
Modeling and Analyzing Applications with Domain-Specific
Languages by Reflective Rewriting: a Case Study

Bow-Yaw Wang∗

Institute of Information Science
Academia Sinica

Taipei, 115, Taiwan
bywang@iis.sinica.edu.tw

ABSTRACT
In this paper, we propose to model and analyze applications
with domain-specific languages by reflection. We argue that
both tasks can be significantly simplified by using a reflective
modeling language. To make our arguments, we model and
analyze a model checker in the reflective language Maude.
The simplicity of our methodology suggests our methodol-
ogy is useful for such applications.

1. INTRODUCTION
Domain-specific languages are special programming lan-

guages designed for specific tasks. In many applications,
users write programs in the domain-specific language em-
bedded in the system as inputs; the system operates as in-
structed by the input program. Examples of domain-specific
languages include various macro [9], grammar [11], or model-
ing languages [8, 3]. Domain-specific languages can provide
greater flexibility in systems. In cases like parser generators
and software engineering tools, domain-specific languages
are essential in these applications.

Simple observations suggest that applications with em-
bedded domain-specific languages are rather complicated for
the following reasons

• A parser for the embedded language is needed. Since
inputs are written in the domain-specific language,
they must be parsed by the application.

• Semantics of the embedded language need be real-
ized. For instance, some domain-specific languages
allow flow control. Looping or conditional branching
must be simulated by the application.

• Application functionalities must be provided. These
functionalities are implemented in general program-

∗This work was supported in part by NSC grand NSC
94-2213-E-001-003 and the SISARL thematic project of
Academia Sinica.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

ming languages and independent of the syntax of domain-
specific languages. For instance, an LALR(n) algo-
rithm is implemented in many parser generators, al-
though the syntax of their input grammar files may
differ.

A characteristic feature of applications with embedded
domain-specific languages is their multiple levels of compu-
tation. The semantics of the embedded language defines the
computation intended by end users. On the other hand, ap-
plication developers are more interested in the execution of
the application itself. An ideal system model should clarify
the relation between both levels of computation.

Typically, multiple flows of computation are modeled by
concurrency. But it does not apply here. Firstly, there is no
distinction between user-defined and application-wise com-
putation. Secondly, the synchronization of both computa-
tion would be very tedious since the user-defined computa-
tion is tightly controlled by the application.

In this paper, we argue that modeling and analyzing of
applications with domain-specific languages can be greatly
simplified by reflection. Intuitively, reflection is the feature
that allows meta-level objects to be represented and ana-
lyzed at the object level. In our settings, the input program
and its computation are meta-level objects. Applications
with domain-specific languages can therefore use the repre-
sentation of input program at the object level. Since meta-
level input program can be represented, the parser for the
domain-specific language is not needed. Additionally, the
analysis of meta-level input program is possible by reflec-
tion, the functionalities of the application can be carried
out by the object-level application model.

Furthermore, we may analyze the application model by
lifting the model to the meta level by another reflection.
Any program analysis technique can be applied to reason the
application. To the best of our knowledge, we believe ours
is the first work that applies reflection to program analysis.

An interesting application of our methodology is the anal-
ysis of various software engineering tools. In these tools,
domain-specific languages are often used for software mod-
els. Our methodology constructs a simple model for these
tools. It opens the opportunities to analyze these critical
tools formally. We present case study of verifying a model
checker in this paper.
Related Work. Model checking algorithms have been for-
mally verified by proof assistants [18, 12]. In these work,
the semantics and algorithms are formalized in the meta
logic of proof assistants. Verifying model checking algo-
rithms amounts to proving that the outcomes of algorithms

application

meta level

object level

input program

Figure 1: Modeling Hierarchy

P A

p ∈ L p a ∈ L
?

construct
?

construct

-

represent
-

retrieve

Figure 2: Relation between Objects

agree with the semantics in the meta logic. But intensive
human intervention is often required.

In [2, 6, 4], reflection is used for reasoning about families
of membership equational theories. Metatheorems about
families of theories are represented and proved as theorems
at the object level by reflection.

This paper is organized as follows. Section 2 gives an
overview of our methodology. Since rewriting logic is used
in the paper, a brief introduction is given in Section 3. We
construct a rewriting logic model of the bakery algorithm
in Section 4. Our µ-calculus model checker is presented in
Section 5. Section 6 verifies the bakery algorithm by our
model checker. It is followed by the verification of our model
checker in Section 7. Finally, Section 8 concludes the paper.

2. METHODOLOGY OVERVIEW
In order to construct a model for the application A with

the embedded domain-specific language D, a computation-
ally complete modeling language L is needed. Furthermore,
we require the language L to be reflective. More formally,
we have

1. for any application A, there is a model in L;

2. for any input program in D, there is a model in L; and

3. there is a representation function in L that maps any
model m in L to its meta representation m. Further-
more, information contained in the representation m
can be retrieved by constructs of L.

If a language L has a representation function • as de-
scribed in 3, we say L is reflective.

Given the application A and the input program P written
in D, the model p for P can be constructed in L by (2).
The representation p will be used in the model a for A in L.
Since L is reflective, information about p can be retrieved
via the representation p by constructs of L. The model a
can therefore be constructed in L as well (Figure 2).

The relation between models of the application and its
input program is shown in Figure 1. The application model
resides in the object level. It reads the representation of
the input program at the meta level. Since the meta repre-
sentation is inert, the computation of the input program is
fully controlled by the model of the application at the ob-
ject level. Multiple levels of computation correspond to the
levels of modeling hierarchy. Confusion is therefore avoided.

analysis algorithm

application

object level

meta level

meta−meta levelinput program

Figure 3: Modeling Hierarchy for Prototype Analy-

sis

Observe how the modeling is simplified by reflection. If
reflection were not used, we would have to define data types
for the representations of input programs. It would make
our application model unnecessarily complicated. In our
methodology, the representations of input programs are ob-
tained by the representation function automatically. Mod-
eling without reflection would require us to construct the
representation of input programs manually, which is tedious
and error-prone.

A prototype of the application is attainable if models of
L can be executed. In the application prototype, input pro-
grams are models defined in L. Since models of L are ex-
ecutable, input programs can be tested by running their
executable models. The meta representations of input pro-
grams are sent to the executable application model. Appli-
cation developers can build prototypes of applications with
domain-specific languages rather easily by reflection.

In fact, it is possible to analyze the application proto-
type if an analysis algorithm can be modeled in L. Consider
the hierarchy in Figure 3. A program analysis algorithm is
modeled at the object level. The application model is repre-
sented at the meta level. The input program now resides at
the meta-meta level. The program analysis algorithm can
retrieve information from the representation of the applica-
tion model and analyze the application by reflection.

In this paper, we use rewriting logic as our reflective mod-
eling language [14] and demonstrate our methodology by
modeling a model checker. Since models in rewriting logic
can be executed in the system Maude [5], we therefore have
a prototype of our model checker. Furthermore, we analyze
the prototype by the built-in LTL model checker in Maude.

3. REWRITING LOGIC
Since its introduction in [14], rewriting logic has been used

as a unified formalism for modeling concurrency [14, 15, 13]
and as a logical framework [1]. In the framework proposed
in [7], system states are represented by terms. The dynamic
behavior of system is specified by rewriting rules. A system
state term can be transformed to another state term by ap-
plying these rewriting rules. Hence, the evolution of systems
is modeled as a sequence of rewrites in rewriting logic.

We use Maude, a programming language based on rewrit-
ing logic, in our presentation. The remaining section con-
tains a brief introduction to Maude. For detailed syntax and
semantics of the language, readers are referred to [5, 16].

In Maude, a term is constructed by operators. Each term
has a sort. Since subsorting is allowed, a term may have
several sorts. Sorts and subsort relations are declared by
the keywords sort and subsort respectively. The keyword
op declares operators. For instance, the following fragment
declares the sort ThreeValue.

sort ThreeValue
subsort Bool ≺ ThreeValue
op abort : ⇀ ThreeValue
op AND : ThreeValue ThreeValue [comm] ⇀ ThreeValue

Since the sort ThreeValue is a supersort of the built-in sort
Bool, each Bool term is also of sort ThreeValue. The opera-
tor abort is a constant term. The underlines (), if presented,
denote the positions of parameters. Further, the attribute
[comm] means the operator is commutative. Hence AND is
an infix commutative binary operator.

Equivalent terms are specified by equations using the key-
word eq. Variables are allowed in equations and declared by
var. Consider the following fragment

var b : Bool
eq true AND b = b.

It defines an equation that reduces any sub-term of the
form true AND b to b. Equivalent terms form an equivalence
class in rewriting logic. We write [t] for the equivalence class
of the term t. Conditional equations can also be specified
by eq lhs = rhs if boolexp.

Similarly, rewriting rules are specified by the keyword rl.
The fragment
var a b c : Bool
rl [distr] : a AND (b OR c) ⇒ (a AND b) OR (a AND c)

shows the distributive law by the rule labeled distr. In
rewriting logic, the meaning of a term is changed by rewrit-
ing but not by equations. Therefore, two terms are equiv-
alent if they can be reduced to the same normal form by
equational rules, but not by rewriting rules. Conditional
rewriting rules are also available.

Sorts, operators, and rules are grouped in a rewrite theory.
If a rewrite theory has no rewriting rules, we also call it
an equational theory. In rewriting logic, terms and their
rewritings must refer to the defining theory. Formally, let Γ
be a rewrite theory and t, t′ two terms in Γ. We write

Γ `l [t] → [t′]

if there is a rule labeled l in Γ that rewrites t to t′.
The key feature essential to our methodology is reflection.

In rewriting logic, there is a universal theory META-LEVEL
where any rewrite theory Γ and a term t can be represented
as terms Γ and t in META-LEVEL respectively. Further-
more, we have

Γ `l [t] → [t′] ⇔ META-LEVEL `l [Γ, t] → [Γ, t
′

]

if t′ is the result obtained by applying the rewriting rule la-
beled l to t.1 By the universal theory META-LEVEL, we
can manipulate meta-level objects such as theories at the ob-
ject level. We call the feature that can represent and reason
about meta-level terms at the object level as reflection.

4. THE BAKERY ALGORITHM
When a system is to be modeled by rewriting logic, we first

define terms representing its states. More precisely, states
are represented by equivalence classes of terms defined by
the equations of a rewrite theory. The rewriting rules define
how a state can be transitioned to another. If a subterm
of the current state term matches the left-hand side of a
rewriting rule, a new state term can be generated by rewrit-
ing the subterm according to the rule. Since a state term

1We assume at most one match can occur for simplicity,
although multiple matches are admissible in rewriting logic.

sort Proc Mode
op choose critical : ⇀ Mode
op wait-choose wait-turn : Nat ⇀ Mode
op � , , � : Nat Mode Nat ⇀ Proc
rl [choosing] : � i, choose, n � � i′, M ′, n′

� ⇒
� i, wait-choose ((i + 1) % 2), max(n, n′) + 1 �

� i′, M ′, n′
�

crl [waiting] : � i, wait-choose (i′), n � � i′, M ′, n′
� ⇒

� i, wait-turn (i′), n � � i′, M ′, n′
�

if M ′ 6= choose
crl [waiting] : � i, wait-turn (i′), n � � i′, M ′, n′

� ⇒
� i, wait-choose ((i′ + 1) % 2), n � � i′, M ′, n′

�

if ((i′ + 1) % 2) 6= i and
not (n′ 6= 0 and (n′ < n or (n′ = n and i′ < i)))

crl [entering] : � i, wait-turn (i′), n � � i′, M ′, n′
� ⇒

� i, critical, n � � i′, M ′, n′
�

if ((i′ + 1) % 2) = i and
not (n′ 6= 0 and (n′ < n or (n′ = n and i′ < i)))

rl [leaving] : � i, critical, n � ⇒ � i, choose, 0 �

Figure 4: Bakery Algorithm

may match several rules, nondeterministic computation can
be modeled.

In the bakery algorithm [17], several processes try to ac-
cess the critical section exclusively. A process is modeled by
a term of the form �id ,mode, ticket�. The natural number
id specifies the process identifier. There are several different
modes in the model: choose, wait-choose (i), wait-turn (i),
and critical. The ticket field is the ticket number owned by
the process (Figure 4).

In the choose mode, the process computes its ticket num-
ber by incrementing the maximal ticket number of all pro-
cesses. After choosing its ticket number, the process i en-
ters the mode wait-choose ((i+1) % 2) by the rule choosing.
The process compares its ticket number with other processes
by the waiting rules. The comparison begins at the next
process and iterates through all processes in a round-robin
manner. The current process enters the mode wait-turn (i′)
after process i′ leaves the mode choose. It then compares
its ticket number with process i′’s in model wait-turn(i′). If
the current process has higher priority, it moves to the mode
wait-choose ((i′ + 1) % 2) and compares with the next pro-
cess’s ticket number. When there is no more ticket number
to be compared, the current process enters the mode critical
by the rule entering. When leaving the mode critical, the
process resets its ticket number back to zero and goes back
to mode choose (rule leaving).

Define the initial state term as follows.
eq init = � 0, choose, 0 � � 1, choose, 0 �

Let BAKERY be the rewrite theory shown in Figure 4.
We can ask Maude to rewrite the initial state term for 42
steps with the following command:2

Maude> rewrite [42] init
rewrite [42] in BAKERY : init
rewrites: 760 in 1ms cpu (1ms real) (760000 rewrites/second)
result Proc: � 0, wait-turn(1), 11 � � 1, choose, 0 �

The output shows that the term init rewrites to � 0, wait-
turn(1), 11 � � 1, choose, 0 � in BAKERY. It takes Maude
760 reduction and rewriting steps, and finishes in 1 ms CPU

2All our experiments are conducted on a 2.8GHz Pentium 4
Fedora Core 4 Linux system with 2GB memory.

sort MuVariable MuFormula
op False True : ⇀ MuFormula
op ¬ : MuFormula ⇀ MuFormula
op ∨ : MuFormula MuFormula ⇀ MuFormula
op ∧ : MuFormula MuFormula ⇀ MuFormula
op 〈 〉 : QidList MuFormula ⇀ MuFormula
op [] : QidList MuFormula ⇀ MuFormula
op Nu : MuVariable TermSet MuFormula ⇀ MuFormula
op Mu : MuVariable TermSet MuFormula ⇀ MuFormula
eq True = ¬ False
eq ¬ ¬ f = f
eq f ∧ g = ¬ (¬ f ∨ ¬ g)
eq [L] f = ¬ (〈 L 〉 ¬ f)
eq Mu X TS f = ¬ (Nu X TS subst (¬ f , X, ¬ X))

Figure 5: µ-Calculus Theory

op abort : ⇀ ThreeValue
op NOT : ThreeValue ⇀ ThreeValue
op AND : ThreeValue ThreeValue ⇀ ThreeValue [comm]
op OR : ThreeValue ThreeValue ⇀ ThreeValue [comm]
var a : ThreeValue
var b : Bool
eq NOT abort = abort eq NOT b = ¬ b
eq false AND a = false eq false OR a = a
eq true AND a = a eq true OR a = true
eq abort AND abort = abort eq abort OR abort = abort

Figure 6: Equational Rules for Three-Valued Logic

time with the rate of 760000 rewrites per second.

5. MODELING A MODEL CHECKER
A µ-calculus model checker has two special-purposed lan-

guages. The model specification language describes the model
to be checked by the model checker; the property specifica-

tion language tells the model checker what properties are to
be checked on the model. In our methodology, the reflec-
tive language is used as the model specification language.
It remains to define the property specification language µ-
calculus [10].

The operators and related equations used in µ-calculus are
defined in Figure 5. In addition to Boolean operators, modal
next-state operators (〈 〉 and []), and fixed-point operators
(Nu and Mu) are defined. To minimize the number of
rules in our model checker, we use the equations to reduce
derived operators to primitive ones. For instance, the term
f ∧ g is equivalent to ¬ (¬ f ∨ ¬ g). In the definition of
the least fixed-point operator, the operator subst (f , Z, g)
substitutes unbound occurrences of Z in f by g. 3

Our model checker is based on Winskel’s reduction rules [21].
The reduction rules are known to be sound and complete
for finite-state models. For infinite-state models such as
the bakery algorithm, they may not terminate. To make
our model checker always terminate, we explore the model
within certain bounds. If the property cannot be concluded
within the bounds, our model checker reports abort.

Since the outcome of our modified rules is not necessarily
Boolean, we have to formalize it in our application model.
Figure 6 defines the operators of the sort ThreeValue for the
three-valued logic used in our modification (see Section 3).

3The definition of subst is straightforward and thus omitted.

op none : ⇀ SuccResult
eq succ (Γ, s, nil) = none
eq succ (Γ, s, l L) =

if META-LEVEL `l [Γ, s] → [Γ, s′] then b s′, l L c
else succ (Γ, s, L) fi

Figure 7: Definition of succ

The constant operator abort represents inconclusive compu-
tation. The operators NOT, AND, and OR extend Boolean
operators not, and, and or respectively (Figure 6). The intu-
ition is to exploit dominating values in Boolean algebra. For
instance, the result of a disjunction can be determined if one
of its operands is true. Hence the term true OR abort reduces
to true even though the other operand of the disjunction has
not been determined yet.

A state in our µ-calculus model checker is represented by
an entailment. An entailment is a term of the form Γ s D W

` f where Γ is a rewrite theory, s a meta representation of
a state defined in Γ, D and W two natural numbers, and f
a MuFormula term. It signifies that the property f is being
checked on state s in Γ within the bounds D and W . The
bound D sets the maximal number of unrolling applied to
fixed point operators. On the other hand, W determines the
number of successors to be visited by the modal next-state
operators 〈 〉 and [] .

Our goal is to rewrite an entailment to one of the three
ThreeValue constant terms (false, true, or abort).4 The fol-
lowing rules are used for Boolean constant and negation

rl [ff] : Γ s D W ` False ⇒ false
rl [neg] : Γ s D W ` ¬ f ⇒ NOT (Γ s D W ` f).

The rule ff rewrites the entailment Γ s D W ` False
to false. For MuFormula term of the form ¬f , the model
checker first rewrites Γ s D W ` f and applies the three-
valued negation to get the final result. Since the entailment
may rewrite to abort, the Boolean operators would incur ir-
reducible terms. Therefore the three-valued negation must
be used. Notice that it is unnecessary to provide rules for
derived Boolean operators due to the equations in Figure 5.

To define rules for the other operators, we use two auxil-
iary operators: succ and wrapper. Let Γ be a rewrite theory,
s the meta representation of the state s in Γ, and L a list of
rule labels. The term succ (Γ, s, L) reduces to a SuccResult
term. A SuccResult term is either a constant operator none,
or a term of the form b s′, L′ c where s′ is a successor of s
in Γ by applying one of the rewriting rules listed in L. The
rules yet to be applied will be returned in L′ (Figure 7).

In the figure, succ (Γ, s, L) reduces to none if there is no
rules to be applied (L = nil). Otherwise, it uses the universal
theory META-LEVEL to find a successor s′ of s using the
first rule in L. If it succeeds, the result is returned; other-
wise, the remaining rules will be used iteratively. Recall the
computation of Γ corresponds to rewrites. Reflection allows
our model checker to have full control of the computation of
Γ via succ.

Intuitively, wrapper (T , Γ, s, f , D, W , w, R) computes
T OR (Γ s′ D W ` f) where T is a ThreeValue term, s′ is
a successor of s in the SuccResult term R, and the natural
number w denotes the number of successors to be visited
(Figure 8). If T is false and no successor can be visited,

4Equational theory would suffice for the specification, but
we need rule labels for formal analysis.

eq wrapper (false, Γ, s, f , D, W , 0, R) = abort
eq wrapper (false, Γ, s, f , D, W , w, none) = false
eq wrapper (false, Γ, s, f , D, W , w + 1, b s′, L c) =

wrapper (Γ s′ D W ` f , Γ, s, f , D, W , w, succ (Γ, s, L))
eq wrapper (true, Γ, s, f , D, W , w, R) = true
eq wrapper (abort, Γ, s, f , D, W , 0, R) = abort
eq wrapper (abort, Γ, s, f , D, W , w, none) = abort
eq wrapper (abort, Γ, s, f , D, W , w + 1, b s′, L c) =

abort OR
wrapper (Γ s′ D W ` f , Γ, s, f , D, W , w, succ (Γ, s, L))

Figure 8: Definition of wrapper

wrapper reduces to abort. If T is false and there is no more
successor (R = none), wrapper reduces to false. If T is false
and more successors can be visited, wrapper will

1. check whether the successor returned in R satisfies f
within bounds D and W ;

2. decrement the counter w; and

3. find the next successor of s in Γ by succ (Γ, s, L).

Other cases are defined similarly.
To use wrapper in the rule of existential modal next-state

operator, define
rl [ex] : Γ s D W ` 〈 L 〉 f ⇒

wrapper (false, Γ, s, f , D, W , W , succ (Γ, s, L)).
Since the first parameter of wrapper is false in rule ex,

one of the first three equations in Figure 8 is applicable
based on the result of succ (Γ, s, L). If no successor is
found, the entailment rewrites to false. Otherwise, it checks
whether the successor satisfies f accordingly. We can also
use wrapper in the rule for disjunction. To check if s in Γ
satisfies f0 ∨ f1, we pass the entailment Γ s D W ` f0 to
wrapper as the first parameter. If it is false, wrapper reduces
to Γ s D W ` f1 due to the SuccResult term b s, nil c.
rl [disj] : Γ s D W ` f0 ∨ f1 ⇒

wrapper (Γ s D W ` f0, Γ, s, f1, D, W , W , b s, nil c)
The rule for the greatest fixed point operator can be de-

fined similarly. We check whether s is in the term set TS by
passing the term s isIn TS as the first parameter in wrapper.
If it is true, wrapper reduces to true. Otherwise, wrapper
reduces to Γ s (D− 1) W ` subst (f , X, Nu X ({ s } U TS)
f) where U is the union operator.

rl [nu] : Γ s D W ` Nu X TS f ⇒
wrapper (s isIn TS, Γ, s,

subst (f , X, Nu X ({ s } U TS) f), D − 1, W ,
b s, nil c)

In our model, the domain-specific languages used in the
µ-calculus model checker and the modeling language of the
application itself are the same. Reflection allows our appli-
cation model to accept and analyze any model in rewriting
logic. Yet the application model and the models of input
programs can be easily distinguished by the modeling hier-
archy (Figure 1). The modeling process would be greatly
complicated were the reflective feature not deployed.

6. VERIFICATION OF THE BAKERY AL-
GORITHM

Since models in rewriting logic are executable, we can use
the executable specification of the µ-calculus model checker
in Section 5 to verify the bakery algorithm in Section 4.

We first define the state predicate CS (i) as follows.
rl [AP] : BAKERY s D W ` CS (i) ⇒ in-critical (s, i)
eq in-critical (� 0, M0, n0 � C, 0) = (M0 = critical)
eq in-critical (� 1, M1, n1 � C, 1) = (M1 = critical)
The state predicate CS (i) holds at the state s if the pro-

cess i of the state s is in the mode critical. For convenience,
we define

eq labels = choosing waiting entering leaving.
We can check whether process 0 will enter the critical

mode inevitably by the following entailment
eq prop0 = BAKERY init 10 3 `

Mu X {} (CS (0) ∨ [labels] X)
Let MU-MODEL-CHECKER be the rewrite theory of our

µ-calculus model checker. It is now easy to ask Maude to
verify the property on the bakery algorithm:

Maude> rewrite prop0
rewrite in MU-MODEL-CHECKER : prop0
rewrites: 4487 in 60ms cpu (60ms real) (73588 rewrites/second)
result Bool: true

Secondly, we would like to know if process 1 does not enter
the critical section until process 0 does. That is, process
0 always enters the critical section first. The property is
specified by

eq prop1 = BAKERY init 5 3 `
Mu X {} (CS (0) ∨ (¬ CS (1) ∧ [labels] X))

Finally, we would like to check if process 0 can enter the
critical section infinitely often:

eq prop2 = BAKERY init 3 3 `
Nu X {} Mu Y {} 〈 labels 〉 ((CS (0) ∧ X) ∨ Y)

The entailment terms prop1 and prop2 rewrite to false and
abort in 1627 and 350 rewrites respectively. Our prototype
finishes the checks almost immediately in the experiments.
Recall that the bakery algorithm has infinite number of
reachable states. Yet some properties can still be concluded
within the bounds given to the model checker.

7. VERIFICATION OF MODEL CHECKING
ALGORITHM

The verification of the bakery algorithm only shows that
our model checker may rewrite entailments to one of false,
true, or abort. Since Maude rewrites terms according to its
internal strategy, we do not know if all rewrite strategies
lead to the same irreducible term. Particularly, application
users would be very confused if different strategies could
yield different results.

Our methodology allows application developers to analyze
their models as well. By lifting the application model to
meta level, the meta representation of the application model
is open for analysis. In the following, we use the built-in LTL
model checker in Maude to verify properties of the µ-calculus
model checker. 5

The Maude LTL model checker contains several equa-
tional theories. Related LTL operator are defined in the
theory LTL. The sort Prop defined in LTL is used for atomic
proposition. We first define three atomic proposition terms.

op isFalse isTrue isAbort: ⇀ Prop
To define the reduction rules for atomic proposition terms,

we use the modeling term |= defined in the theory SATIS-
FACTION.

5In fact, we can verify the µ-calculus model checker by it-
self. [20]

subsort Entailment ≺ State
eq e |= isFalse = (e = false)
eq e |= isTrue = (e = true)
eq e |= isAbort = (e = abort)

The term |= takes a term of sort State (defined in SAT-
ISFACTION and a Prop term to form a Bool term. The
equations for isFalse, isTrue, and isAbort tell the Maude LTL
model checker how to reduce a modeling term to a Bool
term.

The property “p holds eventually” is represented by the
LTL term 3 p. Thus, the properties that we would like
to verify are represented by 3 isTrue, 3 isFalse, and 3 is-
Abort respectively. Finally, we use the built-in function mod-
elCheck to verify whether an initial entailment rewrites to a
Bool term eventually.

modelCheck (prop0, 3 isTrue)
modelCheck (prop1, 3 isFalse)
modelCheck (prop2, 3 isAbort)

The Maude LTL model checker is able to verify these three
properties in 4496, 1636, 356 rewrites within a second re-
spectively.

8. CONCLUSION AND FUTURE WORK
Modeling applications with domain-specific languages can

be greatly simplified by reflection. A reflective modeling
language constructs representations of input programs in
domain-specific languages by its representation function. Func-
tionalities of the application are modeled via retrieving infor-
mation from these representations. The distinction between
the input program and the application is easily observed in
levels of modeling hierarchy.

We demonstrate our methodology by specifying and ana-
lyzing a bounded model checker for infinite-state systems in
rewriting logic. Since rewriting logic is known to be compu-
tationally complete, it is capable of specifying any computer
system in principle. But developers may prefer conventional
languages in practice. Additionally, the computation is for-
malized by term rewriting in our case study. If the formal-
ization cannot be done easily, another reflective formalism
will be needed.

Currently, we are interested in applying our technique in
other model checking algorithms. Particularly, the analysis
of binary decision diagram-based algorithms would be more
useful to model checking community. We are investigating
the theory developed in [19, 22] and specifying BDD-based
algorithms in rewriting logic.

Acknowledgement. The author would like to thank
anonymous reviewers for their comments and suggestions.

9. REFERENCES
[1] D. Basin, M. Clavel, and J. Meseguer. Rewriting logic

as a metalogical framework. In S. Kapoor and
S. Prasad, editors, The 20th Conference on FSTTCS,
volume 1974 of LNCS, pages 55–80. Springer-Verlag,
2000.

[2] D. Basin, M. Clavel, and J. Meseguer. Reflective
metalogical frameworks. ACM Transactions on

Computational Logic, 5(3):528–576, July 2004.

[3] R. Burkhardt. UML-Unified Modeling Language.
Addison Wesley, 1997.

[4] M. Clavel. The ITP Tool - An Inductive Theorem

Prover Tool for Maude Membership Equational

Specifications, 2004.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude

2.0 Manuel, version 1.0 edition, June 2003.

[6] M. Clavel, N. Mart́ı-Oliet, and M. Palomino.
Formalizing and proving semantic relations between
specifications by reflection. In Stirling, editor, The

10th Conference on AMAST, volume 3116 of LNCS,
pages 72–86, 2004.

[7] S. Eker, J. Meseguer, and A. Sridharanarayanan. The
Maude LTL model checker. In The 4th Workshop on

RL, volume 71 of Electronic Notes in Theoretical

Computer Science. Elsevier Science Publishers, 2002.

[8] G. Holzmann. The model checker SPIN. IEEE

Transaction on Software Engineering, 23(5):279–295,
1997.

[9] B. W. Kernighan and D. M. Ritchie. The M4 Macro

Processor. Bell Laboratories, Murray Hill, NJ, 1977.

[10] D. Kozen. Results on the propositional µ-calculus. In
Automata, Languages and Programming, LNCS.
Springer-Verlag, 1982.

[11] J. R. Levine, T. Mason, and D. Brown. Lex & Yacc.
O’Reilly, Sebastopol, 2 edition, 1992.

[12] P. Manolios. Mu-Calculus Model-Checking, pages
93–111. Kluwer Academic Publishers, June 2000.

[13] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic:
roadmap and bibliography. Theoretical Computer

Science, 285(2):121–154, Aug. 2002.

[14] J. Meseguer. Conditional rewriting logic as a unified
model of concurrency. Theoretical Computer Science,
96(1):73–155, Apr. 1992.

[15] J. Meseguer. Rewriting logic as a semantic framework
for concurrency: A progress report. In U. Montanari
and V. Sassone, editors, The 7th Conference on

CONCUR, volume 1119 of LNCS, pages 331–372.
Springer-Verlag, 1996.

[16] J. Meseguer. Rewriting logic and Maude: Concepts
and applications. In L. Bachmair, editor, The 11th

Conference on RTA, volume 1833 of LNCS, pages
1–26. Springer-Verlag, 2000.

[17] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating System Concepts. John Wiley & Sons, Inc.,
7th edition, 2004.

[18] C. Sprenger. A verified model checker for the modal
µ-calculus in coq. In B. Steffen, editor, TACAS,
volume 1384 of LNCS, pages 167–183.
Springer-Verlag, 1998.

[19] J. van de Pol and H. Zantema. Binary decision
diagrams by shared rewriting. In M. Nielsen and
B. Rovan, editors, The 25th Symposium on MFCS,
volume 1893 of LNCS, pages 609–618.
Springer-Verlag, 2000.

[20] B.-Y. Wang. Automatic verification of a model
checker in rewriting logic. Technical Report
TR-IIS-05-009, Institute of Information Science,
Academia Sinica, 2005.

[21] G. Winskel. A note on model checking the modal
nu-calculus. Theoretical Computer Science,
83:157–167, 1991.

[22] H. Zantema and J. van de Pol. A rewriting approach
to binary decision diagrams. Journal of Logic and

Algebraic Programming, 49:61–86, 2001.

