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Abstract. Analysis of infinitary safety properties with automated com-
positional reasoning through learning is discussed. We consider the class
of intuitionistically closed regular languages and show that it forms a
Heyting algebra and is finitely approximatable. Consequently, composi-
tional proof rules can be verified automatically and learning algorithms
for finitary regular languages suffice for generating the needed contex-
tual assumptions. We also provide a semantic justification of an axiom to
deduce circular compositional proof rules for such infinitary languages.

1 Introduction

Compositional reasoning is probably the best way to harness complexity in for-
mal verification [7]. It reduces complexity by decomposing systems into compo-
nents according to compositional proof rules. In the assume-guarantee paradigm,
each component is verified separately with auxiliary contextual assumptions.
With an adequate degree of automation, compositional reasoning is also seen by
many as an effective technique to alleviate the state explosion problem in model
checking. One approach to full automation based on learning has been proposed
in [6, 5]. In the approach, system behaviors and properties are restricted to regu-
lar languages and the needed contextual assumptions are generated by a learning
algorithm. It is possible in theory to extend automated compositional reasoning
based on learning to ω-regular languages [8]. However, it is not clear how this
extension can be made practically usable. The learning algorithm in [8] generates
ω-automata by posing membership and equivalence queries, the latter of which
are computationally expensive for ω-regular languages.

A natural question to ask is whether automated compositional reasoning
can be generalized to some subclass of ω-regular languages while maintaining
practical feasibility. In particular, one may consider the class of closed ω-regular
languages, which corresponds to the class of safety properties and is of fundamen-
tal importance in formal specification. Unfortunately, this subclass of ω-regular
languages does not form a Boolean algebra [14]. Developing compositional proof
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rules for the subclass is more involved. Moreover, weakest contextual assump-
tions may not be generated by learning algorithms because they may not belong
to the subclass. Automated compositional reasoning therefore may not work
even if compositional proof rules are available [6].

In this paper, we extend automated compositional reasoning to the class of
intuitionistically closed regular languages. An intuitionistically closed regular
language contains all (finite) prefixes of ω-strings in its corresponding closed
ω-regular language. Finite approximations in an intuitionistically closed regu-
lar language allow to characterize its ω-strings. Learning algorithms for regular
languages suffice to generate contextual assumptions for the class efficiently.
Furthermore, we are able to show the class of intuitionistically closed regu-
lar languages forms a Heyting algebra. Compositional proof rules can thus be
deduced automatically [1, 18]. Automated compositional reasoning is therefore
generalized to the class of intuitionistically closed regular languages without any
penalty.

The intuitionistic interpretation additionally admits circular compositional
proof rules. Circularity in compositional reasoning has been observed in various
models of reactive systems (see, for example, [3]). For intuitionistically closed
regular languages, we are able to establish the same circular compositional proof
rule in [1, 18]. More circular compositional proof rules can be established syn-
tactically. The combination of automata and proof theory hence relieves users
from making tedious inductive proofs for circular reasoning.

It is practically impossible to enumerate all works related to compositional
reasoning. Readers are referred to [7] for a thorough introduction. The learning
algorithm L∗ for regular languages was introduced in [4]. It generates the mini-
mal finite state automaton for an unknown regular language with a polynomial
number of membership and equivalence queries. Applying the L∗ algorithm to
compositional reasoning was first proposed in [6].

Introductions to infinitary languages can be found in [15, 14]. Closed ω-
regular languages were characterized by Landweber [10, 17, 14]. The learning
algorithm Lω for ω-regular languages in the intersection of Borel classes Fσ and
Gδ was introduced in [12]. However, the algorithm Lω requires asymptotically
more queries than L∗. In [8], a learning algorithm for general ω-regular languages
is introduced. It may make an exponential number of queries, though.

In [1], a finitary intuitionistic interpretation was proposed to derive proof
rules in compositional reasoning. An effective version of the interpretation had
been developed and applied in automated compositional reasoning [18]. An infini-
tary intuitionistic interpretation for linear temporal logic was introduced in [11].
None generalizes automated compositional reasoning to infinitary languages.

The paper is organized as follows. After the introduction, some backgrounds
are given in Section 2. The following section presents the negative result for
closed ω-regular languages. Infinitary regular languages under intuitionistic in-
terpretation are introduced in Section 4. The correspondence between Landwe-
ber automata and intuitionistically closed regular languages is given in Section 5.
Section 6 shows that the class of intuitionistically closed regular languages forms



a Heyting algebra. Applications to automated compositional reasoning are pre-
sented in Section 7. We conclude this paper in Section 8.

2 Preliminaries

A partially ordered set (P,≤) consists of a set P and a reflexive, anti-symmetric,
and transitive binary relation ≤ ⊆ P ×P [9]. A lattice (L,≤,t,u) is a partially
ordered set where the least upper bound at b and the greatest lower bound au b
with respect to ≤ exist for any pair of elements a, b in L. A Boolean algebra (B,
≤, t, u, −, 0, 1) is a lattice such that (1) 0 ≤ a and a ≤ 1 for all a ∈ B; (2)
a t −a = 1, a u −a = 0 for all a ∈ B; and (3) a t (b u c) = (a t b) u (a t c) and
au(btc) = (aub)t(auc) for all a, b, c ∈ B. The Boolean domain B = {false, true}
forms the Boolean algebra (B, ⇒, ∨, ∧, •, false, true).

A Heyting algebra (H,≤,t,u,⇒, 0, 1) is a lattice where (1) 0 ≤ a and a ≤ 1
for all a ∈ H; and (2) for all a, b ∈ H, the pseudo-complement of a relative to b,
a ⇒ b, satisfies

for all c ∈ H, c ≤ (a ⇒ b) if and only if c u a ≤ b.

Let Σ be an alphabet consisting of a finite set of symbols. A string α is a
finite sequence of symbols. We say α is a string of length n (denoted by |α| = n)
if α = α(1)α(2) · · ·α(n). The empty string λ is the string of length zero. The set
of all strings is denoted by Σ∗. An ω-string ξ = ξ(1)ξ(2) · · · ξ(i) · · · is an infinite
sequence of symbols with length |ξ| = ω by convention. We denote the set of all
ω-strings by Σω and define Σ∞ = Σ∗ ∪ Σω. A language is a subset of Σ∗; an
ω-language is a subset of Σω; and an intuitionistic language is a subset of Σ∞.

Let σ, τ ∈ Σ∞. We say σ is a prefix of τ (written σ v τ) if τ = σν for some
ν ∈ Σ∞, or σ = τ . For any σ ∈ Σ∞, define A(σ) = {τ ∈ Σ∞ : τ v σ}. It is
routine to generalize the definition over any intuitionistic language X by taking
A(X) = {τ ∈ Σ∞ : τ v σ for some σ ∈ X}. An intuitionistic language X ⊆ Σ∞

is prefix-closed if A(X) ⊆ X.
Given an intuitionistic language X ⊆ Σ∞, define its classical closure clω(X)

to be {ξ ∈ Σω : A(ξ) ∩ Σ∗ ⊆ A(X)}. For any ω-language L, we say it is
classically closed if clω(L) = L. The class of classically closed ω-languages is de-
noted by Fω. It is known that classically closed ω-languages correspond to safety
properties [2]. Similarly, define the intuitionistic closure cl∞(X) = {σ ∈ Σ∞ :
A(σ) ∩Σ∗ ⊆ A(X)} for any intuitionistic language X ⊆ Σ∞. An intuitionistic
language X is intuitionistically closed if cl∞(X) = X. We write F∞ for the class
of intuitionistically closed languages. Note that X ⊆ cl∞(X) for X ∈ Σ∞ and
L ⊆ clω(L) for L ∈ Σω. Moreover, clω(X) ⊆ X if X ∈ F∞.

An intuitionistic language may not be intuitionistically closed even if its ω-
strings form a classically closed ω-language. Consider X = (01)∗ ⊆ Σ∞ where
Σ = {0, 1}. X ∩ Σω = ∅ is classically closed. But the completion of its strings
(01)ω is not in X. Hence X is not intuitionistically closed.

An automaton M = (Σ,Q, q0, δ, F ) consists of an alphabet Σ, a finite set of
states Q, an initial state q0 ∈ Q, a transition relation δ ⊆ Q×Σ×Q, and a set of



accepting states F ⊆ Q. For clarity, we write q
a−→ q′ if (q, a, q′) ∈ δ. Moreover,

we say the automaton M is deterministic if its transition relation is in fact a
function from Q×Σ to Q. Given σ ∈ Σ∞ and an automaton M , a run of M on

σ is a sequence of states q0q1 · · · qi · · · such that q0
σ(1)−→ q1 · · · qi

σ(i+1)−→ qi+1 · · · .
The set RunM (σ) contains runs of M on σ; it is a singleton if M is deterministic.

Let M = (Σ,Q, q0, δ, F ) be an automaton and α ∈ Σ∗ with |α| = n. A run
r = q0q1 · · · qn ∈ RunM (α) satisfies the finite acceptance condition if qn ∈ F .
The automaton M accepts α if r satisfies the finite acceptance condition for
some r ∈ RunM (α). The set of strings accepted by M with finite acceptance
condition forms a language L∗(M). A language L in Σ∗ is regular if L = L∗(M)
for some automaton M . The class of regular languages is denoted by R∗.

Let M = (Σ,Q, q0, δ, F ) be an automaton, ξ ∈ Σω, and r ∈ RunM (ξ).
Define Inf M (r) = {q : q occurs infinitely often in r}. We say r satisfies the
Büchi acceptance condition if Inf M (r) ∩ F 6= ∅. Similarly, define RngM (r) =
{q : q occurs in r}. We say r satisfies the Landweber acceptance condition if
RngM (r) ⊆ F . A Büchi automaton is an automaton B = (Σ,Q, q0, δ, F ) with
the Büchi acceptance condition. It accepts the ω-language Lω(B) = {ξ ∈ Σω :
Inf B(r) ∩ F 6= ∅ for some r ∈ RunB(ξ)}. The class of ω-languages accepted by
Büchi automata are denoted by Rω. A Landweber automaton is a deterministic
automaton R = (Σ,Q, q0, δ, F ) with the Landweber acceptance condition. It
accepts the ω-language Lω(R) = {ξ ∈ Σω : RngR(r) ⊆ F for the r ∈ RunR(ξ)}.

Theorem 1. [10, 14] Let L ⊆ Σω. L ∈ Rω ∩ Fω if and only if L = Lω(R) for
some Landweber automaton R.

Let M and P be automata. The language containment problem is to decide
whether L•(M) ⊆ L•(P ). In the automata-theoretic approach to formal verifica-
tion, system behaviors and requirements are specified by the languages accepted
by automata M and P respectively. Hence the conformance of the system M
with respect to the requirement P is reduced to the language containment prob-
lem [16]. Oftentimes, a system is specified by the composition of its components;
its behaviors are defined as the intersection of those of its components [6, 18].
The number of states therefore grows exponentially in compositions. An effective
solution to the state explosion problem is compositional reasoning.

In compositional reasoning, compositional proof rules are used to deduce the
correctness of a system by parts. A compositional proof rule is of the form

Γ0, Γ1, . . . , Γn
` C

∆

where ` is its label, C is a side condition, Γ0, Γ1, . . . , Γn, and ∆ are instances of the
language containment problem. The instances Γ0, Γ1, . . . , Γn are the premises of
the compositional proof rule; ∆ is the conclusion. A compositional proof rule is
sound if its conclusion follows from its premises; it is invertible if all its premises
are satisfiable provided its conclusion holds.



3 Compositional Reasoning of Classically Closed
Languages

In the assume-guarantee paradigm of compositional reasoning, users are allowed
to specify contextual assumptions in premises of compositional proof rules. If
the compositional proof rule is sound and invertible, users are guaranteed to
find proper assumptions to verify the system. Finding proper assumptions nev-
ertheless is tedious and often requires clairvoyance. Automated compositional
reasoning applies machine learning to generate assumptions for users automat-
ically. Consider the following compositional proof rule, where system behaviors
and property are formalized as regular languages J,K, and L respectively [5]:

J ∩A ⊆ L K ⊆ A
R0

J ∩K ⊆ L

Since regular languages are closed under Boolean operations, learning algorithms
gradually converge to the weakest assumption L ∪ J through a series of mem-
bership and equivalence queries. These queries are reduced to membership and
language containment problems and then resolved automatically.

Extending the automated methodology to ω-regular languages does not look
promising. The only learning algorithm for general ω-regular languages may
make an exponential number of queries [8]. Moreover, the language containment
problem for ω-regular languages is computationally harder than for regular lan-
guages. Even if one considers the subclass with efficient learning algorithms [12],
resolving equivalence queries for ω-regular languages is still less efficient.

The outlook does not improve for the most important class of classically
closed ω-regular languages. Consider again the compositional proof rule R0.
Suppose now J,K, L are classically closed ω-regular languages. The weakest as-
sumption J ∪ L is not necessarily classically closed since the class of classically
closed ω-regular languages is not closed under complementation. It is too re-
strictive to consider only the class of classically closed ω-regular languages. One
wonders whether the weakest assumption is defined too liberally. If only assump-
tions in the class of classically closed ω-regular languages are considered, could
the weakest assumption exist? Algebraically, the weakest assumption is but the
pseudo-complement of J relative to L. It is however not hard to see that the
weakest assumption does not always exist.

Proposition 1. For some K, L ∈ Rω ∩Fω, there is no C ∈ Rω ∩Fω such that
for all J ∈ Rω ∩ Fω, J ∩K ⊆ L if and only if J ⊆ C.

Proposition 1 suggests that automated compositional reasoning cannot be
applied to classically closed ω-regular languages näıvely. In the following, we
propose a new class of infinitary languages suitable for the automated technique.

4 Intuitionistic Regular Languages

To motivate the intuitionistic interpretation, consider the ω-languages K =
(01)ω and L = ∅. We would like to find the maximal classically closed ω-language



J such that J ∩ K ⊆ L. Observe that the ω-language Ji = (01)i0ω satisfies
Ji ∩ K ⊆ ∅ for i ∈ N. Hence Ji ⊆ J for i ∈ N. But one would have (01)ω ∈ J
and J ∩K 6= ∅ for J is classically closed.

One way to circumvent the problem is to disallow Ji’s. Notice that A(Ji) ∩
A(K) 6= ∅ though Ji∩K = ∅ for each i. Indeed, ∪i∈NA(Ji) and the closure prop-
erty imply (01)ω ∈ J . If prefixes of ω-languages were taken into consideration,
the embarrassing dilemma would disappear.

The idea is best illustrated automata-theoretically. Recall that automata for
finitary and infinitary languages are indistinguishable structurally; only their
acceptance conditions differ. We therefore generalize the language accepted by
an automaton to the new interpretation.

Definition 1. Let B be a Büchi automaton. Define

L∞(B) = {σ ∈ Σ∞ : B accepts σ by finite or Büchi acceptance condition}
R∞ = {X ⊆ Σ∞ : X = L∞(B) for some Büchi automaton B}.

Unlike classical ω-regular languages, intuitionistic regular languages do not
form a Boolean algebra. To apply automated compositional reasoning, one could
try to form a Heyting algebra over intuitionistic regular languages [18].

5 Landweber Automata and Intuitionistically Closed
Regular Languages

Recall that the class of ω-languages accepted by Landweber automata coincides
with the class of classically closed ω-regular languages (Theorem 1). We consider
strings accepted by finite acceptance condition as well.

Definition 2. Let R be a Landweber automaton. Define L∞(R) = {σ ∈ Σ∞ :
RngR(r) ⊆ F for the r ∈ RunR(σ)}.

The following lemma states the intuitionistic language accepted by a Landwe-
ber automaton is indeed intuitionistically regular.

Lemma 1. Let R be a Landweber automaton. L∞(R) ∈ R∞.

To show L∞(R) is intuitionistically closed for any Landweber automaton R,
consider the infinite run for any ω-string in cl∞(L∞(R)). It only visits accepting
states since all prefixes of the ω-string belong to L∞(R). Hence only accepting
states can occur in the infinite run. The ω-string belongs to L∞(R) as well.

Lemma 2. Let R be a Landweber automaton. L∞(R) is intuitionistically closed.

Recall that intuitionistic regular languages are defined by (non-deterministic)
Büchi automata but intuitionistically closed regular languages are by (determin-
istic) Landweber automata. To show that any intuitionistically closed regular
language is accepted by a Landweber automaton, one must close the gap be-
tween deterministic and non-deterministic computation. Since there is no gap in
classically closed ω-regular languages (Theorem 1), one would not expect differ-
ently in our intuitionistic interpretation.



Lemma 3. Let X ∈ R∞. If X is intuitionistically closed, X = L∞(B) for some
deterministic Büchi automaton B.

It is not hard to translate deterministic Büchi automata to Landweber au-
tomata. The correspondence between intuitionistically closed regular languages
and intuitionistic languages accepted by Landweber automata is obtained.

Theorem 2. For any X ⊆ Σ∞, X ∈ R∞ ∩ F∞ if and only if X = L∞(R) for
some Landweber automaton R.

6 Intuitionistically Closed Regular Languages as Heyting
Algebra

We first characterize pseudo-complements. Given X, Y ∈ Σ∞, the language X →
Y consists of strings whose every prefixe, if in X, also belongs to Y .

Definition 3. [11] Let X, Y ∈ Σ∞. X → Y = {σ ∈ Σ∞ : A(σ) ∩X ⊆ Y }.

We now show that X → Y is intuitionistically closed regular if both X and
Y are. Since X and Y are intuitionistically closed regular languages, they are
accepted by Landweber automata R and S respectively. We define a Landweber
automaton R → S such that L∞(R → S) = L∞(R) → L∞(S) = X → Y .

Definition 4. Let R = (Σ, P, p0, φR, FR) and S = (Σ, Q, q0, φS , FS) be
Landweber automata. Define the Landweber automaton R → S = (P × Q ×
B, (p0, q0, b0), φ, F ) as follows.

– b0 = true if and only if p0 ∈ FR implies q0 ∈ FS

– (p′, q′, b′) = φ((p, q, b), a) if
• p′ = φR(p, a), q′ = φS(q, a), and
• b′ = true if and only if b = true, and p′ ∈ FR implies q′ ∈ FS.

– F = {(p, q, true) : p ∈ P, q ∈ Q}.

By construction, the language L∞(R → S) is prefix-closed. Moreover, a string
is in L∞(R → S) if all its finite prefixes belong to L∞(R → S) since L∞(R → S)
is intuitionistically closed. We can now show L∞(R → S) = L∞(R) → L∞(S).

Proposition 2. Let R and S be Landweber automata. L∞(R → S) = L∞(R) →
L∞(S).

To summarize, we have shown the language K → L is intuitionistically closed
regular if both K and L are intuitionistically closed regular.

Corollary 1. If X, Y ∈ R∞ ∩ F∞, X → Y ∈ R∞ ∩ F∞.

It is easy to verify ∅ and Σ∞ are both intuitionistically closed regular. More-
over, X ∪ Y , X ∩ Y , and X → Y are intuitionistically closed regular if both X
and Y are. Hence the class R∞ ∩ F∞ forms a Heyting algebra.



Theorem 3. (R∞ ∩ F∞,⊆,∪,∩,→, ∅, Σ∞) is a Heyting algebra.

A simple application of elementary proof theory allows to establish sound
and invertible compositional proof rules [1, 18].

Corollary 2. If a compositional proof rule is provable by the system LJ , it is
sound and invertible for intuitionistically closed regular languages.

Particularly, the rule given in Section 3 is sound and invertible for R∞∩F∞.
Moreover, the weakest assumption J → L is in fact an intuitionistically closed
regular language by Theorem 3. A learning algorithm for intuitionistically closed
regular languages can generate a Landweber automaton accepting J → L. The
termination of automated compositional reasoning is thus ensured.

Circularity in compositional proof rules is always intriguing because it con-
tradicts our intuition. Consider the following rule where C is a side condition [3].

J0 ∩K1 ⊆ K0 K0 ∩ J1 ⊆ K1 C
J0 ∩ J1 ⊆ K0 ∩K1

Circular reasoning arises because the premise J0 ∩K1 ⊆ K0 assumes K1 to es-
tablish K0 and the other assumes K0 to establish K1. Circular reasoning is not
sound for Heyting algebra in general. But the class R∞∩F∞ admits such circu-
larity conditionally. The following definition is needed to describe the condition.

Definition 5. Let X ⊆ Σ∞ and Ξ ⊆ Σ. X is said to constrain Ξ (write X .Ξ)
if αa ∈ X for any α ∈ X ∩Σ∗ and a 6∈ Ξ.

Definition 5 intuitively says that a language X is not interfered by the sym-
bols not in Ξ if X . Ξ. If two languages are not interfering with each other, one
can apply the following lemma to have circular compositional proof rules.

Lemma 4. Let X, Y ∈ F∞ with X, Y 6= ∅, and ΞX , ΞY ⊆ Σ. If X.ΞX , Y .ΞY ,
and ΞX ∩ΞY = ∅, then (X → Y ) ∩ (Y → X) ⊆ X.

Note that Lemma 4 is only applicable to non-empty intuitionistically closed
languages. It is necessary since the pseudo-complement of the empty language
is Σ∞. Fortunately, the class of non-empty intuitionistically closed regular lan-
guages still forms a Heyting algebra with the minimal element {λ}. The circular
compositional proof rule described above can thus be established by the system
LJ and Lemma 4 (see also [1, 18]).

7 Applications

An advantageous feature of intuitionistically closed regular languages is that
they contain finite approximations and their completions. If one could infer more
information from finite approximations, algorithms for automata with finite ac-
ceptance condition would suffice to solve problems for intuitionistically closed
regular languages. In this section, we carry out the plan and obtain efficient au-
tomated compositional reasoning for intuitionistically closed regular languages.



Firstly, it is not hard to show the language containment problem for intu-
itionistically closed regular languages is equivalent to those for regular languages.
Intuitively, if all finite approximations of an intuitionistically closed regular lan-
guage are contained in another intuitionistically closed regular language, their
completions belong to the latter as well.

Lemma 5. Let R and S be Landweber automata. L∗(R) ⊆ L∗(S) if and only if
L∞(R) ⊆ L∞(S).

Next, we show that it is possible to deduce information about intuitionisti-
cally closed regular languages from their finite approximations.

Theorem 4. Let R,S, and T be Landweber automata. Then L∗(R)� L∗(S) ⊆
L∗(T ) if and only if L∞(R)� L∞(S) ⊆ L∞(T ), where � ∈ {∪,∩,→}.

Consider the compositional proof rules R0 in Section 3, both premises are
equivalent to the regular language containment problem by Theorem 4. That is,
for any Landweber automata M0, M1, and P , we have

L∗(M0) ∩ L∗(A) ⊆ L∗(P ) L∗(M1) ⊆ L∗(A)
R0’

L∞(M0) ∩ L∞(M1) ⊆ L∞(P )

Since the premises L∗(M0) ∩ L∗(A) ⊆ L∗(P ) and L∗(M1) ⊆ L∗(A) are in-
stances of the regular language containment problem, learning algorithms for
regular languages suffice to generate the weakest assumption in the new rule.
The most efficient learning algorithm for regular languages requires O(kmn2)
and n−1 membership and equivalence queries respectively, where k is the size of
alphabet, n is the number of states, and m is the length of the longest counterex-
ample [13]. In comparison, the most efficient learning algorithm for any subclass
of ω-regular languages requires O(n4) and O(n2) membership and equivalence
queries respectively [12]. Since it is harder to resolve the containment problem for
ω-regular languages, the compositional proof rule (R0’) is definitely preferred.

8 Conclusion

The class of intuitionistically closed regular languages was introduced. We showed
that the class forms a Heyting algebra and is finitely approximatable. It moreover
admits circular compositional proof rules. Our results extend automated com-
positional reasoning to the class of intuitionistically closed regular languages
most satisfactorily. Not only can compositional proof rules for the new class be
deduced automatically, but also finding assumptions be done as efficiently as
for regular languages. Given the negative result on classically closed ω-regular
languages (Section 3), the present work is perhaps the best that one can hope
for the compositional analysis of safety properties.

Our interpretation for intuitionistic languages differs from those in [11]. It
would be interesting to investigate more properties about intuitionistic regular
languages in our interpretation. Moreover, a correspondence between intuitionis-
tic languages and automata in the interpretation of [11] could be useful to solve
the model checking problem of intuitionistic linear temporal logic.
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