Comparing Learning Algorithms in Automated
Assume-Guarantee Reasoning*

Yu-Fang Chen!, Edmund M. Clarke?, Azadeh Farzan®, Fei He?,
Ming-Hsien Tsai®, Yih-Kuen Tsay®, Bow-Yaw Wang!%%, and Lei Zhu*

1 Academia Sinica, Taiwan
2 Carnegie Mellon University, USA
3 University of Toronto, Canada
4 Tsinghua University, China
5 National Taiwan University, Taiwan
6 INRIA, France

Abstract. We compare two learning algorithms for generating contex-
tual assumptions in automated assume-guarantee reasoning. The CODNF
algorithm implicitly represents contextual assumptions by a conjunction
of DNF formulae, while the OBDD learning algorithm uses ordered bi-
nary decision diagrams as its representation. Using these learning algo-
rithms, the performance of assume-guarantee reasoning is compared with
monolithic interpolation-based Model Checking in parametrized hard-
ware test cases.

1 Introduction

Suppose one would like to verify whether the composition of My and M satisfies
a property . Consider the following assume-guarantee reasoning rule:
M()HA ': ™ M1 j A
MOHMI ': ™

The rule states that it suffices to find a contextual assumption A such that the
composition of My and A satisfies the property, and that M; is simulated by A.

* This research was sponsored by the GSRC under contract no. 1041377 (Prince-
ton University), National Science Foundation under contracts no. CCF0429120,
no. CNS0926181, no. CCF0541245, and no. CNS0931985, Semiconductor Research
Corporation under contract no. 2005TJ1366, General Motors under contract no. GM-
CMUCRLNV301, Air Force (Vanderbilt University) under contract no. 18727S3,
the Office of Naval Research under award no. N000141010188, the National Science
Council of Taiwan projects no. NSC97-2221-E-001-003-MY 3, no. NSC97-2221-E-001-
006-MY3, no. NSC97-2221-E-002-074-MY3, and no. NSC99-2218-E-001-002-MY3,
Natural Sciences and Engineering Research Council of Canada NSERC Discovery
Award, Chinese National 973 Plan under grant no. 2010CB328003, the NSF of China
under grants no. 60635020, 60903030 and 90718039, the FORMES Project within
LIAMA Consortium, and the French ANR project SIVES ANR-08-BLLAN-0326-01.

If verifying My||A | 7 requires less resources than verifying My||M; = w, the
scalability of verification can be improved by finding such contextual assump-
tions. Indeed, complete information about M; may not be necessary for verifying
the property 7. Oftentimes, simple contextual assumptions are sufficient to es-
tablish properties of interest. Assume-guarantee reasoning offers the flexibility
to simplify the verification problem with respect to properties. It is considered
as a viable technique to alleviate the state explosion problem.

To effectively apply assume-guarantee reasoning, it is essential to construct a
contextual assumption that fulfills the premises and admits efficient verification.
By applying the L* learning algorithm for finite automata [1] and devising a me-
chanical teacher to answer queries, the learning-based technique in [11] success-
fully infers contextual assumptions without human intervention. The scalability
of automated assume-guarantee reasoning is further improved in [7]. Adopting
an implicit representation and applying instead the CDNF learning algorithm
for Boolean functions [3], the new technique is able to take advantages of the
succinct representation and infer contextual assumptions of larger sizes. Pre-
liminary experimental results show that automated assume-guarantee reasoning
through implicit reasoning can outperform the monolithic interpolation-based
Model Checking algorithm in some parametrized test cases [7].

Because of their potential applications in practice, several learning algorithms
for Boolean functions have been developed [3,12,19]. In this paper, we inves-
tigate two of these learning algorithms in the context of automated assume-
guarantee reasoning through implicit learning. We compare the performance of
the CDNF algorithm [3] and a learning algorithm for ordered binary decision dia-
grams (OBDD’s) [2, 12] in automated assume-guarantee reasoning. Both learning
algorithms use the same learning model proposed in [1]. The CDNF algorithm
is based on the monotone theory and represents an arbitrary Boolean function
as a conjunction of DNF formulae [3]. It learns any Boolean function with a
polynomial number of queries in the number of variables, and the minimal CNF
size and the minimal DNF size of the target function.

The OBDD learning algorithm, on the other hand, is based on the L* algo-
rithm [12]. For a fixed variable ordering, a valuation on n Boolean variables can
be represented by a string in {0, 1}". A set of valuations hence corresponds to a
finite language. Since any finite language is regular, the L* algorithm can infer
the minimal deterministic finite automaton recognizing the satisfying valuations
of any Boolean function. The minimal deterministic finite automaton in turn
can be transformed to an OBDD. It is shown that any OBDD is learnable with
a polynomial number of queries in the size of the target OBDD.

The two learning algorithms have very different characteristics. Subsequently,
their practical costs in the context of assume-guarantee reasoning are not at all
clear. To investigate this issue, we assess the effectiveness of both learning algo-
rithms by an extensive set of parametrized test cases. Using two different learn-
ing algorithms to infer contextual assumptions, we compare the performance of
automated assume-guarantee through implicit learning against the monolithic
interpolation-based Model Checking algorithm in [18]. Five parametrized hard-

ware test cases are taken: the MSI cache coherence protocol [4], the PCI bus
protocol [5], a simple bus control protocol [10], the Gigamax cache coherence
protocol [9], and synchronous bus arbiters [17]. Each test case has over 15 ex-
periments of different sizes. Three different algorithms are compared in each
experiment. Our extensive experiments hopefully can give insights to research
directions.

In [15], the CDNF algorithm is used to generate propositional loop invari-
ants in sequential programs. The same learning algorithm is used in [7] to infer
contextual assumptions for assume-guarantee reasoning. Applying algorithmic
learning to generate contextual assumptions was first proposed in [11]. Follow-
ing that work, many optimizations have been proposed (see, for example, [20, 6,
21,13, 8]). These optimizations explicitly generate deterministic finite automata
as contextual assumptions. In contrast, the work [7] implicitly infers nondeter-
ministic finite automata as contextual assumptions and improves the scalability.

This paper is organized as follows. After preliminaries (Section 2), the learn-
ing model and automated assume-guarantee reasoning through implicit learning
are reviewed in Section 3 and 4 respectively. They are followed by brief descrip-
tions of the learning algorithms (Section 5). Section 6 gives the experimental
results. We conclude in Section 7.

2 Preliminaries

B = {F, T} is the Boolean domain. Let x be a set of Boolean variables and |x]
the size of x. A Boolean function 6(x) over x is a function from B/*I to B. We
also define x’ to be the set of Boolean variables {2’ : z € x}.

A wvaluation v : x — B over x is a function from Boolean variables to truth
values. Let ¢(x) be a Boolean function over x and v a valuation over x. If y C x
is a set of Boolean variables, v|y is the restriction of v ony. That is, v]y: y — B
and vy (y) = v(y) for all y € y. We write ¢[v] for the result of evaluating ¢
by replacing each = € x with v(z). Moreover, let 1(x,x’) be a Boolean function
over x and x’. If v and v/ are valuations over x, we write ¢[v, '] for the result of
evaluating ¢ by replacing each z € x with v(z) and each 2’ € x’ with v/(x). For
example, assume v(z) = F and v/(z) = T. If ¢(z) = —z, ¢[v] =T and ¢[v'] = F.
If (z,2") =—-x A2, Yy, '] =T and Y[/, v] = F.

A transition system M = (x,.(x),7(x,x')) consists of its state variables
x, its initial predicate (x), and its transition relation 7(x,x’). A trace of M
a =11 ...t is a finite sequence of valuations where /% is a valuation over x,
such that «[¥°] = T and 7[v%,viT] =T for 0 < i < t. Define Trace(M) = {a :
ais a trace of M}. If a = v ... vt is a finite sequence of valuations over x
and y C x, aly=1"]y vl]y - -], is the restriction of o on y.

Let M = (x,tp(x), Tar(x,%X’)) be a transition system. A state predicate 7(x)
is a Boolean function over x. We say M satisfies m (denoted by M =) if for any
a =% .. vt € Trace(M), we have 7[v'] =T for 0 < i < t. Given a transition
system M and a state predicate w, the invariant checking problem is to decide
whether M satisfies w. Model Checking is an automatic technique to solve the

invariant checking problem. When deciding whether M = 7, a Model Checking
algorithm returns a witness if M does not satisfy 7. A witness to M [~ 7 is a
trace vOv! - - vt of M such that m(v') =T for 0 < i < t but w(v') = F.

Let N = (x,tn(x), 7n (%,X')) be a transition system. We say M is simulated
by N or N simulates M (denoted by M < N) if Vx..p(x) = ny(x) and
Vxx'.mp(%,%x") = 7n(%x,%) hold. In words, M is simulated by N if the initial
condition of M is stronger than that of N and every transition allowed in M is
also allowed in N. Clearly, if M < N, then Trace(M) C Trace(N).

Let x; be sets of Boolean variables for ¢ = 0,1 (x;’s are not necessarily dis-
joint). Consider M; = (xy, t;(x;), (x4, %})) for i = 0,1. The composition of My
and M, is the transition system Mp|| M1 = (x0 Ux1, to(X0) A t1(X1), 7o (X0, X5) A
71(x1,%})). Note that for any finite sequence of valuations a over xo U X,
a € Trace(My||My) if and only if alx,€ Trace(My) and alx, € Trace(My).

An assume-guarantee reasoning rule is of the form % where @, . . .,
O, are its premises and A its conclusion. An assume-guarantee reasoning rule
is sound if its conclusion holds when its premises are fulfilled. A rule is invertible
if its premises can be fulfilled when its conclusion holds. We use the following
assume-guarantee reasoning rule throughout the paper:

Lemma 1. Let M; = (x4, (%), Ti(X:,X})) be transition systems for i = 0,1,
and 7 a state predicate over xg Uxy. The following rule is sound and invertible:

MO”A):W Mle
MOHMl ': ™

(1)

where A = (x1,14(x1),7a(x1,X})) is a transition system.

Let M; = (xi,t:(%:), Ti(X4, X})) be transition systems for ¢ = 0,1 and 7 a state
predicate over xoUx, a transition system A = (x1,¢4(x1), 74(x1,x})) such that
My||A & 7 and My = A is called a contextual assumption of M.

3 The Learning Model

Before reviewing the learning-based approach to inferring contextual assump-
tions, we briefly describe the learning model used in [1,3,7]. For any unknown
target Boolean function A\(x) over a fixed set of Boolean variables x, an exact
learning algorithm for Boolean functions computes a representation of A\(x) by
interacting with a teacher. The teacher knows the Boolean function A\(x) and
answers two types of queries made by the learning algorithm:

— Membership query MEM (v) for the target A\(x), where v is a valuation over
x. If A[v] =T, the teacher answers YES; and NO, otherwise.

— FEquivalence query EQ(0) for the target A(x), where 6(x) is a Boolean func-
tion over x. If the conjecture 6(x) is equivalent to the target Boolean function
A(x), the teacher answers YES. Otherwise, the teacher provides a valuation
v over x where 8[v] # Alv]. The valuation v serves as a counterezample to
the equivalence query FQ(6).

Assume A(z,y) = (z A —y) V (-z Ay) is the target Boolean function over x and
y. If the learning algorithm makes the query MEM (1) where vo(z) = vo(y) = F
(denoted by wvo(xy) = FF), the teacher answers NO for A(F,F) = F. For a
different valuation 14 (zy) = TF, the teacher answers YES. Similarly, consider the
equivalence query EQ(zVy). The teacher should provide the valuation vs(zy) =
TT as a counterexample, since TVT =T # F = A(T, T). For another equivalence
query EQ((z V —y) A (mx V y)), the teacher answers YES.

4 Learning a Contextual Assumption

In automated assume-guarantee reasoning through learning, one applies an exact
learning algorithm to infer a contextual assumption that fulfills both premises
of the assume-guarantee reasoning rule (1). In order to do so, a mechanical
teacher is designed to answer queries from the learning algorithm. Assume A =
(x1,t4(x1),7a(xX1,%})) is a contextual assumption satisfying both premises. The
teacher is required to resolve four types of queries:

— the membership query MEM (1) for the target t4(x1);
— the membership query MEM (u, p') for the target 74(x1,x});
the equivalence query FQ(¢) for the target ¢ 4(x1); and
the equivalence query EQ(7) for the target 74 (x1,x}).

If A was known, it would be straightforward to design such a mechanical teacher.
All queries can easily be resolved by evaluating or comparing the initial predicate
or the transition relation of the purported contextual assumption. However, such
a contextual assumption is yet to be inferred and current unknown to us. We
thus look for a replacement in the design of the mechanical teacher.

In [7], the mechanical teacher simply uses M; in place of the unknown con-
textual assumption. Clearly, inferring M; as the contextual assumption in the
assume-guarantee reasoning rule (1) is not beneficial: the first premise is pre-
cisely the conclusion when the contextual assumption A is M;. However, several
conjectures will be proposed while the learning algorithm is inferring M;. If one
of them satisfies both premises, it can serve as a contextual assumption and con-
clude the verification. Since contextual assumptions are not unique, one expects
that another contextual assumption will be generated before M is inferred.

We adopt the architecture of the mechanical teacher proposed in [7]. Re-
call that a contextual assumption A = (x1,t4(x1),7a(X1,X})) consists of two
Boolean formulae. We hence deploy two instances of the learning algorithm (Fig-
ure 1): one infers the initial predicate v 4(x1); the other infers the transition rela-
tion 74(x1,x}). In the figure, the instances of the learning algorithm are shown
on the sides. The instance Learner, , is intended to compute the initial predicate
t4(x1); the instance Learner., is to compute the transition relation 74 (x1,x}).
The mechanical teacher is denoted by the dashed box in the middle.

The teacher consists of three query resolution algorithms. The algorithms
IsMember, , (1) and IsMember,, (u, ;') resolve membership queries for the ini-
tial predicate and the transition relation respectively (Algorithm 1). Since the

— e N —
I
MEM () | membership membership jMEM(/lr-, 1)
o resolution resolution [
YES. NO i IsMember, , (1) IsMembery, (1, 1) [YES, NO
Learner, , | : : ! Learner,
! I
EQ(1) ﬂ: equivalence | EQ(7)
| resolution .
YES, ce, ! IsEquivalent(t, 7) | YES, ce,
I
~— '\ J —

Fig. 1. Structure of Contextual Assumption Generator.

mechanical teacher uses M; as the target, membership queries are resolved by
evaluating the initial predicate or the transition relation of M; respectively.

Input: MEM (i) : a membership query for the target ¢ta(x1)

Output: YES or NO

/* 11(x1) is the initial predicate of M; */
if t1{p] = T then return YES else return NO;

(a) IsMember, , (1)

Input: MEM (u, ') : a membership query for the target 74 (x1,x])

Output: YES or NO

/* T1(x1,x}) is the transition relation of M */
if 71[p, '] = T then return YES else return NO;

(b) IsMembery, (i, u')

Algorithm 1: Membership Query Resolution Algorithms

The algorithm IsEquivalent(t,T) resolves both types of equivalence queries
(Algorithm 2). The equivalence query resolution algorithm waits until the equiv-
alence query EQ(t) from Learner,, and the equivalence query EQ(7) from
Learner,, are available. It then checks the premise M; =X C in the assume-
guarantee reasoning rule (1) with C' = (x3, t(x1), 7(x1,x})). If M1 A C, a coun-
terexample is returned to either Learner,, or Learner., to refine the current
conjecture. For instance, assume Vxy..1(x1) = ¢(x1) is false. There is a valuation
w such that ¢1[p] = T and ¢[u] = F. The equivalence query resolution algorithm
returns p to Learner,, as the counterexample to the equivalence query EQ(¢).
It then waits for another equivalence query EQ(.') from Learner, ,, and restarts
with the new conjectured transition system C’ = (x1,¢/(x1), 7(x1,x})).

Assume the equivalence query resolution algorithm has verified M; <X C. It
then checks if the other premise My||C' = 7 is fulfilled. If so, we have found
a contextual assumption that establishes the property. Otherwise, there is a

trace a witnessing My||C F& 7. The equivalence query resolution algorithm then
invokes IsWitness(a) to analyze the trace a.

Input: EQ(¢) : an equivalence query for the target ta(x1); EQ(7) : an
equivalence query for the target 74 (x1,x])
Output: YES, a counterexample to EQ(¢), or a counterexample to EQ(T)
let C be the transition system (x1,:(x1), 7(x1,%1));
if 11(x1) A —w(x1) is satisfied by p then
answer FQ(¢) with the counterexample p;
receive another equivalence query EQ(.');
call IsEquivalent(J,T);
if 71(x1,x1) A =7(x1,%]) is satisfied by py' then
answer EQ(7) with the counterexample uu';
receive another equivalence query EQ(7’);
call IsEquivalent (v, T');
if Mo||C |= 7 then
answer £Q(¢) with YES;
answer EQ(7) with YES;
report “Mo||M1 = n7;
else
let @ be a witness to Mo||C (= 7;
call IsWitness(c);
end

Algorithm 2: IsEquivalent(t,T)

The witness analysis algorithm IsWitness(«) checks if the restriction oy, is

also a trace of My (Algorithm 3). If so, « is in fact a witness to My||M; [.
Otherwise, the restriction a|x, must deviate from the initial predicate or the
transition relation of Mj. The witness analysis algorithm therefore returns the
deviation as a counterexample to either EQ(:) or EQ(T). It then waits for a new
equivalence query and restarts the equivalence query resolution algorithm.

The correctness of the algorithm is established by the following properties [7].

Lemma 2 (soundness). Let M; = (x4, t;(x;), 7:(%:,X})) be transition systems
fori=0,1, and w(x) a state predicate over x = xo U X.

1.

2.

Let o(x1) and 7(x1,x}) be Boolean functions over x1 and x1UX) respectively.
If IsEquivalent (v, T) reports “Mo|| My |= m,” then My||M; | 7;

Let 1(x1) and 7(x1,%]) be Boolean functions over x; and x1UX] respectively.
If IsEquivalent (v, T) reports “Mo|| My = w is witnessed by «,” then « is a
witness to Mo|| My = 7.

Lemma 3 (completeness). Let M; = (x;,¢;(X;), 7i(Xi,X})) be transition sys-
tems for i = 0,1, and w(x) a state predicate over x = xo U Xj.

1.

If My|My | 7, then IsEquivalent(v,T) reports “My||My = w” for some
Boolean functions 1(x1) and 7(x1,%}) over x1 and x1 UX} respectively.

Input: « is a witness to My||C £ 7
Output: a counterexample to EQ(¢), or a counterexample to EQ(T)
let als, = pput - p';
if 11[p°] = F then
answer EQ(¢) with the counterexample p°;
receive another equivalence query EQ(.');
call IsEquivalent(t,7);
fori :=1to t do
if 71[u"™*, u'] = F then
answer EQ(7) with the counterexample p*~* i’
receive another equivalence query EQ(7’);
call IsEquivalent(i,7’);
end
report “Mo]||M; £ 7 is witnessed by o”;

Algorithm 3: IsWitness(a)

2. If a is a witness to My|| M [~ w, then IsEquivalent(t,) reports “My||M; W~
m is witnessed by a” for some Boolean functions 1(x1) and (X1, X)) over x;
and x1 U X respectively.

Lemma 4 (termination). Let M; = (x;,¢;(X;), 7:(xi,X})) be transition sys-
tems fori = 0,1, and w(x) a state predicate over x = xgUx1. Suppose the learn-
ing algorithm infers an unknown target Boolean formula f with t(|f|) queries.
The mechanical teacher reports “Mo|| My |= 7”7 or “Mo|| My W~ 7 is witnessed by
a” with at most t(|e1]) + t(|71]) queries.

5 Exact Learning Algorithms for Boolean Functions

Thanks to the interface defined in the learning model, the mechanical teacher
presented in Section 4 is independent of the underlying learning algorithm. As
long as a learning algorithm uses the same learning model, it can be instantiated
as Learner,, and Learner;, to infer contextual assumptions. There are in fact
several learning algorithms for Boolean functions [3,12,19]. Here, we are most
interested in the CDNF algorithm [3] and the OBDD learning algorithm [12].

5.1 The CDNF Algorithm

The CDNF algorithm is an exact learning algorithm for Boolean functions [3]. Tt
represents any unknown target Boolean function in the conjunctive-disjunctive
normal form.” The CDNF algorithm works iteratively. In each iteration, it first
uses membership queries to construct a conjecture in CDNF. After a conjecture
is built, the CDNF algorithm poses an equivalence query to check if it has

" A Boolean formula is in the conjunctive-disjunctive normal form (CDNF) if it is a
conjunction of DNF formulae.

inferred the unknown target. If not, the current conjecture is refined by the
counterexample. Depending on whether the conjecture need be weakened or
strengthened, the learning algorithm either modifies DNF formulae of the current
conjecture, or adds a DNF formula to the conjecture respectively.

Initially, the CDNF algorithm starts with the degenerated conjecture T, and
makes the equivalence query EQ(T). If T is not the target, the CDNF algorithm
adds the first conjunct and therefore strengthens the initial conjecture. More
generally, let us say that a counterexample of an equivalence query is positive if
the target evaluates to T under the counterexample; it is negative if the target
evaluates to F. When the CDNF algorithm obtains a positive counterexample,
it weakens conjuncts of the current conjecture by adding a conjunctive clause to
DNF formulae in the conjecture. When the CDNF algorithm obtains a negative
counterexample, it strengthens the current conjecture by adding a DNF formula
to the conjecture. The first equivalence query simply initiates the iterations by
strengthening the degenerated conjunction.

Let A(x) be a Boolean function over x, |A(x)|pnr and |A(x)|cnr denote the
sizes of A\(x) in minimal disjunctive and conjunctive normal forms respectively.
Under the learning model in Section 3, the CDNF algorithm computes a rep-
resentation for any target Boolean function A\(x) with a polynomial number of
queries in [A(X)|pnr, [A(X)|conr, and [x] [3].

5.2 A Learning Algorithm for Ordered Binary Decision Diagrams

Fix a variable ordering on Boolean variables x. A valuation over x can be rep-
resented by a string in {0, 1}/, For any Boolean function \(x), its satisfying
valuations hence correspond to a finite language. Moreover, an OBDD for A(x)
can be seen as a recognizer for the finite language of satisfying valuations. Ob-
serve that the structure of the OBDD for A(x) is in fact similar to the minimal
deterministic finite automaton for the language of satisfying valuations [16]. Sub-
sequently, one may infer an unknown OBDD by the L* algorithm. This idea has
been explored in an exact learning algorithm for OBDD [12]. Under the learning
model in Section 3, the OBDD learning algorithm computes any target OBDD
d with a polynomial number of queries in the size of d. By Shannon’s expansion,
we obtain another exact learning algorithm for Boolean functions.

The OBDD learning algorithm behaves very differently from the CDNF al-
gorithm. As described above, the CDNF algorithm starts with the equivalence
query EQ(T). On the other hand, the OBDD learning algorithm almost always
starts with the equivalence query EQ(F). Starting from the empty valuation,
the L* algorithm builds its first conjecture by making membership queries on
extensions of the empty valuation. If all valuations of length less than two are
rejected, the L* algorithm will build the minimal finite automaton recognizing
the empty language as its conjecture. Recall that any satisfying valuation for
Boolean functions over n variables must have length n, and that the empty
set of satisfying valuations corresponds to the Boolean function F. The OBDD
learning algorithm subsequently always starts with the equivalence query EQ(F)
when there is more than one Boolean variable.

In our settings, starting with the equivalence query EQ(F) may impede the
performance. After Learner, , and Learner,, make their first equivalence queries
EQ(F), the equivalence query resolution algorithm has the transition system
C, = (x1,F,F). Since M; £ C,, it will ask the learning algorithm to weaken
both conjectures. In fact, the OBDD learning algorithm sometimes weakens too
conservatively and infers M; as the contextual assumption.

Input: MEM (p) : a membership query for the target A\(x)
Output: YES or NO
if teacher’s answer to MEM (u) is YES then return NO else return YES

(a) Inverted Membership Query

Input: EQ(0) : a membership query for the target A(x)
Output: YES or a counterexample to EQ(0)
return teacher’s answer to EQ(—0)

(b) Inverted Equivalence Query

Algorithm 4: Inverted Queries

One simple way to avoid this problem is to invert queries from the OBDD
learning algorithm (Algorithm 4). The main idea is to let the learning algorithm
infer the negation of the target Boolean function. When the OBDD learning
algorithm makes a membership query, we return NO if the teacher answers
YES. Otherwise, we return YES. When the OBDD learning algorithm makes
an equivalence query, we ask the teacher if the negation of the conjecture is the
target. If not, we forward teacher’s counterexample to the learning algorithm.
With this simple translation, the first equivalence query EQ(F) from the OBDD
learning algorithm is converted to the equivalence query FQ(T) as desired.

6 Experiments

We have implemented a prototype of the mechanical teacher in OCaml. Our
implementation uses the OCaml thread library. Each instance of the learning
algorithm is executed in a separate thread, and the equivalence query resolution
algorithm is executed in a third thread. MINISAT 2 (version 070721) is used to
evaluate Boolean functions in Algorithm 1, and check the simulation relation in
Algorithm 2. For monolithic Model Checking, we implement the interpolation-
based algorithm in [18]. Interpolants are computed by instrumenting MINISAT 2.
The interpolation-based Model Checking algorithm is also used in the equiva-
lence query resolution algorithm (Algorithm 2).

We report the following five test cases: the MSI cache coherence protocol [5],
the PCI bus protocol [4], a simple bus control protocol [10], the Gigamax cache

10

coherence protocol [9], and synchronous bus arbiters [17] . Each test case has
experiments parametrized by the number of nodes. Let M;,..., M, be nodes
and 7 a state predicate. We verify M-~ |[M, [= 7 in an experiment with n
nodes. An experiment with n nodes is divided into different partitions in n trials.
We apply the following assume-guarantee reasoning rule in the i-th trial:

(My|| - IM; 1 | Miga|| - Mp)[AEm M; = A
(M| -+ M1 || Mg || - - - M) | M; =

In each trial, we use the CDNF algorithm and the OBDD learning algorithm
to generate a contextual assumption A to verify M || - - - || M,, = m. We choose the
best result among the n trials and compare it with monolithic Model Checking.
All experimental results are collected on a server with 8 Intel Xeon 2.0GHz
processors. Each experiment is carried out on a dedicated core with 4GB memory.

MSI Cache Coherence Protocol In the MSI cache coherence protocol, a memory
is shared among n nodes [5]. Each node has a cache. A bus connects the memory
and caches of the nodes. When a node accesses a memory cell, it reads the cell
from the bus and keeps a copy in its cache. Several copies of the same memory
cell can be kept in different nodes. The MSI protocol ensures data coherence by
keeping each cache in one of the three states: Modified, Shared, and Invalid [14].
Two properties are verified in the experiments with 4 to 20 nodes (Figure 2). The
property masteri specifies that at most one node can be the bus master. The
other property mOsiml states that if the data at a memory location is modified
by a node, it cannot be shared or modified by another node at the same time.

In both figures, we show the verification time of the monolithic interpolation-
based Model Checking (monolithic), the verification time of assume-guarantee
reasoning using the CDNF algorithm (cdnf), and those using the OBDD learning
algorithm (bdd). We also identify the best algorithm in each experiment.

For both properties, assume-guarantee reasoning outperforms monolithic Model
Checking consistently. Between the two learning algorithms used in assume-
guarantee reasoning, their performances are almost indistinguishable for the
property masterl. The OBDD learning algorithm wins the CDNF algorithm
in all experiments in the property mOsimi. In the experiment with 11 nodes, the
contextual assumption generated by the OBDD learning algorithm concludes the
verification in less a minutes. The CDNF algorithm, on the other hand, takes
more than two and a half minutes to verify the same property. It is in fact slower
than monolithic Model Checking in this experiment.

PCI This example models the PCI bus protocol with two levels of arbiters con-
trolling data transmission [4]. For 2n PCI devices, we create a first-level arbiter
and n second-level arbiters. The first-level arbiter connects all second-level ar-
biters. Each second-level arbiter connects two devices. When a device wants to
start a transaction, it first requests the permission from its second-level arbiter.
The second-level arbiter then selects a request between its devices. The first-
level arbiter in turn grants the permission to the selected request from one of
the second-level arbiters. We check that the first two nodes do not consider the

11

nodes 4 5 6 7 8 9 10 11 12

monolithic| 3s | 5s 9s |13s| 1bs 33s 44s | 1m41s [1m48s
cdnf Os | Os 2s |1s| 3s 6s 4s 7s Ts
bdd Os | Os 2s | 2s| 3s 6s 5s 7s 8s
nodes 13| 14 15 |16 | 17 18 19 20 avg

monolithic|54s |1m30s|1m51s| 50s [3m54s|5m38s|5m32s| 5m16s |1m49s
cdnf 11s| 18s 7s |16s| 48s | 28s | 12s |1ml2s| 14s
bdd 11s| 18s 8s |[16s| 56s | 28s | 14s |1m10s| 15s

(a) Results for the Property master1

nodes 4 5 6 7 8 9 10 11 12

monolithic| 55s |5mb4s| 46s |4m21s|22m19s| 2m7s | 2m37s | 2m29s | 9m49s
cdnf 2ml4s | 48s 54s | 1m38s | 1m18s | Im17s | 2m43s | 2m35s | 2m43s
bdd 2m10s | 22s 44s |[1m35s/1m14s|1m14s{2m4dls| 46s |2m38s
nodes 13 14 15 16 17 18 19 20 avg

monolithic| 6m15s |2m44s|11m35s| 4m7s [18m55s| 9Im33s [10m12s| 9m31s | Tm18s
cdnf 2m17s | 2m9s | 3mds | 2m4dds | 2m51ls | 2m35s | 3m45s | 4m36s | 2m22s
bdd 2m14s|2m8s| 3m2s [2m29s|2m50s|2m32s|3m26s|4m13s| 2m8s

(b) Results for the Property mOsim1

Fig. 2. Experimental Results for the MSI Protocol

bus to be idle at the same time. Figure 3 gives the experimental results. Assume-
guarantee reasoning significantly outperforms monolithic Model Checking in this
case. The difference between both learning algorithms is however negligible ex-
cept for the experiment with 17 nodes. The CDNF algorithm proves the property
in 37 seconds and wins the OBDD learning algorithm by 8 seconds. Monolithic
Model Checking is unable to conclude the verification in two and a half minutes.

nodes 4 5 6 7 8 9 10 11 12
monolithic| 15s 15s 25s 34s 46s 49s | 1m2s |1m20s|1m17s

cdnf 6s 10s | 11s | 14s | 16s | 17s | 22s | 24s | 28s

bdd 6s 10s | 11s | 14s | 16s | 17s | 22s 27s | 24s

nodes 13 14 15 16 17 18 19 20 avg
monolithic|1m25s|1m40s|1m48s|{1m54s|{2m45s|2m24s|2m34s|3m17s|1m26s

cdnf 30s | 33s | 27s | 30s | 37s | 40s | 54s | 50s | 26s

bdd 31s 34s 28s | 29s | 45s | 4l1s 55s | 50s | 27s

Fig. 3. Experimental Results for PCI

Bus Control Protocol In this bus control protocol, several nodes are attached to
the bus [10]. Each node is assigned to a unique priority. A counter is used to
decide the ownership of the bus. The node with priority p can send data when
the counter has value p. If a node sends data, the counter is reset. Otherwise,

12

nodes 34135| 36 |37]38| 39 |40 41 42
monolithic|32s|33s| 32s |33s|49s|2m25s|41s| 40s [1m28s
cdnf 21s(18s| 21s |22s|21s| 25s |34s| 28s 32s
bdd 21s|22s| 25s [24s|25s| 26s [28s| 31s 25s

nodes 43 144 | 45 |46 | 47| 48 |49 50 avg
monolithic|52s|52s |[1mO0s| 54s | 54s|1m12s|47s|15m42s(2m33s

cdnf 34s|31s| 33s |38s|38s| 39s |50s| 28s 43s

bdd 31s|36s| 33s |43s|26s| 40s |42s| 42s 44s

Fig. 4. Experimental Results for the Bus Control Protocol

the counter is incremented by one. We check that the first node cannot send
data on the bus together with any other node at the same time. Figure 4 gives
the results for the experiments with 34 to 50 nodes. Assume-guarantee reasoning
clearly outperforms monolithic Model Checking. The CDNF algorithm and the
OBDD learning algorithm win 10 and 5 of the experiments respectively. They
are tied at the first place for the remaining 2 experiments.

Gigamaz In the Gigamax cache coherence protocol, several processors and a
memory is attached to a bus [9]. Each processor has a local cache. A local cache
can be in the Invalid, Shared, or the Owned state. Among the memory and
processors, at most one can be the bus master and issues commands on the
bus. When a processor is the bus master and issues a ReadOwned command, its
local cache state becomes Owned. A processor can write to the bus if its local
cache state is Owned. For this test case, we consider the experiments with 21 to
37 nodes and verify that the memory is written by at most one processor. The
results are shown in Figure 5. The CDNF algorithm outperforms the other two
in 14 experiments whereas the OBDD learning algorithm wins the remaining 3
experiments with a small margin. The OBDD learning algorithm performs just
slightly better than monolithic Model Checking on average.

nodes 21 22 23 24 25 26 27 28 29

monolithic (sec)| 4.827| 5.471| 5.885| 6.236 | 7.030| 8.020 | 8.380| 9.562 |10.329

cdnf (sec) 4.656| 5.150| 5.517| 6.099| 6.789 | 7.064| 8.213| 8.958 | 9.838

bdd (sec) 4.857| 5.328| 5.741| 6.339| 6.696| 7.693 | 8.085| 8.814|10.086

nodes 30 31 32 33 34 35 36 37 avg

monolithic (sec)|11.503 [12.107 | 13.175 | 14.145 | 14.890 | 15.791 | 17.009 | 18.518 | 14.524

cdnf (sec) 10.803(11.579(12.904(|13.977|14.689|15.658|16.962|17.966|14.065

bdd (sec) 11.399 | 11.946 | 13.010 | 14.003 | 15.267 | 16.091 | 17.256 | 18.284 | 14.324

Fig. 5. Experimental Results for the Gigamax Cache Coherence Protocol

Synchronous Bus Arbiters The synchronous bus arbiter is a bus arbitration pro-
tocol for synchronous circuits [17]. In this protocol, n nodes are connected in a

13

ring. A token is passed around the nodes. A node can request and acknowledge
the token from the node next to it. The node having the token has the exclu-
sive right to access the bus. For this test case, we check that there is at most
one node can access to the bus. Figure 6 shows the results. Assume-guarantee
reasoning and monolithic Model Checking perform almost identically on smaller
experiments. For experiments with more than 12 nodes, assume-guarantee rea-
soning is slightly better. Monolithic Model Checking however is able to finish
the experiment with 20 nodes by 40 seconds. Subsequently, monolithic Model
Checking is comparable to assume-guarantee reasoning on average.

nodes 4 5 6 7 8 9 10 11 12
monolithic| Os 1s 3s 5s 10s 18s 33s 54s 1m38s
cdnf Os 1s 3s 5s 10s 18s 32s 54s |1m24s
bdd Os 1s 3s 5s 10s 18s 33s 55s 1m30s

nodes 13 14 15 16 17 18 19 20 avg

monolithic|2m11s|3m33s | 5m9s |7m18s| 10mlls| 14m0s [19m13s|25m17s| 5m20s
cdnf 2m13s [3m20s|4m54s|7m8s |[10m10s| 13m52s |19mb5s| 25m57s |5m18s
bdd 2m16s | 3m27s | 5m3s |7m21s{10m10s{13m50s(19mlls| 26m4ds | 5m21s

Fig. 6. Experimental Results for Synchronous Bus Arbiters

7 Conclusion

Using two exact learning algorithms for Boolean functions, the performance of
assume-guarantee reasoning is compared against the monolithic interpolation-
based Model Checking algorithm in this paper. Our experiments show that au-
tomated assume-guarantee reasoning through implicit learning can outperform
monolithic Model Checking in some parametrized hardware test cases. For the
OBDD learning algorithm, we demonstrate a simple technique to invert queries
from the learning algorithms. The technique improves the performance of the
OBDD learning algorithm in assume-guarantee reasoning.

In three of the five test cases, assume-guarantee reasoning significantly im-
proves the average verification time. The compositional technique slightly out-
performs monolithic Model Checking in the remaining two test cases. Between
the two learning algorithms, the difference however is marginal except the prop-
erty mOsimi1 in the MSI protocol. The OBDD learning algorithm clearly domi-
nates the CDNF algorithm in this case. On the other hand, the CDNF algorithm
performs slightly better than the OBDD learning algorithm in all other cases.

The simple modification of the OBDD learning algorithm shows that learn-
ing algorithms may not be trivially applied in the learning-based approach to
assume-guarantee reasoning. Further optimizations are needed in this applica-
tion domain. Particularly, the performances of the CDNF algorithm and the
OBDD learning algorithm are sensitive to variable orderings. More research on
this regard may further improve the scalability of assume-guarantee reasoning.

14

References

1.

2.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87-106

Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE
Transaction on Computers C-35(8) (1986)

Bshouty, N.H.: Exact learning boolean function via the monotone theory. Infor-
mation and Computation 123(1) (1995) 146-153

Campos, S.V.A., Clarke, E.M., Marrero, W.R., Minea, M.: Verifying the perfor-
mance of the PCI local bus using symbolic techniques. In: ICCD. (1995) 72-78
Cantin, J.F., Lipasti, M.H., Smith, J.E.: Dynamic verification of cache coherence
protocols. In: Workshop on Memory Performance Issues. (2001)

Chaki, S., Strichman, O.: Optimized L*-based assume-guarantee reasoning. In
Grumberg, O., Huth, M., eds.: TACAS. Volume 4424 of LNCS., Springer (2007)
276-291

Chen, Y.F., Clarke, E.M., Farzan, A., Tsai, M.H., Tsay, Y.K., Wang, B.Y.: Auto-
mated assume-guarantee reasoning through implicit learning. In Cook, B., Jackson,
P., Touili, T., eds.: CAV. Volume 6174 of LNCS., Springer (2010)

Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal
separating DFA’s for compositional verification. In Kowalewski, S., Philippou, A.,
eds.: TACAS. Volume 5505 of LNCS., Springer (2009) 31-45

Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new Symbolic
Model Verifier. In N. Halbwachs, D. Peled, eds.: CAV. Number 1633 in LNCS,
Springer (1999) 495-499

Clarke, E.M., Kroning, D.: SMV example: Bus protocol (2002) PowerPoint file.
Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In Garavel, H., Hatcliff, J., eds.: TACAS. Volume 2619
of LNCS., Springer (2003) 331-346

Gavalda, R., Guijarro, D.: Learning ordered binary decision diagrams. In Jantke,
K.P., Shinohara, T., Zeugmann, T., eds.: Algorithmic Learning Theory. Volume
997 of LNCS., Springer (1995) 228-238

Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compo-
sitional verification. Formal Methods in System Design 32(3) (2008) 285-301
Handy, J.: The Cache Memory Book. Academic Press (1998)

Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic
by algorithmic learning, decision procedure, and predicate abstraction. In: VM CAL
Volume 5944 of LNCS., Springer (2010) 180-196

Kimura, S., Clarke, E.M.: A parallel algorithm for constructing binary decision
diagrams. In: ICCD. (1990) 220-223

McMillan, K.L.: The SMV system, symbolic model checking - an approach. Tech-
nical Report CMU-CS-92-131, Carnegie Mellon University (1992)

McMillan, K.L.: Interpolation and SAT-based model checking. In Hunt Jr., W.A .
Somenzi, F., eds.: CAV. Volume 2725 of LNCS., Springer (2003) 1-13

Nakamura, A.: An efficient query learning algorithm for ordered binary decision
diagrams. Information and Computation 201(2) (2005) 178-198

Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verifi-
cation by learning assumptions. Formal Methods in System Design 32(3) (2008)
207-234

Sinha, N., Clarke, E.M.: SAT-based compositional verification using lazy learning.
In Damm, W., Hermanns, H., eds.: CAV. Volume 4590 of LNCS., Springer (2007)
39-54

15

