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Abstract. Intuitively, reflection is the feature that can represent and
reason meta-level entities at the object level. In this paper, we use a
reflective language to implement a local model checker and analyze the
implementation. The implementation is greatly simplified by reflection.
Further, we show the feature can be applied to verify the concise im-
plementation rather easily. The simplicity of our approach suggests that
reflection may be useful in the implementation and verification of other
explicit-state model checking algorithms.
Key words:Reflection, Rewriting Logic, Model Checking, Logic Pro-
gramming

1 Introduction

Model checking has become a popular technique to improve system quality dur-
ing the past decade. Thanks to its success in hardware verification, many model
checkers are being developed in research laboratories and sold by companies. But
building a model checker requires sophisticated programming and algorithm-
developing skills. A typical model checker may contain tens, even hundreds, of
thousands of lines of C code. Since model checkers have been deployed in the
design of many critical systems, one wonders whether there is a way to ensure
the quality of these verification tools.

In this paper, we use rewriting logic [15] as the formalism to verify a working
model checker. Following the framework proposed in [23, 10, 21], we implement
a model checker in Maude, a logic programming language based on rewriting
logic [6]. Unlike other model checkers which use different languages in their
implementation and model specification, the Maude language is also used as the
modeling language of our model checker.

The key to use Maude as the algorithm implementation and the model spec-
ification language is reflection. Intuitively, reflection is the feature that can rep-
resent and reason about meta-level entities at the object level. In the framework
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of [23, 10, 21], model specifications reside in the meta level. The model checking
algorithm inspects meta-level specifications by reflection. Hence, we can imple-
ment a model checking algorithm in Maude. It is unnecessary to have different
languages in different levels. Additionally model simulation can be performed by
reflection. This simplifies our implementation in Maude significantly.

Furthermore, we can verify our implementation by another application of
reflection. While verifying our model checker, the implementation becomes an
entity in the meta level. We are able to use other object-level model checkers to
analyze our implementation. Specifically, we verify our model checker by two dif-
ferent model checkers — the abstract model checking algorithm and the Maude
built-in LTL model checker in [10].

The advantages of our approach are its simplicity and clarity. With the re-
flective language Maude, the model checking paradigm is modeled as two levels
of computation. Using the same principle, it is straightforward to model the
verification of model checkers as another level of computation. We feel the same
task would be too complicated to achieve had the concept of reflection not been
introduced in the framework. Reflection in declarative languages is not only of
theoretical endeavor, but also of practical interests.

1.1 Related Work

Model checking algorithms have been formally verified by proof assistants [19,
13]. In these work, the semantics and algorithms are formalized in the meta
logic of proof assistants. Verifying model checking algorithms amounts to proving
that the outcomes of algorithms agree with the semantics in the meta logic. In
principle, it is possible to verify systems that can be formalized in the meta logic.
But intensive human intervention is required.

An LTL model checker is available in recent releases of Maude [10]. The per-
formance of the built-in LTL model checker is comparable to the model checker
Spin [11]. But the implementation is written in C++. It is difficult for verifica-
tion tool developers to modify and improve the internal model checker.

The inconvenience is resolved in [21] where a proof-theoretic µ-calculus model
checking algorithm [9, 20, 24] is presented. The µ-calculus model checking algo-
rithm is implemented in an older version of Maude, and requires extension to
core Maude system for technical reasons. Subsequently, it is less efficient than
what we present in this paper.

In [2, 7], reflection is used for reasoning families of membership equational
theories. Metatheorems about families of theories are represented and proved as
theorems at object level by reflection. The idea is realized in the theorem prover
ITP for membership equational theories [5].

1.2 Outline

The paper is organized as follows. Section 2 provides necessary technical back-
grounds. An abstract µ-calculus model checking algorithm is presented in Sec-
tion 3. It is followed by its concrete implementation in Section 4. We use the
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concrete implementation in Section 4 to verify properties of Peterson’s algorithm
in Section 5. The µ-calculus model checker is then verified by two different algo-
rithms in Section 6. Finally, we discuss future work and conclude the paper in
Section 7.

2 Preliminaries

We briefly review µ-calculus model checking and rewriting logic. For a more
detailed exposition, the reader is referred to [12, 9, 20, 24, 8, 4, 10].

2.1 µ-Calculus

A µ-calculus formula ϕ is constructed by the following rules [12]:

– propositional variables: X, Y, Z, . . .;
– atomic propositions (AP): p, q, r, . . .;
– Boolean operators: ¬ϕ, ϕ ∨ ϕ′;
– modal existential next-state operator: 〈 ¯̀〉ϕ, where ¯̀ is a set of transition

labels;
– greatest fixed-point operator: νX.ϕ, where the bound variable X occurs

positively in ϕ.

As usual, we use derived operators such as ϕ ∧ ϕ′(≡ ¬(¬ϕ ∨ ¬ϕ′)), [¯̀]ϕ(≡
¬〈¯̀〉¬ϕ) and µX.ϕ(≡ ¬νX.¬ϕ[¬X/X ]).

The semantics of µ-calculus formulae is defined over a Kripke structure K =
(S, Labl,→, s0, P ) where S is the set of states, Labl the set of transition labels,
→⊆ S ×Labl × S the transition relation, s0 ∈ S the initial state, and P ∈ S →
2AP the labeling function which maps each state to a set of atomic propositions
satisfied in the state. For clarity, we write s

a
→ t for (s, a, t) ∈→. A valuation ρ is

a function mapping propositional variables to subsets of S. Let R ⊆ S. We write
ρ[X 7→ R] for the valuation mapping X to R and Y to ρ(Y ) for X 6= Y . Given
the valuation ρ, the semantic function [[ϕ]]ρ for a µ-calculus formula ϕ computes
the set of states satisfying ϕ under the valuation ρ:

– [[X ]]ρ = ρ(X);

– [[p]]ρ = {s ∈ S : p ∈ P (s)};
– [[¬ϕ]]ρ = S \ [[ϕ]]ρ;
– [[ϕ ∨ ϕ′]]ρ = [[ϕ]]ρ ∪ [[ϕ′]]ρ;

– [[〈¯̀〉ϕ]]ρ = {s ∈ S : ∃a ∈ { ¯̀}, t ∈ S.s
a
→ t and t ∈ [[ϕ]]ρ};

– [[νX.ϕ]]ρ =
⋃

{R ⊆ S : R ⊆ [[ϕ]](ρ[X 7→ R])}.

For any µ-calculus formula ϕ and Kripke structure K = (S, L,→, s0, P ), we
write K, s |= ϕ when s ∈ [[ϕ]]∅. The µ-calculus model checking problem is to
determine whether K, s0 |= ϕ.
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In order to solve the µ-calculus model checking problem, various algorithms
have been developed (see, for example, [3]). In tableau-based local model check-
ing algorithms [9, 20], the problem is solved by constructing proofs of the judg-
ment K, s ` ϕ. The tableau-based algorithms were then simplified to a set of
reduction rules in [24]. The following extension to the greatest fixed point oper-
ator, νX{r̄}ϕ where r̄ is a set of states, is introduced in [24]:

[[νX{r̄}ϕ]]ρ =
⋃

{R ⊆ S : R ⊆ {r̄} ∪ [[ϕ]](ρ[X 7→ R])} .

Note that νX{}ϕ ≡ νX.ϕ. Any fixed-point operator can be translated to
its extended form syntactically. Intuitively, the formula νX{r̄}ϕ records previ-
ously visited states in {r̄}, which is handy for co-inductive proofs. The extension
reduces the side condition of tableau-based algorithms to membership check-
ing and allows the proof search to be performed by rewriting. Given a Kripke
structure K = (S, Labl,→, s0, P ) and a µ-calculus formula ϕ, the following rules
reduce K, s ` ϕ to Boolean values true or false [24]:

– (K, s ` p) = true if p ∈ P (s);
– (K, s ` p) = false if p 6∈ P (s);
– (K, s ` false) = false;
– (K, s ` ¬ϕ) = ¬b where (K, s ` ϕ) = b;
– (K, s ` ϕ ∨ ϕ′) = b0 ∨ b1 where (K, s ` ϕ) = b0 and (K, s ` ϕ′) = b1;
– (K, s ` 〈¯̀〉ϕ) = true if (K, t ` ϕ) = true for some t and a such that a ∈ { ¯̀}

and s
a
→ t;

– (K, s ` νX{r̄}ϕ) = true if s ∈ {r̄};
– (K, s ` νX{r̄}ϕ) = (K, s ` ϕ[νX{s, r̄}ϕ/X ]) if s 6∈ {r̄}.

Let K be a finite Kripke structure and ϕ a µ-calculus formula. It is shown
that (K, s ` ϕ) = true if and only if K, s |= ϕ [24].

2.2 Rewriting Logic

Since its introduction in [15], rewriting logic has been used as a unified formalism
for modeling concurrency [15, 16, 14] and as a logical framework [1]. It is not hard
to see that rewriting logic is capable of property and model specification [23, 10,
21]. In the following, we will briefly review rewriting logic and its verification
framework as proposed in [10].

In rewriting logic, a term is constructed by function and constant symbols.
Each term belongs to one or several sorts. Equations specify equivalent terms.
Rewriting rules specify how to transform a term into another. A rewrite theory
consists of equations and rewriting rules for terms. If a rewrite theory does not
contain any rewriting rules, we also call it an equational theory.

We follow the syntax of Maude in our presentation. Maude is a term rewriting
system based on rewriting logic. In Maude, function and constant symbols are
declared by the keyword op. Sorts are declared by the keyword sort. Equations
are specified by eq lhs = rhs ; conditional equations are specified by ceq lhs =

4



rhs if cond. Similarly, rewriting rules and conditional rewriting rules are defined
by rl [l] : lhs ⇒ rhs and crl [l] : lhs ⇒ rhs if cond respectively, where l is
the label of the rule. The left-hand side of equations and rewriting rules allows
pattern matching. Since there may be several ways to match a term, applying
a rewriting rule to a given term may yield multiple results. All results obtained
by any of these applications are admissible in rewriting logic.

For any term t, we write [t] for its equivalence class defined by the equations
in a rewrite theory. Let R be a rewrite theory and t, t′ two terms in R. We write

R `l [t] → [t′]

if there is a rule labeled l in R that rewrites t to t′.
In rewriting logic, there is a universal theory U such that any rewrite theory

R and a term t can be represented as meta-level terms R and t in U respectively.
Furthermore, we have

R `l [t] → [t′] ⇔ U `l,n [R, t] → [R, t′]

if t′ is the n-th result obtained by applying the rewriting rule labeled l to t in
R. By the universal theory U , we can manipulate meta-level terms at the object
level. We call the feature that can represent and reason meta-level terms at the
object level as reflection.

3 An Abstract µ-Calculus Model Checker

sorts MuVariable MuFormula

ops False True : ⇀ MuFormula
op ¬ : MuFormula ⇀ MuFormula
op ∨ : MuFormula MuFormula ⇀ MuFormula
op ∧ : MuFormula MuFormula ⇀ MuFormula
op 〈 〉 : QidList MuFormula ⇀ MuFormula
op [ ] : QidList MuFormula ⇀ MuFormula
op Nu : MuVariable TermSet MuFormula ⇀ MuFormula
op Mu : MuVariable TermSet MuFormula ⇀ MuFormula

Fig. 1. Symbols for µ-Calculus Terms

We begin with the representation of µ-calculus formulae. A µ-calculus for-
mula is represented by a term of sort MuFormula. Figure 1 shows the symbols
in MuFormula terms. In addition to the sort MuFormula, the sort MuVariable
is declared to be used in fixed points. The underlines ( ) denote the positions
of parameters. For instance, the declaration ∧ specifies that the symbol ∧ is
an infix operator. For modal operators, transition labels are quoted identifiers
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corresponding to rewriting rule labels. Hence the set of transition labels ¯̀ in
〈¯̀〉ϕ and [¯̀]ϕ is denoted by the built-in sort QidList in 〈 〉 and [ ] respectively.
Finally, the state set r̄ in the fixed point operators µX{r̄}ϕ and νX{r̄}ϕ is
represented as a set of meta-level terms. We define the sort TermSet for the rep-
resentation of meta-level term sets. The symbols Mu and Nu form terms
of sort MuFormula from a MuVariable term, a TermSet term, and a MuFormula
term.

eq True = ¬ False
eq ¬ ¬ f = f

eq f ∧ g = ¬ (¬ f ∨ ¬ g)
eq [ L ] f = ¬ (〈 L 〉 ¬ f)
eq Mu X TS f = ¬ (Nu X TS subst (¬ f , X, ¬ X))

Fig. 2. Equations for Derived Operators

To reduce the number of rules in our model checker, Figure 2 provides a set
of equations for derived constant and function symbols. These equations follow
directly from the corresponding logical equivalence relations. For the greatest
fixed point, the substitution of µ-calculus formula is needed. The function subst
(f , Z, g) replaces free occurrences of the variable Z in f by g (Figure 3). If f
is the term False or an atomic proposition, subst leaves it unchanged. If f is a
MuVariable term not equal to Z, the MuVariable term is returned; otherwise, it
is replaced by g. For negative, disjunctive, and existential modal operators, subst
invokes itself recursively. Finally, if f is a fixed point formula, subst substitutes
the variable Z if Z is not bound. Note that we do not need rules for derived
operators.

eq subst (False, Z, g) = False
eq subst (p, Z, g) = p

ceq subst (X, Z, g) = X if X 6= Z

ceq subst (X, Z, g) = g if X = Z

eq subst (¬ f , Z, g) = ¬ subst (f , Z, g)
eq subst (f0 ∨ f1), Z, g) = subst (f0, Z, g) ∨ subst (f1, Z, g)
eq subst (〈 L 〉 f , Z, g) = 〈 L 〉 subst (f , Z, g)
ceq subst (Nu X TS f , Z, g) = Nu X TS (subst (f , Z, g)) if X 6= Z

ceq subst (Nu X TS f , Z, g) = Nu X TS f if X = Z

Fig. 3. Definition of subst

We represent Winskel’s reduction rules as rewriting rules for entailment
terms.1 Let K be a quoted identifier denoting the name of a rewrite theory,

1 Equational theory would suffice for model checking, but we need rule labels for formal
verification.
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eq exists (K, s, f , nil, N) = false
eq exists (K, s, f , l L, N) =

if U `l,N [K, s] → [K, t] then

(K t ` f) or-else (exists (K, s, f , l L, N + 1))
else

exists (K, s, f , L, 0)
fi

Fig. 4. Definition of exists

s a meta-level term representing a state, and f a MuFormula term. The entail-
ment term K s ` f is of sort Bool. The idea is to rewrite the entailment term
to false or true for any Kripke structure specified by the rewrite theory named
K. It is crucial to use a meta-level term s in entailment terms. The rules of the
rewrite theory K would rewrite the state s had we used the object-level term s
in entailment terms.2

It is straightforward to write the rules for Boolean operators in Maude.
rl [ff ] : K s ` False ⇒ false
rl [neg ] : K s ` ¬ f ⇒ not (K s ` f)
rl [disj] : K s ` f0 ∨ f1 ⇒ (K s ` f0) or-else (K s ` f1)

The rule ff rewrites the entailment term K s ` False to the built-in Bool
constant term false. Similarly, the rule neg rewrites K s ` ¬ f to not (K s `
f). The built-in Bool operator not waits until K s ` f rewrites to either false or
true, and then rewrites the Bool constant term to its complementary term. The
rule disj uses the built-in short-circuited Boolean operator or-else. Observe how
the computation is performed by a sequence of rewrites in rewriting logic.

For the existential modal operator, we use the following rule:
rl [ex] : K s ` 〈L〉 f ⇒ exists (K, s, f , L, 0)

The function exists (K, s, f , L, N) checks if it is possible to rewrite the
entailment K t ` f to true at an L-successor t of s, where N serves as a counter
(Figure 4). The built-in QidList term nil represents the empty quoted identifier
list. Notice the semantics differ from those in [10]. Our semantics do not have
implicit self-loops. If there is no transition label, the function returns false.

On the other hand, the universal theory U finds the N -th rewriting result t
by applying the rule l in K. Then the function exists rewrites the new entailment
term K t ` f . If it does not rewrite to true, the next successor of s will be checked
by exists (K, s, f , l L, N + 1). On the other hand, if there is no successor of the
current label, we look for a successor by applying the next rule.

Observe how the universal theory U is used to find the successor t of the
current state s. The distinction between the object and meta levels clarifies
the relation between the model specification and the algorithm implementation.
Furthermore, model simulation by reflection allows us to present the algorithm
succinctly.

2 The calligraphic K is the rewrite theory with the quoted name K.
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It is rather straightforward to write the greatest fixed point rules by substi-
tution:

crl [nu] : K s ` Nu X TS f ⇒ true
if s isIn TS

crl [nu] : K s ` Nu X TS f ⇒ K s ` subst (f , X , Nu X ({s} U TS) f)
if not (s isIn TS)

The nu rules check whether the current state s has been visited. If so, it
rewrites the entailment term to true. Otherwise, the current state is added to
the meta-level term set TS and the new set is used in the unfolding of the fixed-
point formula. The function isIn checks whether a meta-level term is in a term
set. Also, the symbol U implements the union of term sets. Both can be easily
defined in an equational theory.

4 Concrete Implementation

The rules shown in Section 3 use the pre-defined Maude equations for or-else.
Since we cannot fully control internal strategies at object level, we do not know
how or-else works internally. In this section, we will get rid of this uncertainty
and provide a concrete implementation of the rules.

Consider the definition of exists in Figure 4. We would like the term (K t `
f) or-else (exists (K, s, f , l L, N +1)) to rewrite K t ` f first, even though there
are equational rules for exists in the other subterm. In order not to reduce the
second subterm unintentionally, we will not construct a term with the function
symbol exists until necessary.

sort SuccResult
op b , , c : Term QidList Nat ⇀ SuccResult
op none : ⇀ SuccResult
op succ : Qid Term QidList Nat ⇀ SuccResult
eq succ (K, s, nil, N) = none
eq succ (K, s, l L, N) =

if U `l,N [K, s] → [K, t] then

b t, l L, N + 1 c
else

succ (K, s, L, 0)
fi

Fig. 5. Definition of succ

To realize the idea, we define a new function succ (K, s, L, N) which returns
a SuccResult term b t, L′, N ′ c if s has a successor t by applying the rules in
L (Figure 5). If L is nil, it returns none. Otherwise, succ (K, s, l L, N) checks
whether s has the N -th successor t by applying rule l. If so, it returns b t, l L,
N +1 c. If not, it returns another successor of s by applying the remaining rules
in L.
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op wrapper : Bool Qid Term MuFormula SuccResult ⇀ Bool
eq wrapper (true, K, s, f , R) = true
eq wrapper (false, K, s, f , none) = false
eq wrapper (false, K, s, f , b t, L, N c) =

wrapper (K t ` f , K, s, f , succ (K, s, L, N))

Fig. 6. Definition of wrapper

sorts Mode Proc

op : Proc Proc ⇀ Proc
ops outCS reqCS inCS : ⇀ Mode
op C , , B : Nat Mode Bool ⇀ Proc

rl [request0] : C 0, outCS, X B C 1, N , Y B ⇒ C 0 , reqCS, Y B C 1, N , Y B

rl [request1] : C 0, M , X B C 1, outCS, Y B ⇒ C 0, M , X B C 1, reqCS, not X B

crl [enter0] : C 0, reqCS, X B C 1, N , Y B ⇒ C 0, inCS, X B C 1, N , Y B

if N = outCS or X 6= Y

crl [enter1] : C 0, M , X B C 1, reqCS, Y B ⇒ C 0, M , X B C 1, inCS, Y B

if M = outCS or X = Y

rl [leave] : C i, inCS, X B C j, N , Y B ⇒ C i, outCS, X B C j, N , Y B

Fig. 7. Peterson’s Algorithm

With the function succ, we can implement the rule ex by the wrapper function
(Figure 6) as follows.

rl [ex] : K s ` 〈 L 〉 f ⇒ wrapper (false, K, s, f , succ (K, s, L, 0))

To check whether s satisfies 〈 L 〉 f , we compute the first successor of s by
succ (K, s, L, 0) and pass the result to wrapper. The wrapper function will check
whether the successor satisfies f and compute the next successor. Observe that
wrapper does not have a subterm formed by wrapper.

We can use wrapper to implement the rule disj as well. The idea is to form a
SuccResult term without invoking succ.

rl [disj] : K s ` f0 ∨ f1 ⇒ wrapper (K s ` f0, K, s, f1, b s, nil, 0 c)
Similarly, the nu rules can be simplified by wrapper:

rl [nu] : K s ` Nu X TS f ⇒
wrapper (s isIn TS, K, s, subst (f , X , Nu X ({ s } U TS) f), b s, nil, 0 c)

5 Verification of Peterson’s Algorithm

We verify Peterson’s algorithm [18] by our model checker as an example. The
mutual exclusion algorithm is shown in Figure 7. Let i be 0 or 1, M a Mode
term (outCS, reqCS, or inCS), and X a Bool term, a process term of sort Proc
is represented by C i, M , X B. The rules request0, request1, enter0, enter1,
and leave implement the transitions of Peterson’s algorithm by rewriting the
composition of two process terms.
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In the rule request0, process 0 moves from outCS to reqCS by setting its local
Bool term to that of process 1. When process 0 is in reqCS, it moves to inCS if
process 1 is in outCS or the two local Bool terms are not equal (the rule enter0).
Finally, any process can move out of inCS by the rule leave.

Define the initial state term init to be C 0, outCS, false B C 1, outCS, true
B and the QidList term labels to be (’request0 ’request1 ’enter0 ’enter1 ’leave).
We are interested in verifying whether the two processes cannot be in the critical
section at the same time. Hence, we check whether the entailment term
eq prop0 = ’PETERSON init ` Nu X {} (¬ in-cs (0) ∨ ¬ in-cs (1)) ∧ [ labels ] X

rewrites to true or not. The rules for the atomic proposition in-cs (i) is defined
as follows.

rl [AP] : ’PETERSON s ` in-cs (i) ⇒ critical (s, i)

eq critical ( C 0, M , X B P , 0) = (M = inCS)
eq critical ( C 1, N , Y B P , 1) = (N = inCS)

Similarly, we can check if process 0 always enters the critical section first.
The corresponding entailment term is the following:
eq prop1 = ’PETERSON init ` Mu X {} (in-cs (0) ∨ (¬ in-cs (1) ∧ [ labels ] X))

Finally, we would like to check if process 0 can enter the critical section
infinitely often.
eq prop2 = ’PETERSON init ` Nu X {} Mu Y {} 〈 labels 〉 ((in-cs (0) ∧ X) ∨ Y)

The entailment terms prop0, prop1, and prop2 rewrite to true, false, and true
in 0.5, �0.1, �0.1 seconds by Maude respectively.3 The model checker contains
250 lines of Maude code. The concise implementation shows that reflection in-
deed helps in writing an explicit-state model checker. Since model simulation in
explicit-state model checkers is implemented by the universal theory U , program-
mers can pay more attention to the model checking algorithm. Additionally, the
short implementation may be feasible for formal analysis. Theorem provers based
on rewriting logic (such as ITP [5]) may be used to verify our implementation
semi-automatically.

6 Model Checking µ-Calculus Model Checker

The correspondence between Winskel’s rules and the concrete implementation
is less obvious than that of abstract rules. Additionally, a typo or a missing
case in the definitions of subst, succ, wrapper, and term sets may make our
implementation incorrect, even if the correspondence is ensured. The verification
of Peterson’s algorithm in Section 5 only shows that our model checker has one

intended behavior. It does not imply all internal rewriting strategies will produce
the same result. Particularly, if our model checker could yield contradictory
results or fail to rewrite an entailment term by different strategies, the user
would be very confused.

3 The experiments are conducted in a 2.8GHz Pentium 4 with 2GB memory running
Fedora Core 4 Linux system.
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These questions call for the analysis of our model checker. Since the abstract
algorithm is known to be sound, we are more interested in the correctness of our
particular implementation. Specifically, we would like to verify if the concrete
implementation always rewrites the entailment terms prop0, prop1, and prop2 to
true, false, and true respectively.

This problem can be formalized as follows. Define a Kripke structure M0 =
(E, RL, ⇒, prop0, P ) where E is the set of all entailment terms, RL the set of
all rule labels, and

P (e) =







{ isTrue } if e = true
{ isFalse } if e = false
∅ otherwise

.

For any two entailment terms e and e′, e
l
⇒ e′ if e rewrites to e′ by applying the

rule l in our model checker. To verify whether the term prop0 always rewrites to
true, it amounts to checking whether M0 |= µX. isTrue ∨ [RL]X . Similarly, we
can define two Kripke structures M1 and M2 with initial states prop1 and prop2
respectively, and check M1 |= µX. isFalse ∨ [RL]X and M2 |= µX. isTrue ∨
[RL]X . Hence we can resolve the aforementioned questions if we solve these
model checking problems.

With the help of reflection, these problems can be solved rather easily. No-
tice that the Kripke structures M0, M1, and M2 are infinite-state structures.
There are countably infinite entailment terms in E. Fortunately, the number of
reachable entailment terms is finite because our model checker always termi-
nates. Since both the local model checking and the Maude LTL model checking
algorithms explore the reachable states only, they can be used to solve these
problems.

6.1 Checking with Abstract Local Model Checker

eq M e `̀ False = false
eq M e `̀ ¬ f = ¬ (M e `̀ f)
eq M e `̀ f0 ∨ f1 = (M e `̀ f0) or-else (M e `̀ f1)
eq M e `̀ 〈 L 〉 f = meta-exists (M , e, f , L, 0, false)
ceq M e `̀ Nu X TS f = true

if e isIn TS

ceq M e `̀ Nu X TS f = M e `̀ subst (f , X, Nu X ({ e } U TS) f)
if not (e isIn TS)

Fig. 8. Abstract Local Model Checker

Let M be the quoted identifier of a model checking theory, e an entailment
term, and f a MuFormula term. We define the abstract entailment term M e
`̀ f to be of sort Bool. It is easy to implement Winskel’s reduction rules in an

11



equational theory (Figure 8). However, specifying properties of a model checker
exposes a subtle semantic issue. Consider the following entailment term:

’PETERSON init ` False.
It rewrites to false trivially. However, init also satisfies µX. isTrue ∨ [RL]X .

This is because our model checker always terminates after a finite number of
rewrites. Subsequently, the property [ L ] f will be true eventually for any
QidList term L and MuFormula term f . In the example, the least fixed point
rewrites to a disjunction after one unfolding. But the second disjunct rewrites
to true because there is no successor.

eq meta-exists (M , e, f , nil, N , hasSuccessor ) =
if hasSuccessor then false else M e `̀ f fi

eq meta-exists (M , e, f , l L, N , hasSuccessor ) =

if U `l,N [M, e] → [M, f ] then

(M f `̀ f) or-else meta-exists (M , e, l L, N + 1, true)

else

meta-exists (M , e, f , L, 0, hasSuccessor )
fi

Fig. 9. Definition of meta-exists

Our solution is to add implicit self-loops to irreducible terms. If an entailment
term has successors, we leave them unchanged. But if an entailment term does
not have any successor, we make the entailment term to be its only successor.
This can be done by the meta-exists function (Figure 9).

The function meta-exists checks if any successor has been found. If there is no
label, it reduces to false if the entailment term e has other successors. Otherwise,
meta-exists checks whether the current entailment term satisfies the MuFormula
term f . Effectively, the entailment term e is its only successor when no successor
can be found.

Let LOCAL-MODEL-CHECK be the name of our model checking rewrite the-
ory and rules the QidList (’AP ’ff ’neg ’disj ’ex ’nu). To verify whether prop0
will always rewrite to true, we check whether the entailment term
eq meta-prop0 = ’LOCAL-MODEL-CHECK prop0 `̀ Nu X {} isTrue ∨ [ rules ] X
reduces to true where

eq M e `̀ isTrue = (e = true).
Similarly, we define entailment terms meta-prop1 and meta-prop2 as follows.

eq meta-prop1 = ’LOCAL-MODEL-CHECK prop1 `̀ Nu X {} isFalse ∨ [ rules ] X
eq meta-prop2 = ’LOCAL-MODEL-CHECK prop2 `̀ Nu X {} isTrue ∨ [ rules ] X
where

eq M e `̀ isFalse = (e = false).
Maude reduces meta-prop0, meta-prop1, and meta-prop2 to true in 341.5, 0.3,

6.5 seconds respectively. Hence the abstract model checker verifies that our model
checker always rewrites prop0, prop1, and prop2 to true, false, and true respec-
tively, independent of rewrite strategies.
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6.2 Checking with Maude LTL Model Checker

Alternatively, we can use the built-in Maude LTL model checker to verify whether
prop0, prop1, and prop2 rewrite to true, false, and true regardless of rewrite strate-
gies. The Maude LTL model checker uses an automata-theoretic algorithm to
verify LTL properties. It is implemented in C++ and integrated in Maude ver-
sion 2 [10, 6].

The Maude LTL model contains several equational theories. Related LTL
symbols are defined in the theory LT L. The sorts Prop and Formula defined in
LT L are used for atomic proposition and LTL formula terms. We first define
two atomic proposition terms:

op isFalse isTrue : ⇀ Prop
To define the reduction rules for atomic proposition terms, we use the mod-

eling term |= defined in the theory SAT ISFACT ION :
subsort Entailment ≺ State
eq e |= isFalse = (e = false)
eq e |= isTrue = (e = true).

The term |= takes a term of sort State (defined in SAT ISFACT ION )
and a Prop term to form a Bool term. The equations for isFalse and isTrue tell
the Maude LTL model checker how to reduce a modeling term to a Bool term.

The property “p holds eventually” is represented by the LTL term ♦ p. Thus,
the properties that we would like to verify are represented by ♦ isFalse and ♦

isTrue. Finally, we use the built-in function modelCheck to verify whether an
initial entailment term rewrites to a Bool term eventually:

modelCheck (prop0, ♦ isTrue)
modelCheck (prop1, ♦ isFalse)
modelCheck (prop2, ♦ isTrue)

The Maude LTL model checker is able to verify these three properties in 2.9,
�0.1, 0.1 seconds respectively. The built-in model checker performs significantly
better than our abstract model checker. Since the built-in model checker is im-
plemented in C++, it is expected to run much faster than our abstract model
checker. On the other hand, we are free to modify our abstract model checker
for different purposes. For instance, the built-in LTL model checker may not ter-
minate on structures with infinite reachable states. But a bounded local model
checker for such structures has been implemented using the same framework
in [22].

7 Conclusion and Future Work

Reflection has been used for formal metareasoning of membership equational
theories [2] and semantics of specifications [7]. In this paper, we present a concise
implementation of a local model checking algorithm in the reflective language
Maude. We show how the implementation is simplified by exploiting reflection
and then verify Peterson’s algorithm with our implementation in Maude. In our
model checker, the model behavior is explored by the reflective feature of the
language. The universal theory is used as a model simulator and thus simplifies
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the implementation. Since model simulation is required in explicit-state model
checking algorithms, we feel the technique can simplify the implementations of
other explicit-state algorithms as well.

More interestingly, we are able to verify our implementation by applying re-
flection again. We define a Kripke structure of entailment terms characterizing
the behavior of our model checker. Hence the verification of our model checkers
can be formalized as model checking problems. We then use an abstract local
model checker and the Maude LTL model checker to solve these problems. Reflec-
tion not only simplifies our implementation of an explicit-state model checking
algorithm, but also allows us to model-check our model checker rather easily. To
the best of our knowledge, this is the first work which proposes an automatic
formal verification technique of model checkers by reflection. From the simplic-
ity of our approach, we believe it will be of use to ensure the quality of other
verification tools as well.

Currently, we are interested in applying our technique in other model check-
ing algorithms. Particularly, the analysis of binary decision diagram-based or
SAT-based algorithms would be more useful to model checking community. We
are investigating the theory developed in [17, 25] and specifying a BDD-based
algorithm in rewriting logic as the first step.
Acknowledgments. The author would like to thank anonymous reviewers for
their constructive comments and suggestions in improving the paper.
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