
Exploiting Puzzle Diversity in Puzzle Selection for ESP-like GWAP Systems ∗

Yu-Song Syu†, Hsiao-Hsuan Yu†, and Ling-Jyh Chen†‡
†Research Center for Information Technology Innovation, Academia Sinica

‡Institute of Information Science, Academia Sinica
{yssyu, hhsuanyu, cclljj}@iis.sinica.edu.tw

Abstract

The ESP game belongs to the genre called Games with
a Purpose (GWAP), which leverage people’s desire to be
entertained and also outsource certain steps of the compu-
tational process to humans. The productivity of ESP-like
GWAP systems depends to a great extent on the puzzle se-
lection strategy used in the system. Although traditional
approaches seek to determine the optimal number of agree-
ments reached in each puzzle, they may be affected by the
equality of outcomes issue because they ignore the differ-
ences among puzzles. In this paper, using realistic game
traces, we define the puzzle diversity issue and propose a
novel approach, called the Adaptive Puzzle Selection Algo-
rithm (APSA), to promote equality of opportunity in ESP-
like GWAP systems. We also introduce a data structure
called the Weight Sum Tree (WST) to reduce the compu-
tational complexity of the proposed scheme and facilitate
its implementation in real-world systems. Using a compre-
hensive set of simulations, we evaluate the APSA scheme
against the traditional OPSA scheme, and demonstrate that
APSA can better accommodate the differences among puz-
zles in ESP-like GWAP systems.

1 Introduction

Games With A Purpose (GWAP) [30, 32] represent a new
paradigm of applications that leverage people’s desire to
be entertained and also outsource certain steps of the com-
putational process to humans [19, 21, 29]. By exploiting
“human cycles” in computation, GWAP motivate people to
play voluntarily, and also produce useful metadata as a by-
product. The genre has shown promise in solving a vari-
ety of problems, such as image annotation [26, 31, 36], au-
dio annotation [5, 7, 8, 22], and commonsense reasoning
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[23, 35], which computer programs have been unable to re-
solve completely thus far.

Various GWAP systems have been proposed in recent
years [23, 26, 31, 33, 35, 36]. Among them, the ESP Game
[31] was the first to successfully realize the advantages of
GWAP systems. The rationale behind the ESP game is to
motivate people to label images because it is fun. It has
been shown that the image labels collected through the ESP
game are typically of good quality. Moreover, the game re-
sults allow more accurate image retrieval, help users block
inappropriate (e.g., pornographic) images, and improve web
accessibility (e.g., the labels can help visually impaired peo-
ple surf web pages [11]).

To be effective, the ESP game tries to collect outcomes
with the largest possible aggregated score for each puzzle
(image). It also needs as many distinct puzzles as possible
to be played. There is a trade-off between these two goals.
On the one hand, the system tries to collect as many labels
as possible for each puzzle, and this results in the playing of
fewer distinct puzzles; on the other hand, the system prefers
that each puzzle is played only once, so that the maximum
number of puzzles can be played. The problem has been
formulated as a scheduling problem, and the Optimal Puz-
zle Selection Algorithm (OPSA) has been proposed to de-
termine the optimal number of agreements required for all
puzzles based on an analytical model [14, 15]. However,
the OPSA scheme does not consider the differences among
puzzles (some puzzles are more productive, and some are
hard to solve), which may result in the equality of outcomes
problem. This finding motivates us to devise appropriate
mechanisms that can better accommodate puzzle diversity,
i.e., the differences among puzzles, in ESP-like GWAP sys-
tems.

The contribution of this work is two-fold. First, using
realistic game traces, we identify the puzzle diversity issue
that is common in ESP-like GWAP systems, and propose a
novel approach, called the Adaptive Puzzle Selection Algo-
rithm (APSA), to cope with puzzle diversity by promoting
equality of opportunity. The scheme selects the puzzle to be
played based on its previous play history. Second, we pro-
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pose a data structure, called the Weight Sum Tree (WST), to
reduce the computational complexity and facilitate the im-
plementation of the APSA scheme in real-world systems.
Using a comprehensive set of simulations, we evaluate the
proposed scheme against the OPSA scheme and show that
it is more effective in terms of the number of agreements
reached and the system gain. Finally, the APSA scheme is
simple and shows promise for use in the design and imple-
mentation of future ESP-like GWAP systems.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a review of related works on GWAP systems
and the ESP game. In Section 3, we present the proposed
APSA approach, and discuss a number of implementation
issues. In Section 4, we detail and analyze the experiment
results. We then summarize our conclusions in Section 5.

2 Background

2.1 GWAP Overview

The concept of GWAP was pioneered by Luis von Ahn
and his colleagues [30]. In recent years, a substantial
and increasing amount of research effort has been invested
in the area, and several GWAP systems have been devel-
oped for a variety of purposes [3, 5, 7–10, 13, 17, 22–
24, 26, 28, 31, 33–36, 38]. The online ESP Game1 [31] was
the first GWAP system, and it was subsequently adopted
as the Google Image Labeler [3]. The game is fast-paced,
enjoyable, and competitive. As of July 2008, more than
200,000 players had contributed more than 50 million la-
bels. Each player plays for a total of 91 minutes on average,
and the throughput is about 233 labels per player per hour
(i.e., one label every 15 seconds) [32]. Moreover, it has
been shown that the collected labels facilitate more accu-
rate image retrieval, help users block inappropriate images,
and improve web accessibility.

In addition, the Peekaboom system [36] helps users de-
termine the location of objects in images; while the Squigl
system [4] and the LabelMe system [26] provide complete
outlines of the objects in an image. Phetch [33, 34] pro-
duces image descriptions that improve web accessibility
and image searches, while the Matchin system [4] helps
image search engines rank images based on which ones
look the best. The concept of the ESP Game has been ap-
plied to other problems. For instance, the Herd It [5, 8],
Major Miner [7], and TagATune [22] systems, which pro-
vide annotation for sounds and music, can improve au-
dio searches. The Verbosity system [35] and the Common
Consensus system [23] collect “common-sense” knowledge

1The game is called ‘ESP’ because the players have to work together to
solve the tasks without talking to each other, i.e., by using Extra-Sensory
Perception (ESP) [31].

that is valuable for commonsense reasoning and enhanc-
ing the design of interactive user interfaces. In [10], Ben-
nett et al. propose a system that collects individual user
preferences for image-search results, and then extracts con-
sensus rankings from the preferences for the results of a
query. The Context-Aware Recognition Survey (CARS) sys-
tem [38] uses ubiquitous sensors to monitor activities in the
home, while [9, 13, 17, 24] employ mobile social gaming
for geospatial tagging. Moreover, [28] applies human com-
putation to ontology alignment and web content annotation
for the Semantic Web using a set of games, such as On-
toPronto, SpotTheLinks, OntoTube, and OntoBay. Finally,
Shenoy and Tan [27] showed that it is possible to design en-
vironments in which humans cannot avoid processing some
of the tasks (and producing some useful outcomes), even
though they are not actively trying to do so.

In addition to designing new GWAP systems, several
studies have investigated the performance aspect of human
computation [16, 18, 20, 32, 37]. For example, Ho et al.
[18] proposed solving the coalition problem by integrating
both collaborative and competitive elements in image label-
ing games. Gentry et al. [16] proposed a framework of
vote-based human computation and provided a probabilis-
tic analysis of the reliability of the voting mechanism and
design principles on the payout function. In [37], Weber
et al. presented a machine learning-based model that can
play the ESP game without looking at the image. Based
on the model, the authors proposed an enhanced scoring
system for the ESP game to encourage users to contribute
less predicable labels and thereby improve the quality of
the collected labels. Jain and Parkes [20] applied game
theoretic analysis to the ESP game. They investigated the
equilibrium behavior under different incentive mechanisms
and provided guidelines for the design of such mechanisms.
Von Ahn [32] proposed a set of evaluation metrics, namely,
throughput, lifetime play, and expected contribution, to de-
termine whether ESP-like GWAP systems are successful.

2.2 ESP-like GWAP Systems

In the ESP game, when a user logs into the system,
he/she is automatically matched with a random partner. The
two players do not know each other’s identity as they cannot
communicate. Initially, a randomly selected image (called
a puzzle) is displayed to both players simultaneously. The
players then input possible words to label the image until
an agreement is reached (i.e., the same word is entered by
both players); or they can decide to pass over a puzzle if
they think it is too difficult. Once an agreement has been
reached, a bonus score is awarded to each player based on
the quality of the agreed word. In practice, the quality of
a word is measured by its popularity; generally, words that
are more popular receive lower scores. After the players
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agree on a word, they are shown another puzzle. In each
ESP game, they have two and a half minutes to label 15
images.

In this work, we define ESP-like GWAP Games as games
that satisfy the following four criteria: 1) each game in-
volves at least two players; 2) each game lasts for at least
one round; 3) the system selects a puzzle to play in each
round; and 4) the result of a round is either a success (i.e.,
an agreement is reached) or a failure (i.e., the players decide
to pass the game, or timeout is reached). In addition to the
ESP game, several GWAP systems belong to this category,
e.g., Google Image Labeler [3], Peekaboom [36], Verbosity
[35], TagATune [22], and Herd It [5, 8].

To be effective, the ESP game should satisfy two goals.
First, it should collect as many labels as possible for each
puzzle, so that fewer distinct puzzles will be played. Sec-
ond, each puzzle should only be played once in order to
maximize the number of puzzles played. In [14, 15], Chen
et al. proposed a system gain metric for assessing the perfor-
mance of GWAP systems, and designed the Optimal Puzzle
Selection Algorithm (OPSA) based on an analytical model.
The metric is comprised of two parts: agreement through-
put and agreement quality, and the OPSA scheme seeks to
determine the optimal number of the agreements required
for all puzzles in order to maximize the system gain. The
main drawback of the OPSA scheme is that it does not con-
sider the differences among puzzles. Consequently, it suf-
fers from the equality of outcomes issue caused by puzzle
diversity.

3 The Proposed Approach

We present a novel approach called the Adaptive Puz-
zle Selection Algorithm (APSA) for ESP-like GWAP sys-
tems. The approach was inspired by the Additive Increase
Multiplicative Decrease (AIMD) model of the Transmission
Control Protocol (TCP) [25], the most widely used trans-
port protocol on the Internet. The rationale behind APSA
is that it promotes equality of opportunity by considering
puzzle diversity, instead of developing equality of outcomes
like traditional approaches. Recall that the latter ignore the
differences among puzzles. In the following subsections,
we present the proposed APSA scheme and discuss related
implementation issues.

3.1 The APSA Approach

We assume there are K puzzles in the system, and that
the system selects a puzzle based on the weighted values of
the puzzles in each game round. Let wk denote the weighted
value of the k-th puzzle, and let pk denote the probability
that the k-th puzzle will be selected in the next game round.

We obtain the value of pk by2

pk =
wk∑K
i=1 wi

. (1)

When a new game round is initiated, the system selects
the puzzle to be played based on the values of pk for
1 ≤ k ≤ K. The steps of the decision process are as
follows. First, the system determines a random number r
between 0 and 1 (inclusive) using a uniform random num-
ber generator. Then, the i-th puzzle is selected if it satisfies
the following criteria:

∑k=i−1
k=1 wk∑k=K
k=1 wk

< r ≤
∑k=i

k=1 wk∑k=K
k=1 wk

. (2)

The weighted value of each puzzle is set to 1 initially; then
the value is updated using the AIMD model. There are two
possible scenarios.

• If agreements are reached in a game round, we as-
sume there is a very high likelihood that the puzzle will
also yield agreements in the next game round (i.e., the
Pareto principle [12]). Hence, we increase its weighted
value wk by one (i.e., an additive increase).

• If no agreements are reached in a game round, we as-
sume the puzzle is too difficult for the players, and we
reduce the value of wk by half (i.e., a multiplicative
reduction).

More precisely, the value of wk is determined by

wk =

⎧⎨
⎩

1 the initial value,
wk + 1 if agreements are reached,

wk

2 if no agreements are reached.
(3)

Initially, all puzzles have the same likelihood of being se-
lected in a game round (since the initial weight is set to 1
for all puzzles, i.e., pk = 1

K for k = 1...K). As the game
proceeds, pk is updated based on the value of wk. That is,
the more productive a puzzle is (in terms of the number of
game rounds that yield agreements), the higher the proba-
bility it will be selected in the next game round. As a result,
compared to the OPSA scheme, the APSA scheme is bet-
ter able to deal with puzzle diversity (i.e., the differences
among puzzles), and each puzzle will be played in a differ-
ent number of rounds depending on its productivity.

3.2 Implementation Method

As mentioned earlier, the APSA scheme uses the AIMD
model to adapt each puzzle’s probability of being selected to

2In the OPSA scheme, the value of wk is set to a large constant if
the number of agreements reached in the k-th puzzle is larger than 0 and
smaller than the optimal number; otherwise, it is set to 0.
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Figure 1. An example of a Weight Sum Tree (K =
8)

play in a game round. However, the proposed scheme has
two drawbacks: 1) it needs to store the information about
each puzzle (i.e., wk), and the storage complexity is approx-
imately O(K); and 2) it has to update the values of wk and
pk frequently, and the computational complexity is approx-
imately O(K). As the complexity increases linearly with
the number of the puzzles, it may be too costly for real-
world systems. To resolve the scalability issue, we build
a complete binary tree of partially weighted sums, called a
Weight Sum Tree (WST), to implement the APSA scheme
in ESP-like GWAP systems.

For example, as shown in Figure 1, if there are eight
puzzles in the system (i.e., K = 8), and the k-th puzzle’s
weight is wk, we build a WST to store the partially weighted
sums of the puzzles. In this case, the height of the tree (h)
is 4 (i.e., log2K + 1 = 4). Note that if the value of K is
not a positive integer power of 2, it is necessary to create
2h − K virtual puzzles whose weights are all equal to zero
in order to ensure the completeness of the WST. The nodes
are ordered from the top to the bottom and from left to right.
Let si denote the i-th node in the tree; then we can obtain
the value of si by

si =
{

wi−2h−1+1 , when 2h−1 ≤ i < 2h;
s2i + s2i+1 , when 0 < i < 2h−1.

(4)

There are three cases in which we have to update the weight
sum tree.

1. After a puzzle is played in a game round (say, the
k-th puzzle), we update its weight using Equation 4.
The update volume �wk is obtained by subtracting the
original weight from the new weight. Then, we update
each ancestor node of the puzzle from the bottom to
the top of the WST by adding �wk. Since the number
of nodes that must be updated is equal to the height of
the tree, the computational complexity of this case is
O(h) (i.e., O(logK)).

2. After a puzzle has been removed from the system (say,
the k-th puzzle), we set �wk = −wk and change the

Algorithm 1 The proposed puzzle selection implementa-
tion based on the APSA scheme and the weight sum tree
data structure.

1: Function Puzzle Selection(k, r)
2: if k ≥ 2h−1 then
3: Return the (k − 2h−1 + 1)th puzzle;
4: end if
5: if r ≤ s2k

s1
then

6: Puzzle Selection(2k, r);
7: else
8: Puzzle Selection(2k + 1, r − s2k

s1
);

9: end if

value of wk to 0 (i.e., the k-th puzzle now becomes a
virtual puzzle). Then, we update each ancestor node of
the puzzle from the bottom to the top of the WST by
adding �wk. The computational complexity of this
case is also O(logK).

3. After adding a new puzzle to the system, we set the
weight of the puzzle to 1 (i.e., the default value). There
are two cases where the weight sum tree must be up-
dated: 1) if there are virtual puzzles in the tree, we
replace the first virtual puzzle (i.e., the leftmost leaf
whose weight is equal to zero) with the new puzzle,
and update its ancestor nodes from the bottom to the
top of the tree accordingly; or 2) we create K − 1
virtual puzzles and rebuild the weight sum tree (i.e.,
the total number of the puzzles now becomes 2K).
The computational complexity of these two cases is
O(logK) and O(K) respectively.

Under the WST data structure, a puzzle is selected to
play in each game round. The steps of the selection pro-
cess are as follows. First, the system uses a uniform random
number generator to determine a random number between 0
and 1 (inclusive). Then, it calls the Puzzle Selection(k, r)
function, with the parameters k equal to one and r equal
to the newly generated random number, as shown in Al-
gorithm 1. The Puzzle Selection() function traverses the
weight sum tree from the root to the leaf node and selects
the leaf node (say, the i-th puzzle) such that Equation 2 is
satisfied. Note that, under the WST data structure, the com-
putational complexity is reduced from O(K) to O(logK),
but the storage complexity remains O(K).

4 Evaluation

We evaluated the APSA scheme via trace-based simula-
tions. The game trace was collected by the ESP Lite sys-
tem3 [2], which is publicly available to the research com-

3Note that, although the game data set of the ESP game has been re-
leased [1], it only contains the agreement words of each puzzle. It does
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Figure 2. Comparison of the number of game
rounds required to reach an agreement.

munity [6]. ESP Lite is a ‘quasi’ ESP Game that embeds
various puzzle selection algorithms (namely, RPSA, FPSA,
and OPSA [15]). It records the complete game trace, includ-
ing the time required by each game round and the result (ei-
ther an agreement or a pass). The trace was recorded over a
one-month period (from 2009/03/09 to 2009/04/09), and the
OPSA scheme was used in 1,444 games comprised of 6,326
game rounds. In total, 575 distinct puzzles were played and
3,418 agreements were reached. We used C programming
language to implement the APSA scheme, and compared
the system performance, in terms of the puzzle pass rate,
agreement throughput, and system gain, with that of the
OPSA scheme. In the following sub-sections, we present
an analysis and discussion of the experiment results.

4.1 Analysis of Puzzle Diversity

Using the ESP Lite game trace, we investigate puzzle
diversity, i.e., the difficulty of reaching an agreement in dif-
ferent puzzles. Figure 2 compares the distribution of the
number of game rounds required to reach the i-th agree-
ment in the dataset. Note that, since players may pass a
puzzle if they feel it is too difficult, a puzzle may have to be
played in several rounds to reach an agreement. Intuitively,
the greater the difficulty of a puzzle, the larger the number
of game rounds required to reach an agreement.

The results in Figure 2 show that the number of puz-
zles for which an agreement is reached in the first game
round decreases with the sequence order of the agreements.
Specifically, in one game round, 536 puzzles can reach the
first agreement, 450 can reach the second agreement, 382

not provide the detailed play history (i.e., the number of play rounds of
each puzzle, the pass rate of each puzzle, and play time of each round). As
a result, the dataset is insufficient for this study, so we use the ESP Lite
dataset instead.

can reach the third agreement, 330 can reach the fourth
agreement, and 293 can reach the fifth agreement. The re-
sults confirm our intuition that it is more difficult to reach
the (i+1)-th agreement than the i-th agreement in a puzzle.

Moreover, we observe that, if more than one game round
is required to yield an agreement, the number of puzzles
increases with the sequence order of the agreements. For
instance, if a puzzle requires exactly three game rounds to
reach an agreement, one puzzle can reach the first agree-
ment, 13 can reach the second agreement, 32 can reach the
third agreement, 40 can reach the fourth agreement, and 47
can reach the fifth agreement. The results demonstrate that
differences exist among the puzzles. While most puzzles can
produce an agreement easily in the first round, it becomes
increasingly difficult for puzzles to yield agreements in the
second, third, fourth and fifth rounds. Hence, it is important
to consider puzzle diversity in the design of puzzle selection
algorithms. The ideal solution involves promoting equality
of opportunity, instead of equality of outcomes, in order to
accommodate the differences among puzzles.

4.2 Simulation Results

In the first set of simulations, we compare the num-
ber of game rounds that were passed under the APSA
and OPSA schemes. The cumulative distribution function
(CDF) curves of the simulation results are shown in Figure
3. Under the OPSA scheme, 83% of the puzzles experience
two passes or less; and the percentage increases to 92% un-
der the APSA scheme. Note that, the larger the number of
game rounds passed, the smaller the number of agreements
collected. Hence, the results demonstrate that the APSA
scheme is superior to the OPSA scheme in terms of reduc-
ing the number of game rounds that are passed.

Figure 4 compares the number of distinct puzzles played
(Np) and the number of puzzles for which there was at least
one agreement (Nt) under the two schemes with various
numbers of game rounds. The results demonstrate that the
APSA scheme yields larger values of Np and Nt consis-
tently. Moreover, we observe that, after 2,500 game rounds,
the value of Nt in the APSA scheme is comparable to the
value of Np in the OPSA scheme. The reason is that, un-
der the APSA scheme, the system tends to avoid selecting
difficult puzzles (i.e., puzzles that have a history of being
passed) by reducing their weights. In other words, APSA
favors puzzles that have not been played before or puzzles
that are more likely to yield new agreements. As a result,
it is more effective than the OPSA scheme in reducing the
number of game rounds that are passed, i.e., it increases the
number of the puzzles that reach agreements.

The results in Figure 4 also show that, unlike the APSA
scheme, the curves of NT and NP contain plateaus when
the OPSA scheme is used. This is because, for all puz-
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zles, the OPSA scheme seeks to apply a global optimal
value as the number of agreements that must be reached
in a puzzle. As a result, when the optimal value is up-
dated (i.e., increased by one), the OPSA scheme assigns
old puzzles first (i.e., puzzles that have been played before),
so that they can reach the new number of required agree-
ments. It then assigns fresh puzzles (i.e., puzzles that have
not been played before) repeatedly until the required num-
ber of agreements is achieved. The first case causes the
plateaus in the OPSA curves (i.e., the periods when nei-
ther NT nor NP increases); and the second case results in a
nearly linear increase in the curves. Moreover, the length of
the plateau period grows with each occurrence, because the
number of old puzzles increases in tandem with the occur-
rences.

Next, we evaluate the efficiency of the APSA and OPSA
schemes in terms of per-puzzle throughput, i.e., the num-
ber of agreements reached over the total time required for
each puzzle. From the results shown in Figure 5, we ob-
serve that 90% of the puzzles achieve a throughput below
0.05 agreements/second under the OPSA scheme, but the
percentage drops to 80% under the APSA scheme. The re-
sults demonstrate that the APSA scheme is more efficient
than the OPSA scheme, because it yields more agreements
with better per-puzzle throughput.

Figure 6 shows the distribution of the number of agree-
ments reached in the system under the two puzzle selection
schemes. The results demonstrate that, under the OPSA
scheme, 17% of the puzzles do not yield any agreements,
and more than 75% of the puzzles reach the same num-
ber of agreements (i.e., 5 agreements). In contrast, under
the APSA scheme, 19% of the puzzles do not reach any
agreements, and the number of the agreements reached in
the remaining puzzles is almost uniformly distributed. This
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is because the OPSA scheme emphasizes equality of out-
comes, and it requires that all solved puzzles have the same
number of agreements. The APSA scheme, on the other
hand, emphasizes equality of opportunity, and it adjusts the
probability that a puzzle will be assigned in the next round
based on its previous play history (i.e., the probability is
higher if the puzzle was more productive in the past). Thus,
the results demonstrate that the APSA scheme can better
accommodate puzzle diversity, i.e., the differences among
puzzles, than the OPSA scheme.

Finally, using the system gain metric [14, 15], we com-
pare the system gain achieved by the APSA and the OPSA
schemes in the simulations. From the results shown in Fig-
ure 7, we observe that the APSA scheme always achieves a
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better system gain than the OPSA scheme (about 5% im-
provement). Note that, the system metric considers two
aspects of the system’s performance: the average time re-
quired for each puzzle (including the passed rounds) and
the average score of the agreements reached in each puzzle.
Since the APSA scheme is effective in reducing the number
of rounds passed in the system, it yields a higher value in the
first part of the metric, and thus improves the system gain.
The system gain could be improved further by modifying
the second part of the metric (e.g., by introducing competi-
tion into the system [18]). However, we defer consideration
of this issue to a future work.

5 Conclusion

In this paper, we investigate the puzzle selection problem
in ESP-like GWAP systems. Using realistic game traces,
we find that puzzle diversity is common in such systems;
hence, we argue that it is important to consider puzzle di-
versity when designing puzzle selection algorithms. To this
end, we propose an approach called the Adaptive Puzzle
Selection Algorithm (APSA), which is based on the Addi-
tive Increase Multiplicative Decrease (AIMD) model. In
addition, we introduce a data structure called the Weight
Sum Tree (WST) to reduce the computational complexity
of APSA in real-world applications. Using a comprehen-
sive set of simulations, we evaluate the proposed scheme
against the OPSA scheme, and show that it achieves a better
system gain and it is more effective in reducing the number
of game rounds passed by players. The results demonstrate
that the APSA scheme can better accommodate the individ-
ual differences among puzzles because it promotes equality
of opportunity. Moreover, the scheme is simple and shows
promise for use in the design and implementation of future
ESP-like GWAP systems.
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