation divides the 1024 coefficients
into 8 parts and calculates coefficients in each part separately, more refined mid-conditions
are also used to further reduce verification time.

5 Results
We use CryptoLine to verify the Intel AVX2 and Cortex M4 assembly implementations
for the NTTs for Kyber, NTRU, and Saber. All experiments are running on an Ubuntu
20.04.3 server with 3.2GHz Intel Xeon and 1TB RAM. Table 3 shows the verification time
for each instance in seconds. In the table, the column algebra shows the time for verifying
algebraic properties; overflow gives the time for checking over- and under-flow; range
contains the time for range checks; and total is the total running time for the instance. All
time is in seconds.

Verification time varies drastically among the experiments. Consider, for instance, the
experiments of the Intel AVX2 implementation for Kyber NTT. The total verification time
for inverse NTT is about 16.7 times slower than those for NTT. From Table 3, we see
that the time for overflow and range checking is drastically different in both instances.
In our verification, coefficient ranges are specified and verified for each level in NTT. On
the other hand, coefficient ranges are only specified and verified for the inverse levels 1
and 0 in inverse NTT. Range checking is thus divided into 7 subtasks in NTT whereas
it is divided into two in inverse NTT. Compositional reasoning divides large verification
tasks into smaller tasks. In Intel AVX2 Kyber NTT and inverse NTT implementations,
we observe significant differences in their verification time.

To evaluate the effectiveness of compositional reasoning with cuts, we compare ver-
ification time of Intel AVX2 Kyber NTT by numbers of cuts (Figure 5). The NTT

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 27

Table 3: Verification Results (in seconds)
KEM architecture direction algebra overflow range total

Kyber768
AVX2 normal 26.6 183.9 242.8 453.8

inverse 761.7 781.0 6050.0 7593.5

Cortex M4 normal 134.3 173.7 191.0 499.4
inverse 1481.0 348.6 184.1 2014.3

ntru2048509
AVX2 normal 478.4 1229.8 1738.6 3447.8

inverse 3868.6 1545.3 12170.3 17585.7

Cortex M4 normal 1353.0 5970.7 4810.2 12135.2
inverse 11315.1 3019.6 7813.7 22150.9

Saber
AVX2 normal 60.1 207.7 271.7 539.9

inverse 436.2 443.8 859.4 1741.0

Cortex M4 normal 110.2 2731.9 2196.7 5039.3
inverse 3250.5 2754.0 853.4 6858.8

number of cuts

time

1 3 4 6 8 10 14

200

400

600

800

1000

1200

1400

1600

1800 algebra
overflow

range

Figure 5: Effectiveness of Cuts in Intel AVX2 Kyber NTT

28 Verified NTT Multiplications

implementation is divided by different numbers of cuts in the figure. The verification time
for algebraic properties is drawn in the dotted green line. The time for overflow checking
is in the solid red line. And the time for range checks is the dashed blue line. The Intel
AVX2 Kyber NTT implementation in Table 3 uses 14 cuts. It corresponds to the rightmost
values in Figure 5. From the figure, we see the monolithic verification time without cuts
is the worst. Adding one cut improves the verification time in all categories significantly.
The verification time is similar to one, three, or four cuts in our experiments. However, it
improves significantly again with six or more cuts. Most interestingly, the best verificaiton
time is with 10 cuts. Adding more cuts in fact increases the verification time slightly.

Figure 5 shows that compositional reasoning is better than monolithic verification. The
verification time can be reduced by 50% with a single cut. Our experiments also point
out limitations of compositional reasoning. First, not all decompositions are effective for
verification. Adding more cuts may not improve verification time significantly. Verifiers
still need to decide how to divide verification tasks more effectively. Second, extreme
decompositions may be harmful. Compositional reasoning necessarily induces overhead.
In the extreme case, benefits of compositional reasoning can be nullified by its overhead.
Compositional reasoning does not always improve verification time.

Among the three KEM lattice finalists, the verification time for ntru2048509 is much
longer than the others. This is because it considers input polynomials of degree 1024 and
performs 10-level NTT. Kyber and Saber have input polynomials of degree 256 with 7-
and 8-level NTT respectively. In all cases, inverse NTT implementations always take more
time to verify. Recall that NTT always has input polynomials of (very) high degrees and
output polynomials of degrees 0 or 1. Subsequently, mid-conditions become simpler at
each level of NTT computation. At the last level, computer algebra systems only need to
verify modular equations over linear or constant polynomials. Inverse NTT however has
the opposite pattern. At each level of inverse NTT computation, mid-conditions become
more complex. In the end, computer algebra systems need to verify modular equations
over high-degree polynomials. The verification time for algebraic properties is much longer
in inverse NTT than those in NTT. Differences in overflow or range checking between NTT
and inverse NTT are not so pronounced. Rather, they depend more on the number of cuts.
For well-decomposed inverse NTT implementations, their overflow or range checking time
can be less than corresponding NTT implementations.

We should also mention the effects of our modifications to CryptoLine. Without
non-local cutting, it is not possible to cut Kyber at each level because of the structure of
the NTT, in which half of the coefficients are used for most layers; as a result variables
move in and out of registers. Without ghosts variables (which enable non-local cuts), one
can only relate to the last cut. So effectively the only possibility of cutting is somewhere in
the code where all variables are written out to memory, which only happens after layers 0
and 6 for Kyber (this is program-dependent).Initially, without the non-local compositional
reasoning, we tried verifying Kyber (the smallest of the programs verified) and it took 8×
as much time as with the new extension. In NTRU, with its larger state, Singular choked
due to the size of the ideal — on a server with 1TB of RAM.

Human time: Perhaps more important than computer clock time is human time. Each
of our verifications took less than a week of calendar time, and the majority of it was
really communication with the programmer of the code, and secondly reading and gaining
a basic understanding of the program at hand. We take this opportunity to note that in
no case was the verifier the programmer of the code, although in all cases the programmer
either provided very good annotations or was cooperative in resolving any questions that
arose.

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 29

Conclusion: We demonstrate the feasibility for a programmer to verify his or her high-
speed assembly code for PQC, as well as for a verification specialist to verify someone else’s
high-speed PQC software in assembly code, with some cooperation from the programmer.

Many algorithms in cryptography have clearly demarcated stages. One clear take-
away point is that in order to verify such algorithms, enhanced compositional reasoning
techniques that take full advantage of such structures is needed. We try to provide this
requisite enhanced compositional reasoning with new cuts and Ghost variables functionality.

Future Work: The six instances in this work are just the beginning. The same technique
applies to also any implementation of small ideal-lattice-based cryptosystems that also
has NTT-based arithmetic, e.g., the KEMs NTRU Prime, LAC, or NewHope [LLZ+18,
PAA+19, BBC+20] and the signatures Dilithium and Falcon [ABD+20a, FHK+17]. There
are also a myriad of other architectures and other parameter sets to consider.

We could also envision extending CryptoLine to other PQCs such as Rainbow/UOV
and Classic McEliece. Ideally, We would hope that CryptoLine and similar tools would
make it safe to deploy high-speed custom-made assembly for PQC in production scenarios.

Acknowledgments
The authors in Taiwan are partially funded from the Ministry of Science and Technol-
ogy grants MOST108-2221-E-001-010-MY3, MOST110-2221-E-001-008-MY3, the Sinica
Investigator Award AS-IA-109-M01, the Data Safety and Talent Cultivation Project
AS-KPQ-109-DSTCP, the Intel Fast Verified Postquantum Software Project, and the Cy-
bersecurity Center of Excellence Project at National Applied Research Labs. The authors
in Shenzhen University are funded by the National Natural Science Foundation of China
(62002228), the Natural Science Foundation of Guangdong Province (2022A1515010880),
and Shenzhen Science and Technology Innovation Commission (JCYJ20210324094202008,
20200810045225001).

References
[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. NISTIR8309 – status
report on the second round of the nist post-quantum cryptography standard-
ization process, July 2020. https://doi.org/10.6028/NIST.IR.8309.

[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. Jasmin: High-assurance and high-speed cryptography.
In ACM SIGSAC Conference on Computer and Communications Security,
pages 1807–1823. ACM, 2017.

[ABD+20a] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS–Dilithium. Submission to the NIST Post-Quantum
Cryptography Standardization Project [NIS], 2020. https://pq-crystals.
org/dilithium/.

[ABD+20b] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien

https://doi.org/10.6028/NIST.IR.8309
https://pq-crystals.org/dilithium/
https://pq-crystals.org/dilithium/

30 Verified NTT Multiplications

Stehlé. CRYSTALS–Kyber. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project [NIS], 2020. https://pq-crystals.org/
kyber/.

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial multiplication
in NTRU prime comparison of optimization strategies on Cortex-M4. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):217–238, 2021. https://doi.
org/10.46586/tches.v2021.i1.217-238.

[ACC+22] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J Kannwischer, and Bo-Yin Yang. Multi-moduli ntts for saber
on cortex-m3 and cortex-m4. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(1):127–151, 2022. https://tches.iacr.org/index.php/TCHES/
article/view/9292.

[Aff13] Reynald Affeldt. On construction of a library of formally verified low-level
arithmetic functions. Innovations in Systems and Software Engineering,
9(2):59–77, 2013.

[AM07] Reynald Affeldt and Nicolas Marti. An approach to formal verification of
arithmetic functions in assembly. In Mitsu Okada and Ichiro Satoh, editors,
Advances in Computer Science, volume 4435 of Lecture Notes in Computer
Science, pages 346–360. Springer, 2007.

[ANY12] Reynald Affeldt, David Nowak, and Kiyoshi Yamada. Certifying assembly with
formal security proofs: The case of BBS. Science of Computer Programming,
77(10–11):1058–1074, 2012.

[App15] Andrew W. Appel. Verification of a cryptographic primitive: SHA-256. ACM
Transactions on Programming Languages and Systems, 37(2):7:1–7:31, 2015.

[BBC+20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola
Tuveri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Submis-
sion to the NIST Post-Quantum Cryptography Standardization Project [NIS],
2020. https://ntruprime.cr.yp.to/.

[BBF+21] Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin Grégoire, Shih-Han
Hung, Jonathan Katz, Pierre-Yves Strub, Xiaodi Wu, and Li Zhou. Easypqc:
Verifying post-quantum cryptography. Cryptology ePrint Archive, Report
2021/1253, 2021. https://ia.cr/2021/1253.

[BCS08] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In D. Wagner,
editor, Advances in Cryptology (CRYPTO), LNCS, pages 221–240. Springer,
2008.

[BCS16] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. J. Cryptol.,
29(4):775–805, 2016.

[BPYA15] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel.
Verified correctness and security of openssl HMAC. In USENIX Security
Symposium, pages 207–221. USENIX Association, 2015.

https://pq-crystals.org/kyber/
https://pq-crystals.org/kyber/
https://doi.org/10.46586/tches.v2021.i1.217-238
https://doi.org/10.46586/tches.v2021.i1.217-238
https://tches.iacr.org/index.php/TCHES/article/view/9292
https://tches.iacr.org/index.php/TCHES/article/view/9292
https://ntruprime.cr.yp.to/
https://ia.cr/2021/1253

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 31

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-
jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Submission
to the NIST Post-Quantum Cryptography Standardization Project [NIS],
2020. https://ntru.org/.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for NTT-
unfriendly rings new speed records for Saber and NTRU on Cortex-M4 and
AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–188, 2021.
https://doi.org/10.46586/tches.v2021.i2.159-188.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcula-
tion of complex Fourier series. Mathematics of Computation, 19(90):297–301,
1965.

[DKRV20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. SABER. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project [NIS], 2020. https://www.esat.kuleuven.be/
cosic/pqcrypto/saber/.

[EPG+19] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. Simple high-level code for cryptographic arithmetic - with proofs,
without compromises. In IEEE Symposium on Security and Privacy, pages
1202–1219. IEEE, 2019.

[FHK+17] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. CRYSTALS–Dilithium. Submission to the NIST
Post-Quantum Cryptography Standardization Project [NIS], 2017. https:
//pq-crystals.org/dilithium/.

[FLS+19] Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and
Bo-Yin Yang. Signed cryptographic program verification with typed cryptoline.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM SIGSAC Conference on Computer and Communications
Security, pages 1591–1606. ACM, 2019.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Advances in Cryptology – CRYPTO
‘99, volume 1666, pages 537–554, 1999. http://dx.doi.org/10.1007/
3-540-48405-1_34.

[Für09] Martin Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–1005,
2009. https://doi.org/10.1137/070711761.

[GS66] W. M. Gentleman and G. Sande. Fast Fourier Transforms: For Fun and Profit.
In Proceedings of the November 7-10, 1966, Fall Joint Computer Conference,
AFIPS ’66 (Fall), pages 563–578, New York, NY, USA, 1966. Association for
Computing Machinery. https://doi.org/10.1145/1464291.1464352.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Theory of Cryptography, volume
10677, pages 341–371, 2017. https://eprint.iacr.org/2017/604.

https://ntru.org/
https://doi.org/10.46586/tches.v2021.i2.159-188
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://pq-crystals.org/dilithium/
https://pq-crystals.org/dilithium/
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1137/070711761
https://doi.org/10.1145/1464291.1464352
https://eprint.iacr.org/2017/604

32 Verified NTT Multiplications

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Algorithmic Number Theory – ANTS-III, pages
267–288, 1998. http://dx.doi.org/10.1007/BFb0054868.

[HVDH21] David Harvey and Joris Van Der Hoeven. Integer multiplication in time o (n
log n). Annals of Mathematics, 193(2):563–617, 2021.

[LLZ+18] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, and Bao Li. LAC: practical ring-lwe based public-key encryption with
byte-level modulus. IACR Cryptol. ePrint Arch., 2018. https://eprint.
iacr.org/2018/1009.

[LST+19] Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin
Yang. Verifying arithmetic in cryptographic c programs. In Julia Lawall and
Darko Marinov, editors, IEEE/ACM International Conference on Automated
Software Engineering, pages 552–564. IEEE, 2019.

[MC13] Magnus O. Myreen and Gregorio Curello. Proof pearl: A verified bignum
implementation in x86-64 machine code. In Certified Programs and Proofs,
volume 8307 of Lecture Notes in Computer Science, pages 66–81. Springer,
2013.

[MG07] Magnus O. Myreen and Michael J. C. Gordon. Hoare logic for realistically
modelled machine code. In Orna Grumberg and Michael Huth, editors,
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 4424 of Lecture Notes in Computer Science, pages
568–582. Springer, 2007.

[NIS] NIST, the US National Institute of Standards and Technology. Post-quantum
cryptography standardization project. https://csrc.nist.gov/Projects/
post-quantum-cryptography.

[PAA+19] Thomas Pöppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,
Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and
Nigel P. Smart. NewHope. Submission to the NIST Post-Quantum Cryptog-
raphy Standardization Project [NIS], 2019. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions.

[PQC21] PQClean. The PQClean project. https://github.com/PQClean/PQClean,
2021.

[PTWY18] Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Verifying
arithmetic assembly programs in cryptographic primitives. In Sven Schewe
and Lijun Zhang, editors, International Conference on Concurrency Theory,
LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography. Cryptology ePrint Archive, Report 2018/039, 2018.
https://eprint.iacr.org/2018/039.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, October 1997.

http://dx.doi.org/10.1007/BFb0054868
https://eprint.iacr.org/2018/1009
https://eprint.iacr.org/2018/1009
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://github.com/PQClean/PQClean
https://eprint.iacr.org/2018/039

Hwang, Liu, Shi, Seiler, Tsai, Wang, Yang 33

[SS71] Arnold Schönhage and Volker Strassen. Schnelle multiplikation großer zahlen.
Computing, 7(3-4):281–292, 1971.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure
key-encapsulation mechanism in the quantum random oracle model. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May
3, 2018 Proceedings, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 520–551. Springer, 2018.

[TWY17] Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verification of
algebraic properties on low-level mathematical constructs in cryptographic
programs. In David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
SIGSAC Conference on Computer and Communications Security, pages 1973–
1987. ACM, 2017.

[YGS+17] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and Andrew W. Appel. Verified correctness and security of
mbedtls HMAC-DRBG. In ACM SIGSAC Conference on Computer and
Communications Security, pages 2007–2020. ACM, 2017.

[ZBPB17] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and
Benjamin Beurdouche. HACL*: A verified modern cryptographic library. In
ACM SIGSAC Conference on Computer and Communications Security, pages
1789–1806. ACM, 2017.

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	NISTPQC3 Finalist Lattice Candidates
	Modular Reductions
	The Number Theoretic Transform (NTT) and Butterflies

	The CryptoLine tool
	The CryptoLine Language
	Walkthrough: How the AVX2 Kyber768 NTT is Verified
	Differences on the Cortex-M4

	Verifying the Implementations
	Saber, Intel AVX2 implementation
	NTRU, ARM Cortex-M4 implementation (ntruhps2048509)
	Other implementations

	Results

