
Proving ∀µ-Calculus Properties with SAT-based

Model Checking

Bow-Yaw Wang

Institute of Information Science, Academia Sinica
Taipei, Taiwan

Abstract. In this paper, we present a complete bounded model checking
algorithm for the universal fragment of µ-calculus. The new algorithm
checks the completeness of bounded proof of each property on the fly and
does not depend on prior knowledge of the completeness thresholds. The
key is to combine both local and bounded model checking techniques
and use SAT solvers to perform local model checking on finite Kripke
structures. Our proof-theoretic approach works for any property in the
specification logic and is more general than previous work on specific
properties. We report experimental results to compare our algorithm
with the conventional BDD-based algorithm.

1 Introduction

Due to the limitation of BDD-based model checking on large designs, SAT-based
bounded model checking has become a supplementary verification technique in
recent years [1, 2]. Different from model checking [3, 4], bounded model checking
focuses on catching design flaws within a bounded number of steps, and therefore
does not guarantee the design to be free from errors. Naturally, one wonders
whether bounded model checking can be extended to be complete.

There is a bound (called completeness threshold) such that the absence of
flaws within the completeness threshold implies the satisfiability of the prop-
erty [1, 5]. One often uses over-approximations of the completeness threshold in
practice since computing the exact value is hard. But redundant computation in-
curred by approximations may impede the performance. Promising alternatives
are available for checking linear properties, where the completeness of bounded
model checking can also be determined dynamically [6–9]. However, the dynamic
completeness criteria for branching-time properties are still missing.

In this paper, we propose a new framework for proving temporal properties
by bounded model checking. Similar to [6–9], our algorithm determines the com-
pleteness of bounded model checking on the fly to avoid redundant computation.
We use the universal fragment of propositional µ-calculus as the formalism for
property specification. With the standard embedding [10–12], linear- and frag-
ments of branching-time temporal logics are subsumed by our framework. Our
technique therefore opens up opportunities for developing new complete bounded
model checking algorithms.



The key concept is to combine bounded and local model checking techniques.
Local model checking (also known as tableau-based model checking) tries to find
a proof for the property by exploring neighboring states [13–15]. The proof search
in local model checking algorithms is not unlike those of bug hunting in bounded
model checking: a flaw is nothing but a “local” proof of the negation of the given
property. The completeness of the proof rules in local model checking ensures
that a flaw can always be found in finite models, should one exist.

We therefore propose an algorithm that reduces the proof search in local
model checking to Boolean satisfiability. Since the negation of any formula in
the universal fragment of µ-calculus belongs to the existential fragment of µ-
calculus, we look for design flaws by finding proofs for arbitrary formula in the
fragment. For any formula in the fragment, we construct a Boolean formula
for it. The satisfiability of the Boolean formula is shown to be equivalent to the
existence of a bounded proof in local model checking. Additionally, we show that
the unsatisfiability of a similar Boolean formula implies the absence of proofs.
The latter formula allows our algorithm to check the completeness criterion
dynamically. Since the criterion is proof-theoretic, it is valid for all properties
in the specification logic. Our technique gives a proof-theoretic interpretation of
the completeness criteria and is more general than those in [6, 7, 9].

A major advantage of our technique is to verify many more properties by
the use of standard encodings. For instance, ∀CTL [10, 12] and the universal
fragment of Fair CTL [16] can be verified by embedding them into the universal
fragment of µ-calculus. Our framework gives a unified theory of completeness
criteria, which cannot be found in previous works. Additionally, the verification
of linear-time temporal logic can be reduced to checking fairness constraints by
the automata-theoretic technique [11]. Our technique is also applicable for linear
properties.

The remainder of this paper is organized as follows. After discussing related
work in Section 1.1, preliminaries are given in Section 2. Section 3 recalls the local
model checking proof rules. The main technical results are shown in Section 4.
Experimental results are presented in Section 5. Finally, in Section 6, we present
our conclusions and discuss the future work.

1.1 Related Work

The inductive method was originally proposed as a heuristic for proving prop-
erties in bounded model checking. Later, it was improved and made complete
for safety [6, 7] and liveness [17] properties. In the complete inductive method,
if the induction proves the property or the completeness criterion is met, the
algorithm reports that the property is satisfied. Otherwise, it looks for design
flaws within the current bound.

A more direct approach for LTL model checking is reported in [9]. The au-
thors give characterizations for LTL formulae of the form ¬Gp, ¬FG¬p, and
¬Fp. Using the automata-theoretic technique developed in [11], the LTL model
checking problem is reduced to verifying FG¬p and solved in [9]. For special
cases such as Gp and Fp, [9] shows how to verify these properties directly.



State traversal can be simulated by exploiting conflict analysis in SAT solvers
as well [8]. Given two conflicting Boolean formulae A and B, an interpolant P of
A and B is a formula that is implied by A but conflicts with B. If A represents
the initial states and B represents the set of states that violate the property,
their interpolants can be understood as under-approximations of “bad” states.
The interpolation is then combined with bounded model checking to verify linear
temporal properties in [8].

The reduction of proof search in local model checking to satisfiability can
also be found in [18, 19], in which the authors reduce the local model checking
problem to Presburger arithmetic for infinite-state systems. Due to the undecid-
ability of the µ-calculus model checking problem on infinite-state systems, the
completeness of the algorithms in [18, 19] is not the main concern of the authors.
For the invariant and inevitable properties on finite-state systems, the present
work extends and subsumes the complete algorithms in [20].

To the best of our knowledge, estimating the completeness threshold is still re-
quired in order to prove fragments of branching-time temporal logics in bounded
model checking [1]. Ideally, one would like to apply the techniques in [6–9] to de-
velop similar on-the-fly completeness criteria for branching-time temporal logics.
However, the techniques used in [6–9] are based essentially on closely examining
paths of interest. It is unclear whether the approach would work for branching-
time temporal logics. Additionally, our proof-theoretic approach gives general
completeness criteria for fragments of branching-time temporal logics, not only
particular temporal properties.

2 Preliminaries

We use the universal fragment of µ-calculus as the specification logic for temporal
properties [21]. A µ-calculus formula ψ is defined recursively as follows.

– Propositional variables (PV): X,Y, Z, . . .;
– Atomic propositions (AP): p, q, . . .;
– Boolean operators: ¬ψ, ψ ∧ ψ′;
– The modal existential next-state operator: ♦ψ;
– The least fixed-point operator: µX.ψ, where the bound propositional variable
X occurs positively in ψ.

As usual, derived operators such as the disjunctive operator ψ ∨ ψ′ (≡ ¬(¬ψ ∧
¬ψ′)), the modal universal next-state operator �ψ (≡ ¬♦¬ψ) and, the greatest
fixed-point operator νX.ψ (≡ ¬µX.¬ψ[¬X/X ], where ¬ψ[¬X/X ] is obtained
by substituting ¬X for X in ¬ψ) are used. A µ-calculus formula ψ is normal
if all negations only apply to atomic propositions. The universal fragment of
µ-calculus (denoted ∀µ-calculus) formulae are those without modal existential
next-state operators in their normal forms. Similarly, ∃µ-calculus formulae are
those without modal universal next-state operators. By α-conversion, it suffices
to consider µ-calculus formula ψ whose nested bound propositional variables are
distinct.



Let B = {false, true} be the Boolean domain and N the natural numbers
(non-negative integers). A state (denoted by r̄, s̄, t̄, . . .) is a Boolean vector of
size n > 0. Let V be a set of Boolean variables, and ū, v̄, w̄ ∈ V n be vectors of
Boolean variables of size n. Equivalently, we may think of a state as a valuation
[[ū]]ρ for ū, where ρ ∈ V → B is an assignment of Boolean variables. A Kripke
structure is a tuple K = (Bn, I,→, L), where I ⊆ B

n is the set of initial states,
→⊆ B

n × B
n is the total transition relation, and L : B

n → 2AP is the labeling
function that maps each state to the atomic propositions satisfied in that state.
We write s̄→ t̄ for (s̄, t̄) ∈→.

Let ε ∈ PV → 2B
n

be an environment for propositional variables. Given
a propositional variable X and a set of states R, the environment ε[X 7→ R]
assigns X to R, but keeps other propositional variables Y assigned to ε(Y ). The
semantic function [ψ]ε ⊆ B

n for the µ-calculus formula ψ and the environment
ε is defined as follows.

[X ]ε = ε(X)

[p]ε = {s̄ ∈ B
n : p ∈ L(s̄)}

[¬ψ]ε = B
n \ [ψ]ε

[ψ ∧ ψ′]ε = [ψ]ε ∩ [ψ′]ε

[♦ψ]ε = {s̄ ∈ B
n : ∃t̄ ∈ B

n.s̄→ t̄ and t̄ ∈ [ψ]ε}

[µX.ψ]ε =
⋂

{R ⊆ B
n : [ψ](ε[X 7→ R]) ⊆ R}.

The characteristic functions of p, I , and → are denoted by χp, χI , and χ→

respectively. Let ū and ū′ be vectors of Boolean variables representing current
and next states respectively. Then χp(ū) is satisfied by ρ if and only if [[ū]]ρ is
a state satisfying the atomic proposition p. Similarly, χI(ū) is satisfied by an
assignment ρ if and only if the state [[ū]]ρ is an initial state, and χ→(ū, ū′) is
satisfied by ρ if and only if the state [[ū]]ρ is followed by [[ū′]]ρ in K.

Let ψ be a µ-calculus formula, K = (Bn, I,→, L) a Kripke structure and s̄
a state. We write K, s̄ |= ψ if s̄ ∈ [ψ]∅; if K, s̄0 |= ψ for all initial states s̄0 ∈ I ,
we denote it by K |= ψ. The model checking problem is to determine whether
K |= ψ.

In [13–15], several tableau-based µ-calculus model checking algorithms were
developed. The proof rules in [13, 14] were simplified in [22, 15] by extending
fixed point operators to:

σX{r̄0 · · · r̄m}Φ,

where σ can be either of the fixed point operators and r̄0, . . . , r̄m are states. Intu-
itively, r̄0, . . . , r̄m record visited states in the fixed-point formulae. The semantics
of the new operators are defined accordingly:

[µX{r̄0 · · · r̄m}ψ]ε =
⋂

{R ⊆ B
n : [ψ](ε[X 7→ R]) \ {r̄0 · · · r̄m} ⊆ R}

[νX{r̄0 · · · r̄m}ψ]ε =
⋃

{R ⊆ B
n : R ⊆ [ψ](ε[X 7→ R]) ∪ {r̄0 · · · r̄m}} .



The extended µ-calculus uses extended fixed point operators instead. Note that
σX{}ψ ≡ σX.ψ; hence, any µ-calculus formula can be transformed into an
equivalent extended µ-calculus formula syntactically.

3 Proof Rules

Different from global model checking algorithms in [10, 12, 4], the algorithms
developed in [13–15,22] search for a proof for the given µ-calculus property at
an initial state by exploring the Kripke structure locally. It is noted that the
worst-case complexity of the tableau-based algorithms remains the same as the
conventional algorithms [13]. However, the proof-theoretic algorithms would be
more efficient if the property could be proved locally.

Figure 1 shows the proof rules for ∃µ-calculus model checking. Given a Kripke
structure K, a state s̄, and a µ-calculus formula ψ, a judgment is of the form
K, s̄ ` ψ. Given a judgment, a proof is a tree constructed according to the proof
rules in Figure 1. Note that the rules (¬¬), (∨L), (∨R), (¬∨), (∧), (¬∧L), (¬∧R),
(♦), (¬�), (σ-Unroll), and (¬σ-Unroll) reduce the current judgment to one or
more judgments to be justified later. We therefore say a proof is full if all of its
leaves are instances of the rules (AP), (¬AP), (ν-Term), or (¬µ-Term).

Since we are interested in constructing Boolean formulae for ∃µ-calculus in
this work, Figure 1 omits the corresponding rules for the universal modal oper-
ator, which are given in [13–15]. The full proof rules are sound and complete for
finite Kripke structures:

Theorem 1. ([13–15]) Let K = (Bn, I,→, L) be a Kripke structure, s̄ ∈ B
n,

and ψ a µ-calculus formula. Then

K, s̄ ` ψ has a full proof if and only if K, s̄ |= ψ.

4 Proof Search by SAT

To motivate our reduction of proof search to Boolean satisfiability, consider the
safety propertyAGp. Suppose a flaw satisfyingEF¬p(≡ ¬AGp ≡ µX{}¬p∨♦X)
is found in one step. The corresponding Boolean formula generated by one of
the complete inductive methods in [6] is

χI(v̄0) ∧ χ→(v̄0, v̄1) ∧ ¬χp(v̄1) ∧
∧

0≤i<j≤1

v̄i 6= v̄j . (1)

Let the satisfying Boolean assignment be ρ. The following full proof for the
judgment K, [[v̄0]]ρ ` µX{}¬p ∨ ♦X can be constructed by the proof rules in



p ∈ L(s̄)

K, s̄ ` p
(AP)

p 6∈ L(s̄)

K, s̄ ` ¬p
(¬AP)

K, s̄ ` ψ

K, s̄ ` ¬¬ψ
(¬¬)

K, s̄ ` ψ

K, s̄ ` ψ ∨ ψ′
(∨L)

K, s̄ ` ψ′

K, s̄ ` ψ ∨ ψ′
(∨R)

K, s̄ ` ¬ψ K, s̄ ` ¬ψ′

K, s̄ ` ¬(ψ ∨ ψ′)
(¬∨)

K, s̄ ` ψ K, s̄ ` ψ′

K, s̄ ` ψ ∧ ψ′
(∧)

K, s̄ ` ¬ψ

K, s̄ ` ¬(ψ ∧ ψ′)
(¬∧L)

K, s̄ ` ¬ψ′

K, s̄ ` ¬(ψ ∧ ψ′)
(¬∧R)

K, t̄ ` ψ s̄→ t̄

K, s̄ ` ♦ψ
(♦)

K, t̄ ` ¬ψ s̄→ t̄

K, s̄ ` ¬�ψ
(¬�)

s̄ ∈ {r̄0 · · · r̄m}

K, s̄ ` νX{r̄0 · · · r̄m}ψ
(ν-Term)

K, s̄ ` ψ[νX{r̄0 · · · r̄ms̄}ψ/X] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` νX{r̄0 · · · r̄m}ψ
(ν-Unroll)

K, s̄ ` ¬ψ[νX{r̄0 · · · r̄ms̄}ψ/X] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` ¬νX{r̄0 · · · r̄m}ψ
(¬ν-Unroll)

s̄ ∈ {r̄0 · · · r̄m}

K, s̄ ` ¬µX{r̄0 · · · r̄m}ψ
(¬µ-Term)

K, s̄ ` ¬ψ[µX{r̄0 · · · r̄ms̄}ψ/X] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` ¬µX{r̄0 · · · r̄m}ψ
(¬µ-Unroll)

K, s̄ ` ψ[µX{r̄0 · · · r̄ms̄}ψ/X] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` µX{r̄0 · · · r̄m}ψ
(µ-Unroll)

Fig. 1. Proof Rules



Figure 1:

p 6∈ L([[v̄1]]ρ)

K, [[v̄1]]ρ ` ¬p
(¬AP)

K, [[v̄1]]ρ ` ¬p ∨ ♦µX{[[v̄0 ]]ρ[[v̄1]]ρ}¬p ∨ ♦X
(∨L)

[[v̄1]]ρ 6∈ {[[v̄0]]ρ}

K, [[v̄1]]ρ ` µX{[[v̄0 ]]ρ}¬p ∨ ♦X
(µ-Unroll)

[[v̄0]]ρ→ [[v̄1]]ρ

K, [[v̄0]]ρ ` ♦µX{[[v̄0 ]]ρ}¬p ∨ ♦X
(♦)

K, [[v̄0]]ρ ` ¬p ∨ ♦µX{[[v̄0 ]]ρ}¬p ∨ ♦X
(∨R)

K, [[v̄0]]ρ ` µX{}¬p ∨ ♦X
(µ-Unroll)

It is easy to see that the Boolean formula χ→(v̄0, v̄1) in (1) corresponds
to the second antecedent of the rule (♦), and the formula

∧
0≤i<j≤1

v̄i 6= v̄j

to the second antecedent of the rule (µ-Unroll). Finally, the antecedent of rule
(¬AP) is discharged by the satisfiability of ¬χp(v̄1). Roughly, there is a Boolean
subformula for each application of the proof rule (¬AP), (♦), and (µ-Unroll)
respectively. We generalize the idea and construct a Boolean formula for each
rule in Figure 1 so that the satisfiability of the Boolean formula is equivalent to
the existence of subproofs.

A syntactic extension of µ-calculus formulae is needed in the following pre-
sentation. Consider the formula σX{r̄0 · · · r̄m}ψ, where r̄0 · · · r̄m are states. Since
states r̄i’s are denoted by variable vectors v̄i’s to be determined by SAT solvers,
we allow the syntactic extension σX{v̄0 · · · v̄m}ψ in our construction. Formulae
constructed by Boolean operators, modal operators, and the syntactic exten-
sion of fixed point operators are called schematic µ-calculus formulae. If ρ is an
assignment to Boolean variables, define

[[p]]ρ = p

[[X ]]ρ = X

[[¬ϕ]]ρ = ¬[[ϕ]]ρ

[[ϕ ∨ ϕ′]]ρ = [[ϕ]]ρ ∨ [[ϕ′]]ρ

[[ϕ ∧ ϕ′]]ρ = [[ϕ]]ρ ∧ [[ϕ′]]ρ

[[♦ϕ]]ρ = ♦[[ϕ]]ρ

[[�ϕ]]ρ = �[[ϕ]]ρ

[[σX{v̄0 · · · v̄m}ϕ]]ρ = σX{[[v̄0]]ρ · · · [[v̄m]]ρ}[[ϕ]]ρ.

The mapping [[•]]ρ assigns states to variable vectors appearing in a schematic µ-
calculus formula and thereby yielding an extended µ-calculus formula. We say an
extended µ-calculus formula ψ is an instance of a schematic µ-calculus formula
ϕ if there is an assignment ρ such that [[ϕ]]ρ = ψ.

Let K = (Bn, I,→, L) be a Kripke structure, ū ∈ V n and d ∈ N. Figure 2
shows the translation rules to construct a Boolean formula ΘK(ū, ϕ, d) for any
schematic ∃µ-calculus formula ϕ. Intuitively, the vector of Boolean variables
ū corresponds to the current state, ϕ the sub-property to be fulfilled at the
current state, and d the bound of unrolling. The translation ensures that the



ΘK(ū, νX{v̄0 . . . v̄m}ϕ, d) =


(
Vm

k=0
ū 6= v̄k)⇔ ci if d = 0

(
Wm

k=0
ū = v̄k) ∨ΘK(ū, ϕ[νX{v̄0 . . . v̄mū}ϕ/X], d− 1) if d 6= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū,¬νX{v̄0 . . . v̄m}ϕ, d) =


(
Vm

k=0
ū 6= v̄k) ∧ ci if d = 0

(
Vm

k=0
ū 6= v̄k) ∧ΘK(ū,¬ϕ[νX{v̄0 . . . v̄mū}ϕ/X], d− 1) if d 6= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū, µX{v̄0 . . . v̄m}ϕ, d) =


(
Vm

k=0
ū 6= v̄k) ∧ ci if d = 0

(
Vm

k=0
ū 6= v̄k) ∧ΘK(ū, ϕ[µX{v̄0 . . . v̄mū}ϕ/X], d− 1) if d 6= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū,¬µX{v̄0 . . . v̄m}ϕ, d) =


(
Vm

k=0
ū 6= v̄k)⇔ ci if d = 0

(
Wm

k=0
ū = v̄k) ∨ΘK(ū,¬ϕ[µX{v̄0 . . . v̄mū}ϕ/X], d− 1) if d 6= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū, p, d) = χp(ū)

ΘK(ū,¬p, d) = ¬χp(ū)

ΘK(ū,¬¬ϕ, d) = ΘK(ū, ϕ, d)

ΘK(ū, ϕ ∧ ϕ′, d) = ΘK(ū, ϕ, d) ∧ΘK(ū, ϕ′, d)

ΘK(ū,¬(ϕ ∧ ϕ′), d) = ΘK(ū,¬ϕ, d) ∨ΘK(ū,¬ϕ′, d)

ΘK(ū, ϕ ∨ ϕ′, d) = ΘK(ū, ϕ, d) ∨ΘK(ū, ϕ′, d)

ΘK(ū,¬(ϕ ∨ ϕ′), d) = ΘK(ū,¬ϕ, d) ∧ΘK(ū,¬ϕ′, d)

ΘK(ū,♦ϕ, d) = χ→(ū, ū′) ∧ΘK(ū′, ϕ, d)

where ū′ ∈ V n is a vector of fresh Boolean variables

ΘK(ū,¬�ϕ, d) = χ→(ū, ū′) ∧ ΘK(ū′,¬ϕ, d)

where ū′ ∈ V n is a vector of fresh Boolean variables

Fig. 2. Translation Rules



satisfiability of the Boolean formula ΘK(ū, ϕ, d) witnessed by the assignment ρ
is equivalent to the existence of proof for [[ϕ]]ρ at state [[ū]]ρ. For Boolean and
next-state modal operators, consider the rule (¬�) as an example. If there is a
proof for [[¬�ϕ]]ρ at state [[ū]]ρ, then there is a proof for [[¬ϕ]]ρ at state [[ū′]]ρ for
some [[ū′]]ρ with [[ū]]ρ → [[ū′]]ρ. The corresponding Boolean formula is therefore
χ→(ū, ū′) ∧ΘK(ū′,¬ϕ, d). Other rules can be derived similarly.

For proof of correctness, note that the unrolling of fixed-point subformulae
increases the length of a formula. Induction on the lengths of formulae would
not work. The following definition is needed in our doubly-inductive proof:

Definition 1. Let Γ be a full proof. The unrolling depth of a leaf is the number
of unrolling rules applied along the path from the root of Γ to the leaf. The
unrolling depth of Γ is the maximum over the unrolling depths of all leaves.

Since the proof of ¬(ψ ∨ ψ′) is established by the proofs of ¬ψ and ¬ψ′,
naive structural induction is not applicable in the inner induction. Instead, the
following ordering of extended µ-calculus formulae is used:

Definition 2. Let ψ be an extended µ-calculus formula, then define

ω(p) = ω(X) = ω(σX{r̄0 · · · r̄m}ψ) = 0

ω(¬ψ) = ω(♦ψ) = ω(�ψ) = ω(ψ) + 1

ω(ψ ∨ ψ′) = ω(ψ ∧ ψ′) = max(ω(ψ), ω(ψ′)) + 1

Since the function ω(•) can be extended to schematic µ-calculus formulae straight-
forwardly, we abuse the notation and write ω(ϕ) when ϕ is a schematic µ-calculus
formula as well.

Our results can be demonstrated in three steps. First, we consider proofs
without unrolling fixed-point subformulae (Lemma 1 and 2). Using atomic propo-
sitions and fixed-point subformulae as the basis of inner induction, it can be
shown that the existence of proofs is equivalent to the satisfiability of a Boolean
formula (ΩK(ū, ψ, d) in Theorem 2). Finally, the unsatisfiability of another Boolean
formula (ΛK(ū, ψ, d) in Theorem 3) can be shown to imply the absence of proofs.1

Lemma 1. Consider any schematic ∃µ-calculus formula ϕ recursively constructed
by ¬¬ϕ′, ϕ′ ∧ϕ′′,¬(ϕ′ ∧ϕ′′), ϕ′ ∨ϕ′′,¬(ϕ′ ∨ϕ′′),♦ϕ′, or ¬�ϕ′. Let ū ∈ V n be a
vector of Boolean variables and d ∈ N. Suppose

– for all ϕ′ with ω(ϕ′) < ω(ϕ), if ΘK(ū, ϕ′, d) is satisfied by some Boolean
assignment ρ′, then there is a full proof of unrolling depth d for ψ′ = [[ϕ′]]ρ′

at s̄′ = [[ū]]ρ′; and
– ΘK(ū, ϕ, d) is satisfied by some Boolean assignment ρ.

Then, there is a full proof of unrolling depth d for ψ = [[ϕ]]ρ at s̄ = [[ū]]ρ.

1 For the proofs of technical results, please see [23].



Lemma 2. Consider any extended ∃µ-calculus formula ψ recursively constructed
by ¬¬ψ′, ψ′ ∧ ψ′′,¬(ψ′ ∧ ψ′′), ψ′ ∨ ψ′′,¬(ψ′ ∨ ψ′′),♦ψ′, or ¬�ψ′. Let ϕ be a
schematic ∃µ-calculus formula, ū ∈ V n a vector of Boolean variables, and d ∈ N.
Suppose

– ψ is an instance of ϕ;
– for all ψ′ with ω(ψ′) < ω(ψ), if there is a full proof of unrolling depth d for
ψ′ at s̄′ and ψ′ is an instance of ϕ′, then ΘK(ū, ϕ′, d) is satisfied by some
Boolean assignment ρ′ with [[ϕ′]]ρ′ = ψ′ and [[ū]]ρ′ = s̄′; and

– there is a full proof of unrolling depth d for ψ at s̄.

Then, Θ(ū, ϕ, d) is satisfied by some Boolean assignment ρ with [[ϕ]]ρ = ψ and
[[ū]]ρ = s̄.

Lemmas 1 and 2 establish the correspondence between the satisfiability of
Boolean formulae and proofs without further unrolling. The following lemma
states that the required schematic µ-calculus formula ϕ in Lemma 2 does indeed
exist.

Lemma 3. Given a proof of an ∃µ-calculus formula at state s̄0, if a judgment
K, s̄ ` ψ occurs in the proof, there is a schematic ∃µ-calculus formula ϕ such
that ψ is an instance of ϕ.

For the translation of fixed-point formulae, consider νX{v̄0 · · · v̄m}ϕ as an
example. If there is a proof of unrolling depth d for [[νX{v̄0 · · · v̄m}ϕ]]ρ at [[ū]]ρ,
then either [[ū]]ρ = [[v̄k ]]ρ for some 0 ≤ k ≤ m, or [[ū]]ρ 6= [[v̄k]]ρ for all 0 ≤ k ≤ m
and there is a proof of unrolling depth d − 1 for [[ϕ[νX{v̄0 · · · v̄mū}ϕ/X ]]]ρ at
[[ū]]ρ. Thus, we have

ΘK(ū, νX{v̄0 · · · v̄m}ϕ, d) =

m∨

k=0

ū = v̄k ∨ ΘK(ū, ϕ[νX{v̄0 · · · v̄mū}ϕ/X ], d− 1).

Now suppose the number of unrolling has reached the limit (d = 0). The proof of
[[νX{v̄0 · · · v̄m}ϕ]]ρ may be full at [[ū]]ρ, or need be justified by further unrolling.
In the translation rule

ΘK(ū, νX{v̄0 · · · v̄m}ϕ, 0) = (

m∧

k=0

ū 6= v̄k) ⇔ ci,

the fresh variable ci indicates which of the two cases occurs. If ci is set to false,
then

∨m
k=0

ū = v̄k must be true and the proof would be full at [[ū]]ρ. On the other
hand, if ci is true, it implies that

∧m

k=0
ū 6= v̄k. The proof need be justified by

further unrolling.
We call the fresh Boolean variable ci used in the translation of σX{v̄0 · · · v̄m}ϕ

(or ¬σX{v̄0 · · · v̄m}ϕ) an expansion variable. The following theorem states that
the existence of proofs and the satisfiability of certain Boolean formulae are
equivalent.



Theorem 2. Let ū be a vector of Boolean variables, d ∈ N, ψ an ∃µ-calculus for-
mula, and c0, . . . , c` the expansion variables in ΘK(ū, ψ, d). Define ΩK(ū, ψ, d)
to be

ΘK(ū, ψ, d) ∧
∧̀

i=0

¬ci.

– If ΩK(ū, ψ, d) is satisfied by ρ, then there is a full proof of unrolling depth d
for ψ at s̄ = [[ū]]ρ.

– If there is a full proof of unrolling depth d for ψ at s̄, then ΩK(ū, ψ, d) is
satisfied by ρ with [[ū]]ρ = s̄.

With a predetermined completeness threshold CT for the ∃µ-calculus formula
ψ and Kripke structure K, the satisfiability of ΩK(ū, ψ, CT ) is equivalent to the
existence of a full proof for ψ by Theorem 2. Hence, we have a complete algorithm
for ∀µ-calculus properties using completeness thresholds. Since ∀µ-calculus is
more expressive than ∀CTL, our construction subsumes those in [1].

Determining exact completeness thresholds, however, is hard. We prefer an
algorithm that does not use completeness thresholds, but determines the com-
pleteness of proofs on the fly. Recall that the expansion variables ci’s are false

in Theorem 2. This indicates that proofs do not need further unrolling. If we
assume the subproofs of all unjustified fixed-point subformulae indeed exist by
setting expansion variables to true, the unsatisfiability of the modified Boolean
formula implies the absence of proof with additional unrolling. The following
theorem gives us a completeness criterion in the flavor of [6, 9]:

Theorem 3. Let ū be a vector of Boolean variables, d ∈ N, ψ an ∃µ-calculus
formula, and c0, . . . , c` the expansion variables in ΘK(ū, ψ, d). Define ΛK(ū, ψ, d)
to be

ΘK(ū, ψ, d) ∧
∧̀

i=0

ci.

If there is a full proof of unrolling depth greater than d for ψ at the state s̄, then
ΛK(ū, ψ, d) is satisfied by some Boolean assignment ρ with [[ū]]ρ = s̄

Theorems 2 and 3 are summarized by the algorithm in Figure 3. The al-
gorithm searches proofs incrementally. In each iteration, it first checks whether
there is a full proof. If so, it reports “K, [[ū]]ρ ` ¬ψ” where ρ is a satisfying assign-
ment. Otherwise, it checks whether full proofs may exist with more unrolling.
If not, it reports “ψ is satisfied.” Else, the loop is repeated by incrementing the
number of unrolling. Observe that the expansion variable ci forces the condition∧m

k=0
ū 6= v̄k in ΘK(ū, ψ, d) to be satisfied for each unrolling of fixed-point sub-

formula. Since the number of states is finite,
∧m

k=0
ū 6= v̄k will be unsatisfiable

after a finite number of unrolling. By Theorem 3, we conclude that there is no
full proof.
Analysis. By generalizing the formula σX{}(♦X∨σY {}♦(Y ∨X)), it is easy to
see that our construction requires O(n2d) Boolean variables in general. However,



Let ψ be an ∀µ-calculus formula
d← 0
loop

if I(ū) ∧ΩK(ū,¬ψ, d) is satisfied by ρ then

report “K, [[ū]]ρ ` ¬ψ”
if I(ū) ∧ ΛK(ū,¬ψ, d) is unsatisfiable then

reports “ψ is satisfied”
d← d+ 1

end

Fig. 3. An Algorithm for Checking ∀µ-Calculus Properties

if we consider ∀CTL properties, it can be shown that our algorithm requires
O(ndκ) Boolean variables where κ is the maximal depth of nested temporal
operators in the ∀CTL property.

q p
s0 s1 2s

Fig. 4. A Simple Kripke Structure

As an example, consider the sample Kripke structure in Figure 4. The labels
p and q denote L(s0) = {q}, L(s2) = {p}, but L(s1) = ∅. Let Ψ stand for νY {}p∧
�Y . Suppose we wish to check whether ¬q ∨ (µX{}Ψ ∨ �X) is satisfied by the
Kripke structure. The corresponding Boolean formula for ¬(¬q∨(µX{}Ψ∨�X))
is: (for detailed derivation, please see Appendix A)

ΘK(ū,¬(¬q ∨ (µX{}Ψ ∨ �X)), 2))

= χq(ū) ∧ (¬χp(ū) ∨ (χ→(ū, w̄) ∧ (w̄ 6= ū ∧ c))) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ (c′ ∧ (χ→(v̄, x̄) ∧ ((x̄ 6= u ∧ x̄ 6= v̄) ⇔ c′′)))))

It is easy to see that there is no satisfying assignment for ΩK(ū,¬(¬q∨(µX{}Ψ∨
�X)), 2). By Theorem 2, there is no counterexample at unrolling depth 2. On the
other hand, take the assignment ρ, where [[ū]]ρ = s0, [[v̄]]ρ = s1, [[x̄]]ρ = s2, and
[[c]]ρ = [[c′]]ρ = [[c′′]]ρ = true. It is straightforward to verify that ρ is a satisfying
assignment for ΛK(ū,¬(¬q∨(µX{}Ψ∨�X)), 2). Hence there may be a full proof
of unrolling depth greater than 2 for ¬(¬q ∨ (µX{}Ψ ∨ �X)) by Theorem 3.

5 Experimental Results

We are interested in the analysis of an n-process agreement protocol. Initially,
process i has a random local bit vi. All processes collect and distribute informa-



tion with one another concurrently. At the end of the protocol, they will have
the same value assigned to their local bits. In case of system failure, the faulty
process stops updating its local bit nor exchanging information with others.

In addition to the local bit vi, a program counter pci is used to indicate the
current status (normal, failed, or decided) of process i. Firstly, we are interested
in knowing whether all processes have agreed on their private bits when they all
make their decisions. We therefore check that the following predicate is indeed
invariant in the protocol:

goodn
4
= (

n∧

i=1

pci = decided) ⇒ ((

n∧

i=1

vi) ∨ (

n∧

i=1

¬vi))

Secondly, we verify the following CTL property in the protocol:

upn
4
= AG(v1 ⇒ AF((

n∧

i=1

pci = decided) ⇒ (

n∧

i=1

vi)))

The property upn states that if the local bit of process 1 is true, then all com-
putation paths will eventually make all local bits to be true when all processes
decide. It is impossible to turn them back to be false in the protocol.

Thirdly, we verify that either all processes decide their local bits or some of
them have failure almost surely along all computation. It can be specified by the
following LTL formula:

ltl stablen
4
= ♦(�((

n∧

i=1

pci = decided) ∨ (
n∨

i=1

pci = failed)))

In other words, no process can stay in a normal but undecided state forever. A
weaker but similar property can be specified in Fair CTL. We now consider fair
paths where no process is in the failed state infinitely often (Ψ =

∧n

i=1
F∞(pci 6=

failed) in [10]). We would like to know whether all parties will decide their local
bits eventually for all computation. In FCTL, we can specify the property as
follows.

fctl stablen
4
= AΨF

n∧

i=1

pci = decided

It is straightforward to rewrite the properties goodn, upn, and fctl stablen

in ∀µ-calculus by standard encoding. For the LTL property ltl stablen, we apply
the technique reported in [12, 24] and verify the existence of fair paths satisfying
a ∀µ-calculus formula. Observe that the completeness criteria for these properties
are uniformly obtained by our framework. Once the property is rewritten as a
∀µ-calculus formula, our proof-theoretic technique is able to verify it by any SAT
solver.

Figure 5 compares the performance of our algorithm with the conventional
BDD-based µ-calculus model checking algorithm. In our experiments, we use



goodn upn ltl stablen fctl stablen

n BDD SAT BDD SAT BDD SAT BDD SAT

3 0.13 0.77 0.19 0.99 0.2 2.33 0.11 7.36

4 1.2 1.44 1.06 4.09 2.80 10.76 1.36 31.00

5 11.91 3.86 10.55 9.45 17.21 29.12 12.95 112.82

6 17.441 9.43 15.091 34.94 15.191 61.12 9.691 232.63

7 timeout 18.23 timeout 75.86 timeout 157.21 timeout 553.02

(verification time in seconds)

Fig. 5. Experimental Results

the CUDD package (release 2.4.0) with the sifting algorithm to implement the
BDD-based algorithm. The zchaff SAT solver (release November 15th, 2004) is
used as our SAT solver. All experiments were conducted on a Linux workstation
(Pentium 4 2.8GHz with 2 GB memory).

Our experiments show that BDD-based algorithms perform consistently for
different properties. If the BDD model representation can be built, these four
properties can be verified with similar cost. On the other hand, the performance
of SAT-based algorithm differs significantly in these properties. This is due to the
fact that our algorithm requires different number of variables for these properties.
It therefore does not perform so uniformly for various properties.

For the invariant property goodn, our SAT-based algorithm is better than
BDD-based algorithm for n ≥ 5. For branching-time properties (upn, ltl stablen,
and fctl stablen), the BDD-based algorithm cannot finish in 10 minutes for
n = 7. With our algorithm, we are able to verify all these properties within
10 minutes. Surprisingly, our SAT-based algorithm performs better than BDD-
based algorithm for some branching-time properties in this experiment.

6 Conclusion and Future Work

A complete SAT-based ∀µ-calculus model checking algorithm is presented in the
paper. Unlike previous works on proving branching-time temporal logics, our
algorithm does not depend on completeness thresholds. Instead, it determines
the completeness of proofs on the fly. The novelty of the new algorithm is that it
combines both local and bounded model checking, and essentially reduces proof
search in local model checking to Boolean satisfiability.

Our technique uses a proof-theoretic approach to develop completeness cri-
teria. We feel our technique may give new insights into devising complete SAT-
based model checking algorithms. Currently, it is unclear whether induction or
interpolation can be applied in our framework. It would be interesting to have
proof-theoretic interpretations of these heuristics as well.

1 CUDD runs out of time with the sifting algorithm. The data is obtained without
dynamic variable ordering.



Our experimental results suggest that our algorithm may perform better than
a typical BDD-based model checker in some cases. In the future, we would like
to conduct more experiments to support our preliminary findings.
Acknowledgments. The author would like to thank anonymous reviewers for
their constructive comments and suggestions in improving the paper.

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In Cleaveland, W.R., ed.: Tools and Algorithms for the Construction and
Analysis of Systems. Volume 1579 of LNCS., Springer-Verlag (1999) 193–207

2. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model check-
ing using SAT procedures instead of BDDs. In: Proceedings of the 36th Design
Automation Conference (DAC’ 99), New York, ACM Press (1999) 317–320

3. Emerson, E., Clarke, E.: Using branching-time temporal logic to synthesize syn-
chronization skeletons. Science of Computer Programming 2 (1982) 241–266

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge, Massachusetts (1999)

5. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and complex-
ity of bounded model checking. In Steffen, B., Levi, G., eds.: Verification, Model
Checking, and Abstract Interpretation. Volume 2937 of LNCS., Springer-Verlag
(2004) 85–96

6. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induc-
tion and a SAT-solver. In Jr., W.A.H., Johnson, S.D., eds.: Formal Methods in
Computer-Aided Design. Volume 1954 of LNCS., Springer-Verlag (2000) 108–125

7. Leonardo de Moura, H.R., Sorea, M.: Bounded model checking and induction:
From refutation to verification. In Jr., W.A.H., Somenzi, F., eds.: Computer Aided
Verification. Volume 2725 of LNCS., Springer Verlag (2003) 14–26

8. McMillan, K.L.: Interpolation and sat-based model checking. In Jr., W.A.H.,
Somenzi, F., eds.: Computer-Aided Verification. Volume 2725 of LNCS., Springer
Verlag (2003) 1–13

9. Awedh, M., Somenzi, F.: Proving more properties with bounded model checking. In
Alur, R., Peled, D.A., eds.: Computer Aided Verification. Volume 3114 of LNCS.,
Springer Verlag (2004) 96–108

10. Emerson, E.A., Lei, C.L.: Efficient model-checking in fragments of the propositional
mu-calculus. In: Proceedings First Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press (1986) 267–278

11. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings First Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press (1986) 332–344

12. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 1020 states and beyond. Information and Computation 98 (1992)
142–170

13. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus.
Acta Informatica 27 (1989) 725–747

14. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. Theoret-
ical Computer Science 89 (1991) 161–177

15. Andersen, H.R., Stirling, C., Winskel, G.: A compositional proof system for the
modal µ-calculus. In: Proceedings, Ninth Annual IEEE Symposium on Logic in
Computer Science, Paris, France, IEEE Computer Society Press (1994) 144–153



16. Emerson, E., Lei, C.: Modalities for model-checking: Branching time logic strikes
back. In: Proceedings of the 12th ACM Symposium on Principles of Programming
Languages, ACM Press (1985) 84–96

17. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reach-
ability analysis. Software Tools for Technology Transfer 5 (2004) 185–204

18. Schuele, T., Schneider, K.: Global vs. local model checking: A comparison of veri-
fication techniques for infinite state systems. In: International Conference on Soft-
ware Engineering and Formal Methods (SEFM), Beijing, IEEE Computer Society
Press (2004)

19. Schuele, T., Schneider, K.: Bounded local model checking. private communication
(2005)

20. Wang, B.Y.: Unbounded model checking with sat - a local model checking ap-
proach. unpublished manuscript (2004)

21. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science
27 (1983) 333–354

22. Winskel, G.: A note on model checking the modal nu-calculus. Theoretical Com-
puter Science 83 (1991) 157–167

23. Wang, B.Y.: Proving ∀µ-calculus properties with sat-based model checking. Tech-
nical Report TR-IIS-05-003, Institute of Information Science, Academia Sinica
(2005) http://www.iis.sinica.edu.tw/LIB/TechReport/tr2005/tr05003.pdf.

24. Clarke, E., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
In Dill, D.L., ed.: Computer Aided Verification. Volume 818 of LNCS., Springer-
Verlag (1994) 415–428

A Detailed Derivation for Figure 4

ΘK(ū,¬(¬q ∨ (µX{}Ψ ∨�X)), 2))

= ΘK(ū,¬¬q, 2) ∧ΘK(ū,¬µX{}Ψ ∨ �X, 2)

= ΘK(ū, q, 2) ∧ ΘK(ū,¬(Ψ ∨ �(µX{ū}Ψ ∨ �X)), 1)

= χq(ū) ∧ΘK(ū,¬Ψ, 1) ∧

ΘK(ū,¬�µX{ū}Ψ ∨�X, 1)

= χq(ū) ∧ΘK(ū,¬(p ∧�(νY {ū}p ∧�Y )), 0) ∧

(χ→(ū, v̄) ∧ ΘK(v̄,¬µX{ū}Ψ ∨�X, 1))

= χq(ū) ∧ (ΘK(ū,¬p, 0) ∨ ΘK(ū,¬�(νY {ū}p ∧�Y ), 0)) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ΘK (v̄,¬(Ψ ∨�(µX{ū, v̄}Ψ ∨�X)), 0)))

= χq(ū) ∧ (¬χp(ū) ∨ (χ→(ū, w̄) ∧ ΘK(w̄,¬νY {ū}p ∧�Y, 0))) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ (ΘK(v̄,¬Ψ, 0) ∧ΘK (v̄,¬�(µX{ū, v̄}Ψ ∨�X), 0))))

= χq(ū) ∧ (¬χp(ū) ∨ (χ→(ū, w̄) ∧ (w̄ 6= ū ∧ c))) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ (c′ ∧ (χ→(v̄, x̄) ∧ ΘK(x̄,¬µX{ū, v̄}Ψ ∨�X, 0)))))

= χq(ū) ∧ (¬χp(ū) ∨ (χ→(ū, w̄) ∧ (w̄ 6= ū ∧ c))) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ (c′ ∧ (χ→(v̄, x̄) ∧ ((x̄ 6= u ∧ x̄ 6= v̄)⇔ c′′)))))


