
WRLA 2004 Preliminary Version

µ-Calculus Model Checking in Maude

Bow-Yaw Wang

Institute of Information Science
Academia Sinica

Nankang 115, Taipei
Taiwan

Abstract

In this paper, a rewrite theory for checking µ-calculus properties is developed. We
use the same framework proposed in [EMS02] and demonstrate how rewriting logic
can be used as a unified formalism from model specification to verification algorithm
implementation. Furthermore, since µ-calculus is more expressive than LTL, this
work can be seen as an extension to [EMS02] in theory. We also develop a CTL to
µ-calculus translator to help users write CTL specifications more easily. However,
the corresponding LTL to µ-calculus translator is missing. The LTL model checker
in [EMS02] is still preferred in practice.

Key words: Rewriting logic, model checking, µ-calculus.

1 Introduction

For the past decade, model checking has found many applications in hardware
and software industry. Given a formal model and its specification, the goal of
model checking is to determine whether the model conforms to the specifica-
tion formally. Take hardware verification as an example. The formal model
for digital circuits could be the circuit itself, which consists of combinational
and sequential components. The specification could be a predicate over its
wires (say, read and write cannot both be asserted at any time). Using a for-
mal verification tool, a verification engineer can check whether the predicate
holds universally.

From the scenario illustrated above, we observe that the process of model
verification can be divided into three parts:

• Specification of the model;

• Specification of the property; and

? Partially supported by National Science Council NSC 92-2213-E-001 -023-. Author’s
URL: www.iis.sinica.edu.tw/~ bywang

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Wang

• Mechanism to check the property against the model.

Indeed, the observation was made in [WMG00] where the authors propose
to use Maude [CDE+03,Mes00] as a verification platform for model checking.
Maude is a rewriting system based on rewriting logic. Since rewriting logic
was introduced in [Mes92], it has been used as a unified formalism for model-
ing concurrency [Mes92,Mes96,MOM02] and as a logical framework [BCM00].
Thanks to the expressive power of rewriting logic, it is possible for researchers
from various research communities to work within a single formalism.

In the light of the unification of formalisms within rewriting logic, it is
perhaps an interesting challenge to ask whether it is possible to perform all
three tasks of model verification in rewriting logic. The challenge has been
partially answered in [WMG00] where an active network protocol is verified.
In [WMG00], the protocol and a property are specified at object level. The
authors use a meta-level theory to explore all possible behaviors of the model
and check it against the property. However, the result is not satisfactory since
only invariant checking is discussed under the proposed framework.

More recently, a linear temporal logic (LTL) model checker has been de-
scribed in [EMS02]. The model is specified as a module in Maude. The
property specification language is defined by an equational theory. The user
can specify the model with a rewrite theory, import the specification equa-
tional theory to write LTL formula, then invoke the built-in model checking
algorithm to verify whether the model satisfies the LTL formula. However,
the model checking algorithm is implemented in C++. Thus, we do not think
the challenge has been met fully.

In this work, we propose a new idea to answer the challenge. Our solution
uses a rewrite theory to model specification as in [EMS02]. Instead of LTL, a
more expressive specification logic, the µ-calculus, is used. Moreover, we are
able to construct the model checker in rewriting logic rather than implement-
ing our µ-calculus model checker in C++. In other words, we have successfully
achieved all three tasks of model verification in rewriting logic.

It is known that µ-calculus is strictly more expressive than CTL∗. Conse-
quently, the present work can be seen as an extension to the results in [EMS02].
In practice, however, CTL or LTL formulae are preferred because µ-calculus
formulae sometimes are hard to understand. We therefore provide a rewrite
theory for translating any given CTL formula to its equivalent µ-calculus for-
mula. Unfortunately, we still do not know how to translate LTL formulae.
Hence the LTL model checker in [EMS02] is still needed in practice.

The key to implement a µ-calculus model checker in rewriting logic is lo-
cal model checking [SW89,Cle89,Win91]. Unlike traditional model checking
algorithms where all states satisfying the property are computed, local model
checking tries to find a proof for the initial state. Since the proof tree is gen-
erated syntactically, rewriting logic can be used to implement the algorithm.
Furthermore, states are explored only when necessary during the proof search.
As a result, it is possible to verify properties for infinite-state systems.

2

Wang

In this report, we briefly review the framework proposed in [EMS02] and
focus on developing a Maude theory for a µ-calculus local model checker. The
paper is organized as follows. We start with preliminaries in Section 2. The
overview of model checking in Maude is given in Section 3. The Maude theory
for µ-calculus local model checking is presented in Section 4. It is followed by
a simple theory for translating CTL to µ-calculus in Section 5. Finally, we
discuss some future directions and conclude in Section 6.

2 Preliminary

A µ-calculus formula φ is generated by the following rules:

• propositional variables: X, Y, Z, . . .;

• atomic propositions (AP): p, q, r, . . .;

• Boolean connectives: ¬φ, φ ∧ ψ;

• modal next-state operator: 3φ;

• greatest fixed-point operator: νX.φ, where the bound variable X occurs
positively.

As usual, we use derived operators such as φ ∨ ψ(≡ ¬(¬φ ∧ ¬ψ)), 2φ(≡
¬3¬φ) and µX.φ(≡ ¬νX.¬φ[¬X/X]). In [Koz83], labeled modal next-state
quantifier < a > is allowed. Here we restrict ourselves to the unlabeled ver-
sion for simplicity. Note that the restriction is expressive enough to include
CTL∗ [Dam94].

The semantics of φ is defined over a Kripke structure K = (S,→, s0, L)
where S is the set of states, →⊆ S × S the transition relation, s0 ∈ S the
initial state, and L : S → 2AP the labeling function which maps each state to a
subset of atomic propositions. For clarity, we write s→ t whenever (s, t) ∈→.
A valuation ρ is a function mapping propositional variables to subsets of S.
Let R ⊆ S. We write ρ[X 7→ R] for the valuation mapping X to R and Y
to ρ(Y) for X 6≡ Y . Given the valuation ρ, the semantic function [[•]]ρ that
returns a set of states satisfying φ under the valuation ρ is defined as follows.

• [[X]]ρ = ρ(X);

• [[p]]ρ = {s ∈ S : p ∈ L(s)};
• [[¬φ]]ρ = S \ [[φ]]ρ;

• [[φ ∧ ψ]]ρ = [[φ]]ρ ∩ [[ψ]]ρ;

• [[3φ]]ρ = {s ∈ S : ∃t ∈ S.s→ t and t ∈ [[φ]]ρ};
• [[νX.φ]]ρ = ∪{R ⊆ S : R ⊆ [[φ]](ρ[X 7→ R])}.

Given a µ-calculus formula φ and a Kripke structure K = (S,→, s0, L),
we write K, s0 |= φ when s0 ∈ [[φ]]∅. In other words, K, s0 |= φ means s0 of K
satisfies the µ-calculus formula φ. The µ-calculus model checking problem is
to check whether K, s0 |= φ.

3

Wang

Traditionally, µ-calculus model checking problem is solved by computing
all states Sφ satisfying the given µ-calculus formula φ and checking whether
s0 ∈ Sφ [EL86,BCM+92]. Here, we use the local model checking technique to
solve the problem. Instead of computing Sφ, local model checking tries to find
a proof for the state s0. This proof-theoretic approach explores the Kripke
structure locally and is more suitable for logical frameworks like Maude.

A local model checker consists of a set of proof rules [SW89,Cle89,Win91,ASW94].
It tries to search a complete proof tree for K, s ` φ according to these proof
rules. In this work, we use a simple extension of the proof rules in [Win91].
In order to present Winskel’s rules, we introduce a new µ-calculus formula
νX{r̄}φ where {r̄} ⊆ S. Its semantics is defined by:

[[νX{r̄}φ]]ρ = ∪{R ⊆ S : R ⊆ {r̄} ∪ [[φ]](ρ[X 7→ R])}.

Note that νX.φ is equivalent to νX{}φ. The following proof rules can be
found in [Win91]:

• (K, s ` p) ⇒ true if p ∈ L(s);

• (K, s ` p) ⇒ false if p 6∈ L(s);

• (K, s ` T) ⇒ true;

• (K, s ` F) ⇒ false;

• (K, s ` ¬φ) ⇒ ¬b if (K, s ` φ) ⇒∗ b;

• (K, s ` φ ∧ ψ) ⇒ b0 ∧ b1 if (K, s ` φ) ⇒∗ b0 and (K, s ` ψ) ⇒∗ b1;

• (K, s ` φ ∨ ψ) ⇒ b0 ∨ b1 if (K, s ` φ) ⇒∗ b0 or (K, s ` ψ) ⇒∗ b1;

• (K, s ` 3φ) ⇒ true if (K, t ` φ) ⇒∗ true for some t such that s→ t;

• (K, s ` νX{r̄}φ) ⇒ true if s ∈ {r̄};
• (K, s ` νX{r̄}φ) ⇒ (K, s ` φ[νX{s, r̄}φ/X]).

For any ν-calculus formula φ, it is shown that (K, s0 ` φ) ⇒∗ true if
and only if K, s |= φ [Win91]. As a result, one can solve the model checking
problem by specifying these proof rules as equations in Maude. However, there
are a few issues to be addressed. The corresponding equations for µ-operators
are needed for efficiency, as well as a mechanism to mimic variable substitution
in proof rules.

Although µ-calculus is very expressive, it is sometimes difficult to interpret,
even for experts. In order to help users to write specifications, we implement
the translation from CTL to µ-calculus. A CTL formula α is built from the
following constructs recursively [EC82,EL85]:

• atomic propositions: p, q, r;

• Boolean connectives: ¬α and α ∧ β;

• existential next-step operator: EXα;

• existential always operator: EGα;

• existential until operator: E(αUβ).

4

Wang

(fmod MU is
sorts Variable Prop Formula .
subsort Variable < Formula .
subsort Prop < Formula .

*** primitive operators ***
ops True False : -> Prop .
op ~_ : Formula -> Formula [prec 52] .
op _/_ : Formula Formula -> Formula [comm prec 55] .
op _\/_ : Formula Formula -> Formula [comm prec 59] .
op <>_ : Formula -> Formula [prec 53] .
op ‘[‘]_ : Formula -> Formula [prec 53] .
op Mu__ : Variable Formula -> Formula [prec 61] .
op Nu__ : Variable Formula -> Formula [prec 61] .

endfm)

Fig. 1. Maude module MU

Other operators can be derived from them. For instance, AXα(≡ ¬EX¬α),
EFα(≡ E(trueUα)), AGα(≡ ¬EF¬α) and A(αUβ)(≡ ¬E(¬βU¬α ∧ ¬β) ∧
¬EG¬β). CTL specifications are used in many formal verification tools such
as SMV [McM92,McM93] and VIS [BHSV+96]. Our translation would allow
users familiar with these systems to adopt Maude as a verification platform
easily.

3 Model Checking in Maude

We start with the equational theory for µ-calculus formulae (Figure 1). Three
sorts are declared in the module MU: Variable, Prop and Formula. µ-calculus
formulae are of sort Formula. Atomic propositions are of sort Prop. Finally,
propositional variables are of sort Variable. Boolean connectives are defined
as usual. For modal operators 3 and 2, we use <> and [] respectively.
The operators Mu and Nu represent least and greatest fixed point operators
respectively. As an example, the µ-calculus formula νY.3(Y ∧ µZ.p ∨3Z) is
written as

Nu Y (<> (Y /\ (Mu Z (p \/ <> Z)))).

For the specification of Kripke structures, we follow the infrastructure
proposed in [EMS02] and give a brief review here. The Kripke structure
K = (S,→, s0, L) is specified as a rewrite theory R = (Σ, E,R). Let [s] be
the equivalent class of the term s in R. Then [s] ⇒ [t] is a rewrite proof in the
initial model of R if and only if s → t in K. Consider the module MUTEX in
Figure 2 as an example, which is a simple extension of one found in [CDE+03].
The configuration [m, wait] represents m processes in mode wait, similarly
for [n, critical]. Any process in mode wait may grab a token (’*’) and
enter mode critical. On the other hand, any process in mode critical may
go back to mode wait by releasing a token. For instance, the configuration

5

Wang

(mod MUTEX is
protecting MACHINE-INT .

sorts Mode Proc Token Conf .
subsorts Token Proc < Conf .

op __ : Conf Conf -> Conf [assoc comm] .
ops wait critical : -> Mode .
op ‘[_‘,_‘] : MachineInt Mode -> Proc .
op * : -> Token .

vars m n : MachineInt .
var C : Conf .

crl [enter] : * [n, wait] [m, critical] =>
[n - 1, wait] [m + 1, critical] if n > 0 .

crl [exit] : [n, critical] [m, wait] =>
* [n - 1, critical] [m + 1, wait] if n > 0 .

endm)

Fig. 2. Module MUTEX

* * * [5, wait] [2, critical] can be rewritten to * * [4, wait] [3,

critical] by applying the rule enter.

To define the labeling function in Kripke structure, we introduce the op-
erator |- in module ENTAILMENT:

op __|-_ : Environment Term Formula -> Bool [prec 85].

Let E be a variable environment (described later), s̄ the meta-level term
representing the state s, and φ a µ-calculus formula, then E s̄ ` φ represents
that we would like to check whether s satisfies φ under the environment E.
Notice that states are represented as meta-level terms, rather than elements
of sort State as in [EMS02]. Since successors of states are needed to prove
modal operators 3 and 2, meta-level representation is used to compute all
successors. 1

Using the module ENTAILMENT, we can define the labeling function. In-
stead of explicitly mapping each state to atomic propositions, it is more con-
venient to specify a state predicate indicating whether an atomic proposi-
tion holds at the state. In other words, we would like to reduce the term
E s̄ ` p to true whenever the atomic proposition p holds in state s. In Fig-
ure 3, the module MUTEX-PREDS defines two atomic propositions: crit(n) and
wait(n). If n or more processes are in mode critical (wait, respectively)
the proposition crit(n) (wait(n), respectively) evaluates to true. Recall
that system states are represented at meta level. Hence meta-level functions

1 It is unnecessary to use meta-level representation in Maude 2 since the function
metaXapply can be used to compute successors.

6

Wang

(fmod MUTEX-PREDS is
protecting MACHINE-INT .
protecting MU .
protecting ENTAILMENT .

op crit : MachineInt -> Prop .
op wait : MachineInt -> Prop .
op get-critical : TermList -> MachineInt .
op get-wait : TermList -> MachineInt .

var E : Environment .
vars n : MachineInt .
vars T : Term .

ceq E T |- crit (n) = true if get-critical (T) >= n .
ceq E T |- crit (n) = false if get-critical (T) < n .

ceq E T |- wait (n) = true if get-wait (T) >= n .
ceq E T |- wait (n) = false if get-wait (T) < n .

*** get-critical and get_wait are omitted here
endfm)

Fig. 3. Module MUTEX-PREDS

get-critical and get-wait are used to extract the number of processes. 2 In
contrast to [EMS02], note that we need to define when the atomic propositions
evaluate to false.

Figure 4 shows the module MUTEX-CHECK for model checking the specifi-
cation MUTEX. The parameterized module LOCAL-MODEL-CHECK is our rewrite
theory for µ-calculus model checker. It accepts modules of the interface theory
KMODULE:

(fth KMODULE is
protecting META-LEVEL .
op KRIPKE : -> Module .
op labels : -> QidList .

endfth)

To instantiate the module parameter, we first define a meta-level module
META-MUTEX as follows.

(mod META-MUTEX is
protecting META-MODULE .
op KRIPKE : -> Module .
eq KRIPKE = up (MUTEX) .

2 We need not work at meta level should the object-level representation is used.

7

Wang

(fmod MUTEX-CHECK is
protecting MACHINE-INT .
protecting MUTEX-PREDS .
protecting LOCAL-MODEL-CHECK [KripkeMUTEX] .

ops init : -> Term .
eq init = up (MUTEX, * * * * * [100000, wait] [0, critical]) .

ops X Y : -> Variable .

ops prop prop0 prop1 prop2 prop3 prop4 : -> Bool .

eq prop0 = {} init |- Nu X ~ (<> ~ X \/ (crit(6))) .
eq prop1 = {} init |- Mu X (<> X \/ (crit(6))) .
eq prop2 = {} init |- Nu X ([] X /\ crit(5)) .
eq prop3 = {} init |- Nu X (<> True /\ [] X) .

endfm)

Fig. 4. Maude module MUTEX-CHECK

op labels : -> QidList .
eq labels = (’enter ’exit) .

endm)

We then define the view KripkeMUTEX that maps KMODULE to META-MUTEX

as follows.

(view KripkeMUTEX from KMODULE to META-MUTEX is
op KRIPKE to KRIPKE .
op labels to labels .

endv)

For our exemplary Kripke structure, there are 100,000 processes in mode
wait initially. prop1 specifies whether there will be more than 5 processes
in mode critical eventually along some computation path. prop0 is its
negation. prop2 asks if there will be more than 4 processes waiting for all
computation paths eventually. The most interesting one is prop3 which spec-
ifies that the model is deadlock-free.

We can check prop0 by reducing the entailment:

Maude> (red prop0 .)
rewrites: 5457 in 480ms cpu (510ms real) (11368 rewrites/second)
reduce in CHECK : prop0 .
result Bool : true

In this section, we review the interface of our Maude µ-calculus model
checker. It is not unlike those proposed in [EMS02]. Hence the expressive
power of Maude can be used to model sophisticated systems, as in [EMS02].
In contrast to the black-boxed implementation in [EMS02], our model checking
algorithm is specified by rewriting logic. Consequently, the algorithm can be

8

Wang

(fmod ENVIRONMENT [K :: KMODULE] is
protecting META-LEVEL .
protecting MU .
protecting ENTAILMENT .

sort TermSet Definition .
subsort Term < TermSet .
subsort Definition < Environment .

vars T T’ : Term .
var TS : TermSet .

*** meta-level set
op emptyTermSet : -> TermSet .
op _U_ : TermSet TermSet -> TermSet [assoc comm id: emptyTermSet] .
op _isIn_ : Term TermSet -> Bool .

ceq T U T’ U TS = T U TS
if meta-reduce (KRIPKE, ’_==_[T, T’]) == {’true}’Bool .

eq T isIn emptyTermSet = false .
ceq T isIn (T’ U TS) = true
if meta-reduce (KRIPKE, ’_==_[T, T’]) == {’true}’Bool .

ceq T isIn (T’ U TS) = T isIn TS
if meta-reduce (KRIPKE, ’_=/=_[T, T’]) == {’true}’Bool .

*** Definition
op _:=___ : Variable Bool TermSet Formula -> Definition [prec 81] .

*** Environment
op ‘{‘} : -> Environment .
op _&_ : Environment Environment -> Environment

[ctor assoc comm id: {} prec 83] .
endfm)

Fig. 5. Module ENVIRONMENT [K :: KMODULE]

further improved by any experienced Maude user without resorting to low-level
C++ programming. In the following section, we discuss the implementation
in detail.

4 Equational Theory for µ-Calculus Model Checking

Let us begin with the sort Environment defined in the parameterized module
ENVIRONMENT (Figure 5). An environment consists of a set of definitions. Each
definition in turn contains a variable, a Boolean value, a set of states (repre-
sented by meta-level terms) and a formula. To understand why definitions are

9

Wang

defined as such, recall the proof rules for greatest fixed point operator:

• (K, s ` νX{r̄}φ) ⇒ true if s ∈ {r̄}; and

• (K, s ` νX{r̄}φ) ⇒ (K, s ` φ[νX{s, r̄}φ/X]) otherwise.

When formula νX{r̄}φ is encountered, the proof rule first checks whether
the state s belongs to the set of states {r̄} associated with the formula. If
so, we are done. Otherwise, φ is unrolled once with s added to {r̄}. It is
now easy to see why we define Definition as in Figure 5. The variable and
formula are used for substitution. The Boolean value is used to distinguish
greatest from least fixed point operators. And the meta-level term set is used
to simulate the set operations (such as element addition and membership) at
object level. Strictly speaking, our definition of environment is not the most
general one. It cannot be used to check µ-formulae with multiple occurrences
of a propositional variable. Consider the formula νZ.Z ∨ 33Z. Since the
environment does not distinguish different occurrences of the variable Z, our
model checker will yield incorrect results. The problem can be resolved by
keeping an environment for each occurrence of propositional variable. For
simplicity, we do not consider such formulae.

Note that states are represented by meta-level terms. The aforementioned
set operations need be performed at meta level. Additionally, the underlying
equational theory of the Kripke structure should be applied. For this reason,
we let module ENVIRONMENT be parameterized by the Kripke structure and use
meta-reduce in related set operators.

Now we can present the equational theory for proof rules. For Boolean con-
nectives, it is straightforward to write corresponding equations. For instance,
the equation for conjunction rule is:

eq E s |- f /\ g = if (E s |- f) then (E s |- g) else false fi .

For each µ-calculus operator, we have an equation for its negative form.
This gives us a more direct proof of termination for full µ-calculus [SW89].
The negative equation has the same form as its logically equivalent formula.
The corresponding equation for conjunction is:

eq E s |- ~ (f /\ g) =
if (E s |- ~ f) then true else (E s |- ~ g) fi .

For the modal next operator, recall

(K, s ` 3φ) ⇒ true if (K, t ` φ) ⇒∗ true for some t such that s→ t.

Thus the term E s̄ ` 3φ is reduced to the disjunction of E t̄ ` φ ranging
over all successors t of s. Here we use meta-level theory to find all successors of
the state s. This explains why we use meta-level representation in definitions.
In Figure 6, we show a modified version of the meta-level function allRew

in [VMO02] to compute successors of a given term. Interested readers are

10

Wang

referred to [VMO02] for details. 3

With function successors in place, it is easy to define the equation for
the next modal operator:

eq E s |- <> f = OR (s, E, f, 0) .

where

eq OR (s, E, f, n) =
if (successor (s, labels, n)) == error* then false
else if (E (successor (s, labels, n)) |- f) then true
else OR (s, E, f, n + 1) fi fi .

For the greatest fixed point formulae of the form νX.φ, the definition
X := true s̄ φ is added to the environment when the formula is encountered
for the first time. Hence the entailment E s |- Nu X f rewrites to E & (X :=

true s f) s |- f where X := true s f records the definition of function f,
the Boolean value true for the greatest fixed point operator, and the visited
state s.

eq {} s |- Nu X f = (X := true s f) s |- f .
ceq E & (Y := b S g) s |- Nu X f =
E & (Y := b S g) & (X := true s f) s |- f if X =/= Y .

If, on the other hand, the formula νX.φ has been added to the environment,
we need determine whether the formula should be unfolded. As in [Win91],
there are two cases. If the formula is encountered by the same state again,
it rewrites to true. Otherwise, the state is stored in the definition and the
formula is unfolded.

ceq E & (X := true S f) s |- X = true if s isIn S .
ceq E & (X := true S f) s |- X =
E & (X := true (s U S) f) s |- f if not (s isIn S) .

The function isIn checks whether the meta-level term s belongs to the set
S of meta-level terms. Hence the first equation reduces to true if s has been
visited. The expression s U S evaluates to a new set by adding s to the set
S. The second equation records the current state if it has not been visited.

For formulae with least fixed point operators, we could rewrite them to
equivalent formulae with only greatest fixed point operators by applying log-
ical equivalence µX.φ ⇔ ¬νX.¬φ[¬X/X] recursively. Here, we would like to
take a more direct approach. Observe

K, s ` ¬νX{r̄}¬φ[¬X/X]⇔K, s ` ¬(¬φ[¬X/X][νX{s, r̄}¬φ[¬X/X]/X])

⇔K, s ` φ[¬νX{s, r̄}¬φ[¬X/X]/X]

Therefore, we may define µX{r̄}φ to be ¬νX{r̄}¬φ[¬X/X] and obtain

3 In Maude 2, we can simply invoke metaXapply and get corresponding terms of the suc-
cessors. Hence it is not necessary to use meta-level theory.

11

Wang

(fmod SUCCESSOR [K :: KMODULE] is
protecting QID-LIST .
protecting MACHINE-INT .

*** variable declaration here
op ~ : -> TermList .
op successor : Term QidList MachineInt -> Term .
op lowerRew : Term Qid MachineInt -> Term .
op rewArgs : Qid TermList TermList Qid MachineInt -> Term .
op rebuild : Qid TermList Term TermList -> Term .
op meta-apply’ : Term Qid MachineInt -> Term .
op get-t : ResultPair -> Term .

eq successor (T, nil, n) = error* .
eq successor (T, L LS, n) =
if meta-apply’ (T, L, n) == error*

then if lowerRew (T, L, n) == error*
then successor (T, LS, n)
else lowerRew (T, L, n)

fi
else meta-apply’ (KRIPKE, T, n)

fi .

eq get-t ({T, SB}) = T .
eq meta-apply’ (T, L, n) =

get-t (meta-apply (KRIPKE, T, L, none, n)) .

eq lowerRew ({C}S, L, n) = error* .
eq lowerRew (OP[TL], L, n) = rewArgs (OP, ~, TL, L, n) .

eq rewArgs (OP, Now, T, L, n) =
if successor (T, L, n) == error*
then error*
else rebuild (OP, Now, successor (T, L, n), ~)

fi .

eq rewArgs (OP, Now, (T, After), L, n) =
if successor (T, L, n) == error*
then rewArgs (OP, (Now, T), After, L, n)
else rebuild (OP, Now, successor (T, L, n), After)

fi .

eq rebuild (OP, Now, T, After) =
meta-reduce (KRIPKE, OP[Now, T, After]) .

endfm)

Fig. 6. Module SUCCESSOR [K :: KMODULE]

12

Wang

K, s ` µX{r̄}φ⇔K, s ` ¬νX{r̄}¬φ[¬X/X]

⇔K, s ` φ[¬νX{s, r̄}¬φ[¬X/X]/X]

⇔K, s ` φ[µX{s, r̄}/X]

For the terminating condition, consider K, s ` µX{s}φ. We have

K, s ` µX{s}φ⇔K, s ` ¬νX{s}¬φ[¬X/X]

⇔not(K, s ` νX{s}¬φ[¬X/X])

⇔ false

Thus, the equations for least fixed point formulae are

eq {} s |- Mu X f = (X := false s f) s |- f .
ceq (E & (Y := b S g)) s |- Mu X f =
E & (Y := b S g) & (X := false s f) s |- f if X =/= Y .

ceq E & (X := false S f) s |- X = false if s isIn S .
ceq E & (X := false S f) s |- X =
E & (X := false (s U S) f) s |- f if not (s isIn S) .

The first two equations add the least fixed point definition to the envi-
ronment. If the state has not been encountered, the fourth equation records
it and unfolds the propositional variable. Except the definition, they are the
same as the equations for greatest fixed points. The third equation, however,
reduces to false if the state has been visited.

It is worth noting that all the fixed point proof rules have their semantic
foundation [Win91,ASW94]. From semantic point of view, our equations are
essentially the same as those in [SW89,Cle89,Win91,ASW94].

We can actually reduce the number of equations by introducing a Boolean
variable. For instance, the terminating equations for both greatest and least
fixed point formulae can be reduced to the following equation:

ceq E & (X := b S f) s |- X = b if s isIn S .

Similarly, we can merge two unfolding equations as one. The full theory
for our µ-calculus local model checker is shown in Figure 7.

We present a rewriting theory for model checking µ-calculus formulae. In
contrast to [EMS02], our model checker is implemented in rewriting logic.
Readers can examine and improve the model checking algorithm by modi-
fying the Maude module LOCAL-MODEL-CHECK. It is possible to improve the
proof strategy by a meta-level Maude theory. For instance, the conjunc-
tion and disjunction equations have been modified to use short-cut evalua-
tion in LOCAL-MODEL-CHECK. These are desirable features missing from the
black-boxed approach in [EMS02].

5 Model Checking CTL Formula

There is, however, an issue of acceptability in µ-calculus model checking. µ-
calculus formulae do look arcane to untrained eyes. Take the specification

13

Wang

(fmod LOCAL-MODEL-CHECK [K :: KMODULE] is
protecting META-LEVEL .
protecting MU .
protecting ENTAILMENT .
protecting ENVIRONMENT [K] .
protecting SUCCESSOR [K] .

*** variable declaration here
ops OR AND : Term Environment Formula MachineInt -> Bool .

eq E s |- True = true .
eq E s |- False = false .
eq E s |- ~ prop = not (E s |- prop) .

eq E s |- ~ ~ f = E s |- f .

eq E s |- f /\ g = if (E s |- f) then (E s |- g) else false fi .
eq E s |- f \/ g = if (E s |- f) then true else (E s |- g) fi .

eq E s |- <> f = OR (s, E, f, 0) .
eq OR (s, E, f, n) =
if (successor (s, labels, n)) == error* then false
else if (E (successor (s, labels, n)) |- f) then true
else OR (s, E, f, n + 1) fi fi .

eq E s |- [] f = AND (s, E, f, 0) .
eq AND (s, E, f, n) =
if (successor (s, labels, n)) == error* then true
else if (E (successor (s, labels, n)) |- f) then

AND (s, E, f, n + 1)
else false fi fi .

eq {} s |- Mu X f = (X := false s f) s |- f .
ceq (E & (Y := b S g)) s |- Mu X f =
E & (Y := b S g) & (X := false s f) s |- f if X =/= Y .

eq {} s |- Nu X f = (X := true s f) s |- f .
ceq E & (Y := b S g) s |- Nu X f =
E & (Y := b S g) & (X := true s f) s |- f if X =/= Y .

ceq E & (X := b S f) s |- X = b if s isIn S .
ceq E & (X := b S f) s |- X =
E & (X := b (s U S) f) s |- f if not (s isIn S) .

*** negated equations are omitted
endfm)

Fig. 7. Maude Module LOCAL-MODEL-CHECKER [K :: KMODULE]

14

Wang

(fmod CTL is
protecting MU .
sort CTLFormula .
subsort Prop < CTLFormula .

*** primitive operators ***
op !_ : CTLFormula -> CTLFormula [prec 53] .
ops _&&_ _||_ : CTLFormula CTLFormula -> CTLFormula

[comm prec 55] .
ops EX_ : CTLFormula -> CTLFormula [prec 53] .
ops EG_ : CTLFormula -> CTLFormula [prec 63] .
ops E_U_ : CTLFormula CTLFormula -> CTLFormula

[prec 63] .

*** derived operators ***
ops AX_ : CTLFormula -> CTLFormula [prec 53] .
ops EF_ AF_ AG_ : CTLFormula -> CTLFormula [prec 63] .
ops A_U_ : CTLFormula CTLFormula -> CTLFormula

[prec 63] .

*** derived equations are omitted
endfm)

Fig. 8. Maude module CTL

of deadlock freedom as an example. The µ-calculus formula νX.3true ∧
2X is less obvious than the corresponding CTL formula AGEXtrue. If the
formula contains mutual fixed points, it would be more difficult to interpret.
Fortunately, it is easy to translate any CTL formula to its corresponding µ-
calculus formula. In this section, we shall present a Maude equational theory
to help users write CTL specifications.

As mentioned in Section 2, there are only three primitive temporal opera-
tors in CTL: EX, EG and EU. The derived operators AX, EF, AG, AF and AU
are defined as usual (Figure 8).

Since Boolean connectives can be mapped trivially, it remains to trans-
late primitive temporal operators to their corresponding µ-calculus formulae.
Hence we define the translation function τ over the primitive temporal oper-
ators:

• τ(true, c) = true;

• τ(p, c) = p;

• τ(¬α, c) = ¬τ(α, c);
• τ(α ∧ β, c) = τ(α, c) ∧ τ(β, c+ θ(α));

• τ(EXα, c) = 3τ(α, c);

• τ(E(αUβ), c) = µXc.τ(β, c+ 1) ∨ (τ(α, c+ θ(β) + 1) ∧3Xc);

15

Wang

• τ(EGα, c) = νXc.τ(α, c+ 1) ∧3Xc.

where θ(α) computes the number of fixed point operations required in α:

• θ(true) = 0;

• θ(p) = 0;

• θ(¬f) = θ(f);

• θ(f ∧ g) = θ(f) + θ(g);

• θ(EXf) = θ(f);

• θ(EGf) = θ(f) + 1;

• θ(EfUg) = θ(f) + θ(g) + 1;

In our translation, we increment the index c to make a fresh propositional
variable. The function τ(α, c) returns an equivalent µ-calculus formula which
uses propositional variables starting with index c. As an example, let us
compute τ(AGEXtrue, 0):

τ(AGEXtrue, 0)

= τ(¬EF¬(EXtrue), 0)

= τ(¬E(trueU(¬(EXtrue))), 0)

=¬τ(E(trueU(¬(EXtrue))), 0)

=¬(µX0.τ(¬(EXtrue), 1) ∨ (true ∧3X0))

=¬(µX0.¬τ(EXtrue, 1) ∨3X0)

=¬(µX0.¬(3true) ∨3X0).

Notice that ¬(µX0.¬(3true) ∨ 3X0) is equivalent to νX0.3true ∧ 2X0

as desired.

Let K = (S,→, s0, L) be a Kripke structure and α a CTL formula, it is
easy to show that K, s0 |= α if and only if K, s0 |= τ(α, 0). We define the
module CTL2MU based on the translation function τ to help the user to write
CTL specifications. 4 For instance, the deadlock freedom specification

eq prop3 = empty init |- Nu X (<> True /\ [] X) .

can also be written as

eq prop3 = empty init |- tau (AG EX True, 0) .

An equational theory to translate CTL formulae is presented in this sec-
tion. Since the translation of CTL does not require mutual fixed point oper-
ations, our solution simply ignores all propositional variables used previously.
Note that translations of fair CTL [EL85] and LTL require mutual fixed points.
Currently, we do not know how to perform LTL translation in rewriting logic.

4 Due to the lack of space, the listing is omitted.

16

Wang

6 Future Work and Conclusion

The present work demonstrates the expressive power of rewriting logic. It
shows that Maude can be used as a general framework for model specifica-
tion, property specification, and model checking algorithm implementation.
However, our work is by no mean complete. In order to compete with formal
verification tools, many issues still need be improved.

Firstly, an LTL translation would be very useful. Since CTL and LTL
are incomparable in terms of expressive power, an LTL translator can help
users to specify more properties in practice. In [Dam94], a translation from
CTL∗ to µ-calculus is proposed. However, it is unclear how to implement the
translation in rewriting logic.

Secondly, we would like to explore the possibility of verifying infinite-state
systems. By infinite-state systems, we mean the number of reachable states is
infinite. Since both explicit- and implicit-state algorithms require the model
to be finite, it is necessary to reduce any infinite-state system to a finite one.
For traditional model checking algorithms, infinite-state verification cannot
be done without proper abstraction. Local model checking, on the other
hand, does not restrict to finite models. It is possible to prove properties of
infinite systems locally. Of course, the choice of successors plays an important
role in this context. Fortunately, the user can use meta-level theory to try
different strategies. Since model checking infinite-state systems is undecidable
in general, we cannot hope a single strategy to solve the problem entirely.
However, heuristics can be developed and tried on the infinite system first.
The verifier may perform the abstraction after heuristics fail.

Lastly, it would be very interesting to combine the present work with those
in [EMS02]. The efficiency of the model checker in [EMS02] is comparable to
SPIN [Hol97]. However, the user has less control over the model checking
algorithm. Once it gets started, the user can only wait for the result. On the
other hand, the efficiency of our model checker is somewhat disappointing.
Developing a hybrid approach would be very useful to real world applications.

Acknowledgment The author would like to thank anonymous reviewers
for their valuable suggestions and comments.

References

[ASW94] Henrik Reif Andersen, Colin Stirling, and Glynn Winskel. A
compositional proof system for the modal µ-calculus. In Proceedings,
Ninth Annual IEEE Symposium on Logic in Computer Science, pages
144–153, Paris, France, 4–7 July 1994. IEEE Computer Society Press.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142–170, June 1992.

17

Wang

[BCM00] David Basin, Manuel Clavel, and José Meseguer. Rewriting logic as a
metalogical framework. Lecture Notes in Computer Science, 1974:55–
80, 2000.

[BHSV+96] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentell, F. Somenzi, A. Aziz,
S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS: A
system for verification and synthesis. In Proceedings of the Eighth
International Conference on Computer Aided Verification, LNCS 1102,
pages 428–432. Springer-Verlag, 1996.

[CDE+03] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́i-Oliet, José Meseguer, and Carolyn Talcott. Maude 2.0 Manuel,
version 1.0 edition, June 2003.

[Cle89] Rance Cleaveland. Tableau-based model checking in the propositional
mu-calculus. Acta Informatica, 27(8):725–747, 1989.

[Dam94] Mads Dam. CTL? and ECTL? as fragments of the modal µ-calculus.
Theoretical Computer Science, 126(1):77–96, 1994.

[EC82] E.A. Emerson and E.M. Clarke. Using branching-time temporal
logic to synthesize synchronization skeletons. Science of Computer
Programming, 2:241–266, 1982.

[EL85] E.A. Emerson and C.L. Lei. Modalities for model-checking: Branching
time logic strikes back. In Proceedings of the 12th ACM Symposium on
Principles of Programming Languages, pages 84–96, 1985.

[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient model-checking in
fragments of the propositional mu-calculus. In Proceedings 1st Annual
IEEE Symp. on Logic in Computer Science, LICS’86, Cambridge, MA,
USA, 16–18 June 1986, pages 267–278. IEEE Computer Society Press,
Los Alamitos, CA, 1986.

[EMS02] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The
maude ltl model checker. In Proceedings of the Fourth International
Workshop on Rewriting Logic, volume 71 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2002.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software
Engineering, 23(5):279–295, 1997.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[McM92] K. L. McMillan. The SMV system, symbolic model checking -
an approach. Technical Report CMU-CS-92-131, Carnegie Mellon
University, 1992.

[McM93] K. McMillan. Symbolic model checking: an approach to the state
explosion problem. Kluwer Academic Publishers, 1993.

18

Wang

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96(1):73–155, April 1992.

[Mes96] José Meseguer. Rewriting logic as a semantic framework for
concurrency: A progress report. In Ugo Montanari and Vladimiro
Sassone, editors, CONCUR ’96: Concurrency Theory, 7th International
Conference, volume 1119 of Lecture Notes in Computer Science, pages
331–372, Pisa, Italy, 26–29 August 1996. Springer-Verlag.

[Mes00] José Meseguer. Rewriting logic and Maude: Concepts and applications.
In L. Bachmair, editor, Rewriting Techniques and Applications, 11th
International Conference, RTA 2000, Norwich, UK, July 10–12, 2000,
Proceedings, volume 1833 of Lecture Notes in Computer Science, pages
1–26. Springer-Verlag, 2000.

[MOM02] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic: roadmap and
bibliography. Theoretical Computer Science, 285(2):121–154, August
2002.

[SW89] Colin Stirling and David Walker. Local model checking in the modal
mu-calculus. In J. Díaz and F. Orejas, editors, Proceedings Int. Joint
Conf. on Theory and Practice of Software Development, TAPSOFT’89,
Barcelona, Spain, 13–17 March 1989, Volume 1, volume 351 of Lecture
Notes in Computer Science, pages 369–383. Springer-Verlag, Berlin,
1989.

[VMO02] Alberto Verdejo and Narciso Mart́i-Oliet. Executing and verifying ccs
in maude. Technical report, October 2002. Submitted for publication.

[Win91] Winskel. A note on model checking the model nu-calculus. TCS:
Theoretical Computer Science, 83:157–167, 1991.

[WMG00] Bow-Yaw Wang, José Meseguer, and Carl A. Gunter. Specification
and formal analysis of a PLAN algorithm in Maude. In Pao-Ann
Hsiung, editor, Proceedings International Workshop on Distributed
System Validation and Verification, Taipei, Taiwan, pages 49–56, April
2000.

19

	Introduction
	Preliminary
	Model Checking in Maude
	Equational Theory for -Calculus Model Checking
	Model Checking CTL Formula
	Future Work and Conclusion
	References

