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Abstract. For successful software verification, model checkers must be capable of 
handling a large number of program variables. Traditional, BDD-based model 
checking is deficient in this regard, but bounded model checking (BMC) shows 
some promise. However, unlike traditional model checking, for which time systems 
have been thoroughly researched, BMC is less capable of modeling timing behav-
ior—an  essential task for verifying many types of software. Here we describe a new 
bounded model checker we have named xBMC, which we believe solves the reach-
ability problem of dense-time systems. In xBMC, regions and transition relations are 
represented as Boolean formulae using discrete interpretations. In an experiment us-
ing well-developed model checkers to verify Fischer’s protocol, xBMC outper-
formed both traditional (Kronos [8], Uppaal [16], and Red [26]) and bounded (SAL 
[21]) model checkers by being able to verify up to 22 processes, followed by Red 
with 15 processes. Therefore, although xBMC is less efficient in guaranteeing sys-
tem correctness, it provides an effective and practical method for timing behavior 
verification of large systems. 

1   Introduction 

The successful use of model checking for software verification requires the ability to 
handle a large number of program variables. Because of problems associated with state 
explosion, this remains a difficult problem for conventional, BDD-based model checkers. 
SAT-based bounded model checking (BMC) [7][9] is showing some promise in this re-
gard. A recent comparison [5] of the two techniques shows that the first requires more 
space and the second more time. Therefore, as Nierbert et al. [22] suggested, even though 
BMC is less efficient in guaranteeing the correctness of software systems, it has benefits 
in terms of bug hunting, especially for systems too large for complete verification. Fur-
thermore, since numerous proposals for improving SAT solver efficiency have been made 
[17][19], BMC’s drawback, i.e. its speed, can be improved. Due to these factors, BMC 
has recently gained acceptance for software verification purposes [10][13]. However, an 
important deficiency with BMC is its lack of support for timing behavior modeling, con-
sidered essential for verifying many types of software (e.g., embedded systems and proto-
col implementations). This deficiency is the focus of this paper. 

In model checking, the verification of most temporal safety properties can be reduced 
to reachability analysis [6][8]. Yovine [28] has defined the reachability problem as a 
question of (given two dense-time system states) whether there exists an execution that 
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starts in one state and reaches another. Our emphasis here is on solving the reachability 
problem of dense-time systems. 

Timed automata are state transition graphs augmented with a finite set of clocks. Alur, 
Courcoubetis and Dill [1][2] defined finite equivalent classes, called regions, to represent 
infinite states, and used region automata to represent exact states. They thus proved the 
complexity of the reachability problem, but failed to provide a region automata imple-
mentation—a task that few researchers have attempted. 

Biere et al. [7] have proposed a BMC-based approach for solving the reachability prob-
lem within bounded steps; their efforts have served as a catalyst for many studies on en-
hancing verification performance (e.g., [5][9][18][20][22][23][24][25]). In BMC, an ini-
tial state and a transition relation are transformed into SAT formulae. At each iteration, a 
copy of the transition relation (expressed in the following state variables) is added, and an 
efficient SAT solver is used to iteratively solve the expanding formulae. 

We apply BMC techniques to region automata to make feasible the explicit implemen-
tation of regions. Göllü et al. [11] have proposed discretizations of dense time automata 
and have shown that a discrete time trajectory traverses the same timer region sequence as 
its corresponding dense time trajectory. This provides us with a sound base. In this project 
we not only characterize regions as combinations of discrete interpretations, but also 
precisely encode these interpretations’ settings as Boolean formulae. To eliminate 
discretization side effects such as those induced in Göllü et al., we suggest using an 
exceptional successor formula that prevents timing behavior distortions. 

We prove that solving these Boolean formulae’s satisfiability is the equivalent of solv-
ing the forward reachability problem of dense-time systems. We attempt to incorporate 
these ideas into our xBMC, a bounded model checker that cooperates with zChaff [19], an 
efficient SAT solver. Our experimental results support that xBMC is more scalable for 
bug hunting than both traditional (Kronos [8], Uppaal [16], and Red [26]) and bounded 
(SAL [21]) model checkers by being able to verify Fischer’s protocol up to 22 processes, 
followed by Red with 15 processes. 

The rest of this paper is structured as follows. In Section 2 we briefly describe time 
automata with both discrete and clock variables. In Section 3 we provide details about our 
novel method that uses discrete interpretation formulae to encode exact behaviors of re-
gion automata. An explanation of the Boolean encoding of discrete interpretation formu-
lae is given in Section 4. A reachability analysis is given in Section 5, and experimental 
results are summarized in Section 6. After discussing related works in Section 7, we offer 
our conclusions in Section 8. 

2   Timed Automata 

A timed automaton (TA) [1][2] is an automaton together with a finite set of clock vari-
ables. Its behavior consists of a) alternating discrete transitions that are constrained by 
guarded conditions among discrete and clock variables and b) time passages in which the 
automaton remains in one state while clock values increase at a uniform rate. To represent 
these behaviors using discrete interpretations, we define a TA that considers both discrete 
and clock variables, rather than one that only considers the discrete parts as locations. 



2.1 Constraint and Interpretations 

For a set D of discrete variables and a set X of clock variables, set ( ),D XΦ  of both con-
straints ϕ  is defined by the grammar : | | | | 1 2ff d q x cϕ ϕ ϕ ϕ= = ¬ ∨� , where d D∈  and 

( )q dom d∈ , x X∈ , { ,  , =}∈ < ≤� , and c N∈  is a natural number. Typical short forms are 

( ) ( )( ), 1 2 1 2tt ff ϕ ϕ ϕ ϕ≡ ¬ ∧ ≡ ¬ ¬ ∨ ¬  and 1 2 1 2ϕ ϕ ϕ ϕ→ ≡ ¬ ∨ .  
A discrete interpretation s assigns to each discrete variable a non-negative integer that 

represents one value from its predefined domain (i.e., :s D N6 ). A clock interpretation 
v  assigns a non-negative real value to each clock (i.e., :v X R+6 ). We say that an inter-
pretation pair ( ),s v  for D X∪  satisfies constraint ϕ  over D X∪  if and only if ϕ  is 
evaluated as being true according to the values given by ( ),s v .  

2.2   Time Automata 

 A TA is a tuple of , , , ,D X A I E , where  
1) D is a finite set of discrete variables, with each d D∈  having a predefined finite 

domain denoted by ( )dom d , 
2) X is a finite set of clock variables, 
3) A is an action set, which is a finite set of  discrete variable assignments, 
4) I specifies an initial condition, and 
5) ( ), 2XE D X A∗⊆ Φ × × is a set of edges. An edge , ,aϕ λ  represents a transition, with 

ϕ  acting as a triggering condition of ( ),D XΦ  that specifies where and when the 

transition can be fired. a A∗∈  is an action sequence that performs a series of discrete 
variable assignments. Xλ ⊆  is a set of clocks that are reset when the transition fires. 

For some action a A∗∈ , s[a] denotes the discrete interpretation after applying a to s. 
For δ∈R+, v δ+ denotes a clock interpretation that maps each clock x to the value ( )v x δ+ . 
For Xλ ⊆ , [ : 0]v λ = denotes the clock interpretation that assigns 0 to each x λ∈  and that 
agrees with v  over the rest of the clocks.  

The semantics of a TA is a transition system ,Q → , where Q  is the set of states and 
→  is the transition relation. A state of a TA is a pair ( ),s v  such that s is a discrete inter-
pretation of D  and v is a clock interpretation of X. A state ( ),s v , where s maps discrete 
variables to values that satisfy I and ( ) 0v x =  for all x X∈ , is an initial state of a TA . 
There are two types of → : 
1) For a state ( ),s v  and an increment Rδ +∈ , ( ) ( ), ,s v s v δδ→ + . 
2) For a state ( ),s v  and an edge , ,ϕ τ λ< >  such that ( ),s v satisfies ϕ , 

( ) ( ), , : 0s v s ve τ λ→ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .  

A run r of a TA is an infinite sequence of states and transitions 
( ) ( ), ,0 0 1 1r s v s v= → →" , where for all ( ), ,i N s v Qi i∈ ∈ . An arbitrary interleaving of the 



two transition types is permissible. ( ),Run s v  denotes a set of runs starting at ( , )s v Q∈ . A 
state ( ', ')s v  is reachable from ( ),s v  if it belongs to some run starting at ( ),s v . We define 

( ),Reach s v , where ( ) ( ) ( ) ( ) ( ) ( ){ }, ', ' | , , , . , ', '0 0Reach s v s v r s v Run s v i N s v s vi i= ∃ = → ∈ ∃ ∈ =" , 

to be the set of states reachable from ( ),s v . 

3 Discrete Interpretations of Region Automata 

In this section we give a brief description of region automata based on [1][2], and then 
propose a robust encoding method using discrete interpretations. 

3.1 Paired Interpretations of Equivalent Classes 

System states change as time progresses, but some changed states are not distinguished by 
constraints. Based on this observation, Alur et al. [1] defined clock interpretation equiva-
lence and proposed the use of region graphs for the verification of timed automata. For 
each x X∈ , let cx  be the largest constant that x is compared to within any triggering 
condition. For t∈R+, let t⎢ ⎥⎣ ⎦  denote t’s integral part and ( )frac t  denote t’s fraction, which 
equals t t− ⎢ ⎥⎣ ⎦ . A formal definition of clock interpretation equivalence is given as: 

Definition 1. For clock interpretations v  and 'v  in a TA, 'v v≅ if and only if 
1) For each clock x X∈ , either ( )v x⎢ ⎥⎣ ⎦  and ( )'v x⎢ ⎥⎣ ⎦  are the same, or ( )v x  and ( )'v x  

are both greater than cx . 
2) For each pair of clocks, ,x y X∈  such that ( )v x cx≤  and ( )v y cy≤ , 

( )( ) ( )( )frac v x frac v y≤  if and only if ( )( ) ( )( )' 'frac v x frac v y≤  , and ( )( ) 0frac v x =  if 

and only if ( )( )' 0frac v x = . 

We represent the set of clock assignments belonging to an equivalent class as a pair of 
discrete interpretations vd and vγ , respectively mapping integral parts of clock assign-
ments and fraction pair orderings. Given an equivalent class [ ]v , integral parts of the 
clock assignments stand for the discrete interpretation vd  in (1), which maps each 
clock x X∈ , where ( )v x t= , into an integer representing an interval from 

( ){[0,0],(0,1),[1,1], , 1, ,[ , ],( )},c c c c cx x x x x− ∞" . 

( )
2 ,  if ( ) 0

2 1,  if ( ) 0
2 1,  otherwise

t t c frac tx
v x t t c frac td x

c x

⎧ ≤ ∧ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪
= + ≤ ∧ ≠⎢ ⎥ ⎢ ⎥⎨ ⎣ ⎦ ⎣ ⎦
⎪ +⎩

 
(1)  

We say ( )v x  falls into a singular interval when ( )v xd  is even and into an open interval  
when ( )v xd  is odd; in addition, ( )v x  falls into a maximal interval when ( )v xd  is 2 1cx + . 

Given a discrete interpretation vd , let ( )O v Xd ⊆  denote the set of clocks whose values 



are both odd and less than 2 1cx + . Then, the discrete interpretation vγ  in (2) maps each 

clock pair ( ),x y , where ( ),x y O vd∈ and x y< , into a relation from { , , }≈≺ ; , which 
stands for pair orderings of fractions of an equivalent class [ ]v . 

( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

,  if 

, ,  if 

,  if 

frac v x frac v y

v x y frac v x frac v y

frac v x frac v y

γ

⎧ <
⎪
⎪= >⎨
⎪
≈ =⎪⎩

≺

;  

(2) 

A pair ( ),v vd γ  denotes a clock assignment v  such that vd  and vγ  follow (1) and (2), 

respectively. For example, an equivalent class ( )1 2 1x y z< < < ∧ =  is represented by the 

pair ( ),v vd γ , where ( ) ( ) ( ) ( )3 3 2 ,v x v y v z v x yd d d γ= ∧ = ∧ = ∧ =≺ . The equivalence of two 

discrete interpretation pairs is defined as: 

Definition 2. Two pairs of interpretations are equivalent (denoted as ( ) ( ), ' , 'v v v vd dγ γ≅ ) 

if and only if the following conditions hold. 
1) For each clock x X∈ , ( ) ( )'v x v xd d= .  

2) For each pair (x,y), where ( ),  and x y O v x yd∈ < , ( ) ( ), ' ,v x y v x yγ γ= . 

Note that the first condition implies that ( ) ( )'O v O vd d= .  

Lemma 1. ( ) ( )' , ' , 'v v v v v vd dγ γ≅ ↔ ≅ . 

Proof: (⇒) For the first condition of Definition 2, if each clock x X∈ , while ( )v x  and 

( )'v x  are both greater than cx , ( ) ( )' 2 1v x v x cd d x= = + ; if ( )v x⎢ ⎥⎣ ⎦  and ( )'v x⎢ ⎥⎣ ⎦  are the 

same, since ( )( ) 0frac v x =  if and only if ( )( )' 0frac v x = , 

( ) ( ) ( ) ( )' 2  or 2 1v x v x v x v xd d ⎢ ⎥ ⎢ ⎥= = +⎣ ⎦ ⎣ ⎦ . To prove the second condition of Definition 2, it 

is crucial to note that a) ( )( ) ( )( ) ( )( ) ( )( )( )frac v x frac v y frac v y frac v x≤ ∧ ≤ ( ),v x yγ↔ =≈ ,  

b) ( )( ) ( )( ) ( )( ) ( )( )( )( )frac v x frac v y frac v y frac v x≤ ∧¬ ≤ ( ),v x yγ↔ =≺  , and c) 

( )( ) ( )( )( ) ( )( ) ( )( )( )frac v x frac v y frac v y frac v x¬ ≤ ∧ ≤ ( ),v x yγ↔ =; . Since for each pair 

of clocks, where ( ),  and x y O v x yd∈ < , ( )( ) ( )( )frac v x frac v y≤  if and only if 

( )( ) ( )( )' 'frac v x frac v y≤ , it follows that ( ) ( ), ' ,v x y v x yγ γ= . (⇐)  The proof follows in a 

similar way. ▌ 
As shown in Lemma 1, sets constrained by equivalent discrete interpretation pairs are 

in the same equivalent class, and each equivalent class is represented by an equivalent 
discrete interpretation pair. Accordingly, a region ( ),s v⎡ ⎤⎣ ⎦  can be precisely represented as 

a tuple ( ), ,s v vd γ , where three discrete interpretations : , :s D N v X Nd6 6 , and 

{ }: , ,v X Xγ × ≈6 ≺ ;  are involved. 



3.2 Successor 

A successor relation that captures a region moving into a subsequent region due to time 
passage is defined as: 

Definition 3. Let ,α β  be two distinct regions of a TA. β  is the successor of α , written 

as ( )succ α β= , if and only if for each v α∈ , there exists a positive Rδ +∈  such that a) 
v δ β+ ∈ , and b) '  for all 'v δ α β δ δ+ ∈ ∪ < . 

A  region α  is said to be out of bounds if and only if for each ( ) and ,v x X v x cxα∈ ∈ > . 
For an out-of-bound region α , its successor relation is defined as ( )succ α α= . Given a 
TA with { , }X x y= , regions can be separated into nine types according to x and y evalua-
tions: point ( )• , slash ( )╱ , vertical line ( )▏, horizontal line ( )╴ , triangle ( )◢ , back trian-

gle ( )◤ , vertical rectangle ( )▋ , horizontal rectangle ( )▅  and square ( )■ . Respective 

discrete interpretation conditions and successor relations of these are shown in Table 1. 
  
Table 1. Successor conditions in the two-clock system. 

I 
'

type
type

 i
i

ψ
ψ ′

 

1 •
╱■

 ( ) ( )
( ) ( ) ( ) ( ) ( )

 is  and  is 
' 1, ' 1, ' ,

v x even v y evend d
v x v x v y v y v x yd d d d γ= + = + =≈

 

2 ▏

◤▋▅■
 ( ) ( )

( ) ( ) ( ) ( ) ( )
 is  and  is 

' 1, ' , ' ,
v x even v y oddd d

v x v x v y v y v x yd d d d γ= + = =≺
 

3 ╴

◢▋▅■
 ( ) ( )

( ) ( ) ( ) ( ) ( )
 is  and  is 

' , ' 1, ' ,
v x odd v y evend d

v x v x v y v y v x yd d d d γ= = + =;
 

4 ◢

▏
 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
 is , 2 1,  is , 2 1, ,

' 1, '

v x odd v x c v y odd v y c v x yd d x d d y
v x v x v y v yd d d d

γ< + < + =

= + =

;

5 ◤

╴
 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
 is , 2 1,  is , 2 1, ,

' , ' 1

v x odd v x c v y odd v y c v x yd d x d d y
v x v x v y v yd d d d

γ< + < + =

= = +

≺

6 
•
╱  ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
 is , 2 1,  is , 2 1, ,

' 1, ' 1

v x odd v x c v y odd v y c v x yd d x d d y
v x v x v y v yd d d d

γ< + < + =≈

= + = +

7 ▋

▏
 ( ) ( ) ( )

( ) ( ) ( ) ( )
 is , 2 1, 2 1

' 1, '

v x odd v x c v y cd d x d y
v x v x v y v yd d d d

< + = +

= + =
 

8 ▅

╴
 ( ) ( ) ( )

( ) ( ) ( ) ( )
=2c +1,  is , 2 1x
' , ' 1

v x v y odd v y cd d d y
v x v x v y v yd d d d

= +

= = +
 

9 ■

■
 ( ) ( )

( ) ( ) ( ) ( )
=2 +1 and =2 +1

' , '

v x c v y cd x d y
v x v x v y v yd d d d= =

 



Accordingly, it is possible to define a formula for the two-clock successor ,x yφ  in (3) 
using the conditions of current and succeeding discrete interpretations (see Table 1). 
Lemma 2 shows the correctness of encoding a two-clock successor as ,x yφ . 

, 1 9x y i
φ ≡

≤ ≤∨ i iψ ψ ′∧  (3) 

Lemma 2. Given a two-clock TA and a regionα  represented by ( ), ,s v vd γ , ( )succ α  is 

represented by ( ), ' , 's v vd γ  if and only if ,x yφ  is evaluated as true according to the values 

given by ( ), , ' , 'v v v vd dγ γ . 

Proof Sketch: The correctness of this insight is shown by the conditions in Table 1. All 
possible cases are considered, since 1 9i iψ≤ ≤∨ is true. Since , i ji j ψ ψ∀ ≠ ∧  is false, each 
case presents a unique type. Finally, in all cases the condition of the current equivalent 
class and its successor is specified by 'i iψ ψ∧ .▌ 

In order to generalize ,x yφ  into multi-clock systems, instead of inspecting all clock 

values each time, the entire consensus is derived by intersecting two-clock formulae. Our 
initial attempt detailed intersecting the ,x yφ of each distinct clock pair, but this raises 

contradictions. For example, given a region 1 2 1x y z< < < ∧ =  represented by 
( ) ( ) ( ) ( )3 3 2 ,v x v y v z v x yd d d γ= ∧ = ∧ = ∧ =≺ , the conjunction of ,x yφ  for each distinct 

clock pair implies  

 

( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

' 3 ' 4

' 3 ' 3 ' ,

' 3 ' 3 ' ,

v x v yd d

v x v z v x zd d

v y v z v y zd d

γ

γ

= ∧ =

∧ = ∧ = ∧ =

∧ = ∧ = ∧ =

;

;

 

, which is contradictory because ( ) ( )' 3 ' 4v y v yd d= ∧ = . The contradiction occurs be-
cause y needs to increase when compared to x, but needs to remain the same value when 
compared to z. To prevent contradiction, we make the following observations. Contradic-
tions arise from clocks falling into open (but not maximal) intervals. Clocks that have 
even values must increase. If none are found, clocks having the largest fraction of all 
clocks must increase. Based on these observations, we add an auxiliary case in which 
clocks that might produce contradictions are allowed to stutter.  

 
Table 2. Stuttering condition. 

'
type
type

 s
s

ψ
ψ ′

 

◢╱◤▋▅

◢╱◤▋▅
 ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
 is ,  is , 2 1 2 1

' , ' , ' , ,

v x odd v y odd v x c v y cd d d x d y
v x v x v y v y v x y v x yd d d d γ γ

< + ∨ < +

= = =
 

After the addition, the stuttering two-clock formula is ,
s
x yφ in (4).  



( ), ,
s
x y x y s sφ φ ψ ψ ′= ∨ ∧  (4) 

For the same example, given a region 1 2 1x y z< < < ∧ = , the conjunction of ,
s
x yφ  for 

each distinct clock pair implies that 

( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

' 3 ' 4 ' 3 ' 3 ' ,

' 3 ' 3 ' ,

' 3 ' 3 ' ,

v x v y v x v y v x yd d d d

v x v z v x zd d

v y v z v y zd d

γ

γ

γ

= ∧ = ∨ = ∧ = ∧ =

∧ = ∧ = ∧ =

∧ = ∧ = ∧ =

≺

;

;
.

 

This is equal to ( ) ( ) ( ) ( ) ( ) ( )' 3 ' 3 ' 3 ' , ' , ' ,v x v y v z v x y v x z v y zd d d γ γ γ= ∧ = ∧ = ∧ = ∧ = ∧ =≺ ; ; , 

a precise representation of the successor, 1 2z x y< < < < . However, while all of these 
clocks have odd values (i.e., falling in an open interval), auxiliary stuttering may incur 
distorted timing behavior in which all clocks refuse to increase. This can be prevented by 
adding a negation clause of all clocks stuttering. The successor condition for general cases 
is: 

,, , , ,
s
x y s sx y X x y x y X x y

φ φ ψ ψ⎛ ⎞′≡ ∧ ¬ ∧⎜ ⎟∈ < ∈ <⎝ ⎠∧ ∧
 

(5) 

 
Lemma 3. Given a TA and a region α represented by ( ), ,s v vd γ , ( )succ α is represented 

by ( ), ' , 's v vd γ  if and only if φ is evaluated to true according to the values given 

by ( ), , ' , 'v v v vd dγ γ . 

Proof sketch: (⇒) It is easy to see that ( )succ α implies that, for each pair of clocks, ,
s
x yφ  

is evaluated to true (according to Lemma 2), and not all stuttering cases are allowed (ac-
cording to Definition 3). (⇐) Let ( ) ( ) ( ){ }| , ' 1 or 2 1x x X v x v x v x cd d d xχ = ∈ = + = + . If φ is 

evaluated to true according to the values given by ( ), , ' , 'v v v vd dγ γ , there exists at least one 

pair of clocks such that ,x yφ  is evaluated to true, which implies that χ  is not empty. If 

( ), 2 1x v x cd xχ∀ ∈ = + , then ( )succ α α= . If ( ), 2 1x v x cd xχ∃ ∈ < + , in the following, we 
prove that all cases satisfy Definition 3.  
a) If ( ),x v xdχ∃ ∈  is even, then ( ),x v xdχ∀ ∈  is even. It can be seen as follows. Assume 
that there exists y χ∈  and that ( )v yd is odd. Then there exists some clock x such that 

( )v xd  is even and ,
s
x yφ  is false, which implies that φ  cannot be evaluated to true. If   

( ),  x v xdχ∀ ∈  is even, then for each ( ),v v vd γ∈ , there exists a positive Rδ +∈  such that i) 

( )' , 'v v vdδ γ+ ∈  and ii) ( ) ( )' , ' , 'v v v v vd dδ γ γ+ ∈ ∪  for all 'δ δ< .  

b) If ( ),x v xdχ∀ ∈  is odd, then x χ∀ ∈ , x has the largest fraction part. It can be seen as 
follows. Assume that there exists and that y yχ∈  has a not-largest fraction part. Then 



there exists some clock x such that x has a larger fraction part than y and ,
s
x yφ  is false, 

which implies that φ  cannot be evaluated to true. If x χ∀ ∈ , x has the largest fraction part, 

then for each ( ),v v vd γ∈ , there exists a positive Rδ +∈  such that ( )' , 'v v vdδ γ+ ∈ , and 

( ) ( )' , ' , 'v v v v vd dδ γ γ+ ∈ ∪  for all 'δ δ< .▌ 

3.3 Discrete Transitions 

In this sub-section, we describe how to trigger an edge using discrete interpretations. 
Since we use discrete intervals to represent clock values, the first step here is to transform 
ϕ  into a discrete constraint (denoted as ( )Dis ϕ ) by replacing all clock constraints x c�  

with ( ) 2v x cd � .  The set ( ),d D XΦ  of discrete constraints ( )Dis ϕ  is defined by the 
grammar ( ) ( ) ( ) ( ) ( ): | | 2 | | 1 2Dis ff d q v x c Dis Dis Disdϕ ϕ ϕ ϕ= = ¬ ∨� . 

Actions of transitions include a) applying an assignment sequence τ  (denoted as [ ]s τ ), 
and b) resetting a set of clocks λ  (denote as : 0v λ =⎡ ⎤⎣ ⎦ ). Let : 0vd λ =⎡ ⎤⎣ ⎦  denote the discrete 
interpretation for X that a) assigns 0 to each x λ∈  and b) agrees with vd  over the rest of 
the clocks. Since the domain of vγ depends on ( )O vd , we remove the reset clocks from 

vγ . Let ( )v O vdγ ⎡ ⎤⎣ ⎦ denote the discrete interpretation that a) agrees with vγ  over the pair 

( ) ( ), ,  where both ,x y x y O vd∈ , and b) discards other pairs. Given an edge , ,ϕ τ λ , the 
transition condition over discrete interpretations is defined as:

 

 

( ) ( )' ' : 0 ' 'T Dis s s v v v v O vtran d d dϕ τ λ γ γ ⎡ ⎤≡ ∧ = ∧ = = ∧ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (6) 

Lemma 4. Given a TA and two states ( ),s v  and ( )', 's v , ( ) ( ), ', 's v s ve→  if and only if 

Ttran  is evaluated to true according to values given by ( ), , , ', ' , 's v v s v vd dγ γ , where 

( ),v vd γ  represents  [v] and ( )' , 'v vd γ  represents [ ']v . 

3.4 Transition Systems 

A TA’s transition system is represented by a finite discrete interpretation graph ,Q →≅ ≅ , 
where Q≅  is the set of interpretation states and →≅ is the interpretation transition rela-

tion. An interpretation state ( ), ,s v vd γ  is a triple of discrete interpretations. There are two 

types of→≅ : 

1) For a state ( ), ,s v vd γ , ( ) ( ), , , ' , 's v v s v vd dδγ γ→≅ , such that Ttime  in (7) is evaluated 

to true according to the values given by ( ), , , ', ' , 's v v s v vd dγ γ . 

2) For a state ( ), ,s v vd γ  and an edge , ,ϕ τ λ , ( ) ( ), , ', ' , '
e

s v v s v vd dγ γ→≅ , such that 

Ttran  is evaluated to true according to the values given by ( ), , , ', ' , 's v v s v vd dγ γ . 



( )'T s stime φ≡ = ∧  (7) 

T T Ttran time≡ ∨  (8) 

A step condition T  of →≅  in (8) is the disjunction of (6) and (7). We define the steps 
and reachable states of a discrete interpretation graph in Definition 4.  

Definition 4. T We say ( ), ,s v vd γ  can reach ( )', ' , 's v vd γ  in one step, denoted as 

( ) ( ), , ', ' , 's v v s v vd dγ γ→≅ , if and only if T  is evaluated to true according to values given 

by ( ), , , ', ' , 's v v s v vd dγ γ . We define ( ), ,Reach s v vd γ  to be the set of interpretation states 

reachable from ( ), ,s v vd γ . 

( ) ( ) ( ) ( ){ }, , ', ' , ' | , , ', ' , 'Reach s v v s v v s v v s v vd d d dγ γ γ γ
∗= →≅  

, where ∗→≅ is the reflexive and transitive closure of →≅ . 
The reachability problem of dense-time systems (e.g., whether one state ( )', 's v  is 

reachable from another state ( ),s v ) can then be solved by following Lemma 5.  
T 

Lemma 5. Given a TA and two states ( ),s v  and ( )', 's v , ( ) ( )', ' ,s v Reach s v∈  if and only if 

( ) ( )', ' , ' , ,s v v Reach s v vd dγ γ∈ . 

Since regions are finite, we can perform complete reachability analysis by solving 
bounded reachability problems (detailed in Section 5).  

4. Boolean Encoding 

Before delving into the reachability analysis, we first describe here how we encode dis-
crete interpretation formulae as CNF Boolean ones. 

4.1 State Variables 

The definition of our state variables B  is given in (9), in which a set of bit vectors is used 
to encode an interpretation state. Given each discrete variable’s domain and each clock’s 
largest constraint value, B is ( ) ( )lg lg 2 2 1dom d c X Xd D x X x⎡ ⎤ ⎡ ⎤∑ + ∑ + + −∈ ∈ ⎢ ⎥⎢ ⎥ . To 

perform bounded model checking, we add a copy of Bi  to the set of state variables at the 
ith iteration.  

( ){ } ( ){ }
{ }

| ,0 lg | ,0 lg 2 2

      | , , , 0 or 1

k kB b d D k dom d b x X k cx xd

kb x y X x y kxy

⎡ ⎤ ⎡ ⎤= ∈ ≤ ≤ ∈ ≤ ≤ +⎢ ⎥⎢ ⎥

∈ < =

∪

∪  

(9) 



4.2 Discrete Interpretation Encoding 

Using state variables B, an interpretation state ( ), ,s v vd γ  is encoded into a Boolean for-

mula ( )Bβ , where ( )Bβ  is the conjunction of discrete, interval and relation sub-formulae 
given in (10). Following standard bit encoding, sub-formulae are built with regard to their 
individual discrete interpretations. Note that an even-valued clock x (the 0th bit is zero) 
will be encoded with 0bx¬ , making it possible to encode a condition such as “vd(x) is 
even” using one literal. This characteristic significantly reduces the complexity in solving 
the successor formulae described in Section 3.2.  

( ) ( )
( )

( )

( )

,  if the th bit of the value of  is 1

,0 lg ,  otherwise

,  if the th bit of the value of  is 1
,0 lg 2 2 ,  otherwise

1

, ,

      

      

x

d

kb k s ddB
d D k dom d kbd

kb k v xx d
x X k c kbx

b bxy

x y O v x y

β
⎧
⎪= ⎨⎡ ⎤∈ ≤ ≤ ⎪⎢ ⎥ ¬⎩

⎧⎪
⎨⎡ ⎤∈ ≤ ≤ +⎢ ⎥ ⎪ ¬⎩

¬

∈ <

∧

∧

∧

∧
( )

( )

( )

0 ,  if ,

1 0 ,  if ,

1 0 ,  if ,

v x yxy

b b v x yxy xy

b b v x yxy xy

γ

γ

γ

⎧ =⎪
⎪

¬ =⎨
⎪
⎪ =≈⎩

≺

;∧

∧

 

(10) 

4.3 Formula Encoding 

We reserve our Boolean state variables using a bit-vector. The translation of a bit-
vector logic (used to build the equation for a concrete transition relation) into conjunctive 
normal form (CNF) is straight forward: we build a circuit representation and then trans-
late it into CNF. 

5. Reachability Analysis  

In this section, we describe how we deal with the reachability problem by iteratively solv-
ing the satisfiability of an expanding Boolean formula. We also prove that our procedure 
provides a sound and complete solution when we reach a big enough bound. Let 

( ), ,Reach s v vk d γ  denote the set of states reachable from ( ), ,s v vd γ  by unfolding exactly k 

steps. Lemma 6 proves that all regions of a given TA can be reached within constant steps.  

Lemma 6. Given a TA having n regions, ( ) ( )', ' , ' , ,s v v Reach s v vd k dγ γ∈  and k n> implies 

the existence of some 'k k<  such that ( ) ( )', ' , ' , ,'s v v Reach s v vd k dγ γ∈ . 

Proof: If ( ) ( )', ' , ' , ,s v v Reach s v vd k dγ γ∈  and k>n, then there exists some region that was 

reached more than once. Assume we reached the region in the ith and the jth steps, we can 



derive a new path by removing steps i+1 to j. This implies the existence of some k k′ <  
such that ( ) ( )', ' , ' , ,'s v v Reach s v vd k dγ γ∈ .▌ 

Let ( )T i  denote T in (8) over state variables Bi  and 1Bi+ , and ( ), ,d
is v vγβ  denote 

( )Bβ  in (10) according to the interpretation state ( ), ,s v vd γ  over state variables Bi . 

Lemma 7 shows that the bounded reachability problem is equivalent to the satisfiability 
problem.  

Lemma 7. ( ) ( )', ' , ' , ,s v v Reach s v vd k dγ γ∈ if and only if 

( ) ( ) ( ) ( )( )0 0 1, , , ,d d
SAT T T k ks v v s v vγ γ

β β∧ ∧ ∧ − ∧ ′ ′ ′" . 

Given an initial condition, a risk condition, a transition condition and an integer bound, 
we iteratively solve the bounded reachability problem by calling the SAT solver for 
bounded forward reachability analyses. We unfold the interpretation transition relation 
until the SAT solver returns a truth assignment or reaches the bound. Let I(i) and R(i) 
respectively denote the CNF formulae of the given initial and risk conditions over Bi . 
The implementation of BoundedFwdReach()T is given in Fig. 1. By conjoining the 
formula with the negation clause of the risk condition, each iteration’s result is saved for 
use in later iterations  

BoundedFwdReach(I, R, T, MaxBound) 
  var i: 0.. MaxBound;  
begin 
    k := 0; F := I(i); 
    loop forever 
      if(SAT(F∧R(i)))return reachable; 
      if(i=MaxBound)return unreachable within MaxBound; 
      F := F∧¬R(i)∧T(i); 
      i := i+1; 
end. 

Fig. 1. BoundedFwdReach() implementation.  

Theorem. Given a TA having n regions, TBoundedFwdReach()T is sound and complete 
when MaxBound n≥ . 

If the risk state is reachable, the formula will be satisfied at some step, and a truth as-
signment will be returned by zChaff. The procedure will then terminate and generate a 
counterexample. The formula will keep on expanding if a risk state is not reached. There-
fore, if the risk state is unreachable, the procedure terminates when either MaxBound is 
reached or memory is exhausted. Given a TA having n regions, the final formula will 
contain n B  branching variables. Since n is exponential to both a) the number of clocks 
and b) each clock’s largest constant, the threshold is usually prohibitively expensive.  



6. Experimental Results 

xBMC 2.0 is written in C and makes use of zChaff [19]. Experiments were run against 
Fischer’s mutual exclusion protocol, which consists of n timed automata with each 
automaton modeling an individual process (Fig 2). Mutual exclusion property was con-
sidered violated when A<B. The largest constraint for the local clock of each process was 
adjusted by increasing the value of B and keeping A=1. 

We compare our model checker with Kronos [8], Uppaal [16], Red [26] and SAL 2 
(infBMC) [21]. The first three tools support full TCTL verification of timed systems, but 
use different data structures for system state representation. Kronos and Uppaal use 
DBMs (Difference Bounded Matrices) [15], while Red uses CRDs (Clock Restriction 
Diagrams) [26]. infBMC is a bounded model checker included in SAL 2 [21], a suit of 
tools developed by the SRI’s Symbolic Analysis Laboratory for analyzing state machines. 
infBMC supports verification of infinite state systems using a special decision procedure 
[20] that solves the satisfiability of combinations of real and integer linear arithmetic.  

 

Fig. 2. Each process in Fischer’s protocol has one local clock x and one discrete variable l (denoting location), 
where dom(l)={idle, ready, waiting, critical}. Processes can access the global pointer lock (e.g., assigning the 
pointer to itself [lock:=P]). Initially, all processes are in idle and lock points to none of them.  

Table 3. Process number impact on each tool’s performance when checking mutual exclusion violations of 
Fischer’s protocol. “O/M” indicates that the model checker ran out of memory. All experiments were performed 
on a Pentium IV 1.7 GHz computer with 256MB of RAM running the Linux operating system. 

 Kronos 2.5.2 Uppaal 3.5.1 Red 5.0 SAL 2.1 ( infBMC ) xBMC 2.0 

# B=2 B=4000 B=2 B=4000 B=2 B=4000 B=2 B=4000 B=2 B=4000
4 0.12s 0.11s 0.03s 0.02s 0.57s 0.56s 86.98s 95.45s 3.28s 20.31s 
5 0.52s O/M 0.03s 0.04s 1.95s 1.95s 420.98s 275.82s 10.49s 37.32s 
6 O/M  0.06s 0.06s 5.70s 4.82s O/M O/M 14.66s 47.63s 
7   0.16s 0.17s 14.47s 12.90s 16.83s 47.04s 
9  1.17s 1.21s 75.5s 74.31s 46.90s 91.35s 

11  5.08s 9.35s 321.04s 353.61s 129.46s 200.84s 
13  12.21s O/M 1129.18s 1345.08s 111.59s 447.39s 
14  O/M  2005.23s 2471.07s 237.89s O/M 
15    4234.41s 4238.34s 531.73s  
16   O/M O/M 453.83s  
17   414.29s  
19   528.66s  
21   641.27s  
22   587.01s  
23 

 

 

 

 O/M  

 
Performance results are shown in Table 3. All verification processes that did not crash 

reached a violated state. When B=2, Kronos failed to construct the product automaton of 

x<B; 
lock:=P, x:=0 lock:=null 

lock=P∧ x>A; 

lock!=P; 

lock=null; 
x:=0 idle 

criti-
cal 

ready

wait-
ing 



the system while verifying 6 processes. Uppaal ran efficiently until the number of proc-
esses reached 14. Red demonstrated an exceptional data sharing capability and outper-
formed the other tools in terms of memory utilization and successfully checked 15 proc-
esses. infBMC reported all counterexamples at the 10th iterations, but its internal decision 
procedure crashed while verifying 6 processes. xBMC was capable of reporting all 
counterexamples within 14 iterations and successfully checked 22 processes. When 
B=4000, the increased number of variables limited xBMC to handling up to 13 processes. 
On the other hand, performance among the other tools was not significantly affected by 
increasing values of constraint constants. 

7. Related Work and Discussion 

Due to the many advantages described in Section 1, SAT-based model checking has re-
cently gained considerable favor among software verification researchers. Clarke et al. 
[10] developed a SAT-based bounded model checker for ANSI C, and we used xBMC to 
verify Web application code security in an earlier project [13]. Although both projects 
were successful, neither supported timing behavior modeling.  

The verification of timed automata via satisfiability checking has been the focus of 
several investigations, with most researchers encoding atomic constraint evaluations 
rather than regions themselves. Niebert et al. [22] represented the bounded reachability 
problem in Boolean variables and numerical constraints of Pratt’s difference logic, but 
faced difficulties. The difficulty lay in solving the mixed constraints, which was done by 
their in-house solver. Audemard et al. [5] treated clocks as real variables and reduced 
bounded verification of timed systems to the satisfiability of a math formula with linear 
mathematical relations involving real variables. They demonstrated this approach by im-
plementing a new solver, MATHSAT. They also showed that bounded verification was 
considerably improved by using symmetry reductions. Moura et al. [20] also used real 
variables to represent infinite state systems. In [25], Sorea checked full LTL formulae 
based on predicate abstraction to extend BMC capabilities. Compared to encoding ab-
stract predicates, encoding regions themselves provides at least two advantages—
simplicity and an intrinsic bound. 

The approach closest to ours was described by Penczek, Wozna and Zbrzezny in 
[23][27]. Based on Numerical Decision Diagrams (NDDs) [4], they obtained the set of a 
region’s representatives by dividing each unit interval into 2n segments (n = number of 
clocks). Compared to our method, which encodes an exact region based on fraction order 
and that region’s successor in one step, theirs incurs more discrete time steps. In [27], 
they considerably improved their performance by applying forward projection. According 
to their reported experimental results, our xBMC demonstrated compatible performance 
(in fact, better than their original explicit discretization encoding without applying for-
ward projection) while verifying Fischer’s protocol in similar conditions.  

To our best knowledge on previous works concerning BMC application to timed auto-
mata (based on either discretization or general polyhedra/zones), our approach is the first 
that uses region graphs. One obvious drawback with region graphs is their prohibitive size, 
which grows exponentially with the number of clocks and with each clock’s maximal 
constant. In particular, when applying standard model checking techniques to region 
graphs, verification becomes infeasible even for moderately-sized systems. However, our 



results appear promising and shows that region graph encoding may be feasible in 
practice because: a) using regions (as opposed to general zones/polyhedra) implies simple 
transition relations, and b) SAT-based BMC is applicable to very large systems and is 
efficient when the transition relations are not too complex.  

8. Conclusion and Future Work 

It is well known BMC is more efficient in identifying bugs and verifying systems with a 
large number of program variables. However, it is difficult for BMC to model timing 
behavior. To address this problem, we used a robust method to explicitly encode regions, 
reducing the reachability problems of dense-time systems to satisfiability problems. The 
results of our experiments indicate that even without enhancements (e.g., symmetry re-
duction, forward projection, and abstraction), our region encoding is more efficient in 
verifying timing behavior of large systems when compared with other well-developed 
tools. However, as with all bounded model checkers, xBMC is not as effective as the 
other tools for guaranteeing correctness. Therefore, one of our follow-up works [29] is to 
apply ground decision procedures based on induction to support complete computations 
without threshold requirements.  Other future work includes: a) applying enhancements to 
further improve efficiency, and b) to integrate xBMC with WebSSARI [13] in an effort to 
verify the timing behavior of real-world Web applications. 
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