
Fine-Grained Time Synchronization For
Mission-Critical DTSNs

Seng-Yong Lau∗, Ling-Jyh Chen†, Yu-Te Huang†, Po-Yen Lin∗, Yi-Hsuan Chiang∗, Jyh-How Huang‡,
Kun-chan Lan§, Hao-hua Chu∗, Polly Huang∗

∗National Taiwan University, Taiwan
†Academia Sinica, Taiwan

‡National Taiwan College of Physical Education, Taiwan
§National Cheng Kung University, Taiwan

Abstract—It is generally considered a trivial task to synchro-
nize time in a distributed sensor network having a GPS module
on board for each sensor node. This is not quite true depend-
ing on the application at hand. Commissioned to implement
YuShanNet, a delay-tolerant sensor network (DTSN) enabling
encounter information collection for hiker search and rescue,
we find that the naive use of standard GPSs time acquisition
functionalities gives a synchronization error at the scale of 10-
100s milliseconds, which is not sufficient given two application-
specific considerations: (1) data goodput and (2) energy efficiency.
The two requirements are crucial in that the matter is life or
death and the hiking trips usually take days. Towards efficient
use of the intermittent connectivity in YuShanNet, we design,
implement, and evaluate a time synchronization mechanism that
improves the synchronization accuracy by approximately two
orders of magnitude. This enables TDMA-fashioned MAC for
high-goodput data transmission while the GPS is duty-cycled for
energy efficiency.

I. INTRODUCTION

The trail to the highest peak in East Asia, Yushan and a.k.a.
Mt. Jade, is extremely popular and attracts visitors from all
around the world. Working together with the Yushan National
Park to address the hiker safety issue, we set out to design and
implement a hiker tracking system, named YushanNet [1]. In
the YushanNet system, each hiker carries a hiker node that
consists of a GPS receiver, a short-range radio and a limited
amount of memory. When hikers pass each other on the trail,
the hiker nodes automatically record the encounter information
(i.e., the node’s ID, the GPS location, and the timestamp)
in their memory, and then exchange with the other hiker
nodes the encounter information collected previously. When
a hiker reaches one of the base-stations installed at frequently
visited spots on the trail, the encounter information is uploaded
automatically to the base station which is connected to the
Internet via a long-range radio, such as a 3G transmitter.

In such a network, the wireless connectivity is opportunistic
and the end-to-end data delivery delay can be unpredictably
long. We refer to this genre of sensor networks as the delay-
tolerant sensor networks (DTSNs). Having examined actual
hiker traces before system implementation, we find that (1)
hikers tend to move in clusters; and (2) hiker encounters tend
to be short. Compounded by the property that the amount of
encounter information to exchange scales to the number of hik-
ers, the number of encounters over time, as well as the specific
encounter information relay strategy, the wireless channel is
likely well contended during the data exchanges. This is the
case generally considered better handled by TDMA-fashioned
MACs with fine-grained time synchronization.

The GPS’s basic global time acquisition function, i.e., the

GPGGA messages, produces a millisecond-level synchroniza-
tion error which is insufficient. We turn to the Pulse Per
Second (PPS) signals that provide a very low microsecond-
level error [2]. The issue is that it takes a certain amount of
time for the PPS signals to stabilize when the GPS module is
just waking up. Duty-cycling GPS is essential for YushanNet
given that the hiking trips can go as long as a few days and
energy efficiency is one of the major system requirements.

To address this problem, we consider both the PPS signals
and readings from hiker nodes’ local clocks. These two
time sources are used to calibrate each other collaboratively.
Specifically, when the PPS signals are stable, they are used to
correct the local clocks. After tracking the local clocks’ drifts
for a while, we use the adjusted local clocks to filter the PPS
signal outliers as the GPS module comes back from sleep.
As a result, we achieve in reducing the time synchronization
error to the 10s-microsecond-level while attaining the energy
efficiency via duty-cycling the GPS module.

II. TIME SYNCHRONIZATION BY COLLABORATIVE

CALIBRATION

The basic idea is to exploit the accuracy of PPS signals
in estimating the clock drift on the hardware, and calibrate
the hardware clock continuously when the GPS receiver is
turned off. When the GPS receiver is turned on, the calibrated
hardware clock is then used to filter outliers of PPS signals
and leave accurate PPS signals for re-synchronization. There
are two phases in the proposed collaborative calibration mech-
anism:

Self-Calibration phase: The self-calibration phase contin-
uously measures the clock drift between PPS signals and the
hardware clock wherever a valid PPS signal is available. There
are two steps in this phase:

Initialization: The initialization step ensures that accurate
PPS signals are used to calculate the initial clock drift of the
hardware, i.e., Drift Per Second (DPS). More precisely, when a
hardware module is powered on and its GPS receiver achieves
a 3D-fix, we capture N contiguous PPS signals and calculate
the time offsets between the N signals and the hardware clock.

We let ∆ti be the time offset in ticks between the i-th PPS
signal and the hardware clock, and calculate the histogram
of the ∆ti values (1 ≤ i ≤ N). We pick the most frequent
value from the N time offsets, and expand both upward and
downward to include X of the N time offsets. For simplicity,
we set X = 90% in this study. Then, we calculate the initial978-1-4673-1786-3/12/$31.00 c© 2012 IEEE

time skew of the hardware module (i.e., DPS0) by

DPS0 =

∑
N

i=1
δi∆ti

∑
N

i=1
δi

; (1)

where δi = 1 when ∆ti is included in the chosen X of the
N time offsets, and δi = 0 otherwise. DPS0 is then used
to compensate the time skew of the hardware module every
second.

Update: This step updates the clock drift estimate continu-
ously in order to respond to the varying clock drifts caused by
the temperature and other environment factors. We let DPS′

i

be the time drift measured at time i, which is the time offset
between the new valid PPS signal and the hardware clock at
time i divided by the elapse time between two consecutive
valid PPS signals. We then update the clock drift estimate to
obtain DPSi by

DPSi = (1− α) ∗DPSi−1 + α ∗DPS
′

i
; (2)

where α is a weighting coefficient between [0,1]. The value
of α will be determined based on actual measurements.

PPS Filter phase: Noises in PPS signals are inevitable
when a GPS receiver is operated in the duty-cycled manner.
The PPS filter phase identifies PPS outliers and disregards
them before the valid ones can be passed on to the Self-
Calibration phase for clock drift estimation. Let ∆t be the
clock drift between two consecutive PPSs, and the time
elapsed be ∆T seconds. We consider the latter PPS signal as
an outlier if ∆t

∆T
> ǫ, where ǫ is a pre-determined threshold.

A small ǫ might result in over-filtering and hinder the tracking
of clock drift in the Self-Calibration phase, whereas a large ǫ

may include some PPS outliers as valid signals by mistake.

III. EXPERIMENTATION

GPGGA Experiments. The error of the GPGGA-message-
based approach is contributed essentially by the delay in
between the time the GPS module obtaining the 3D-fix and the
time the microcontroller receiving the corresponding GPGGA
message. To measure the delay, we stamp the time the mi-
crocontroller receives a GPGGA message and subtract it by
the 3D-fix time indicated in the GPGGA message. To ensure
that the experiment nodes have an identical clock source, we
use a function generator to generate a square wave and feed it
into the nodes. We also enforce all nodes to start ticking their
timers at the same time.

PPS Experiments. In this set of experiments, we compare
the proposed PPS solution to two baseline mechanisms. The
PPS naive case uses the duty-cycled PPS signals which might
be unstable and the Reference PPS case uses the continuous
and stable PPS signals to calibrate the time. 3 variants of the
proposed time synchronization mechanism are implemented.
The PPS Initial implements the initial clock drift derivation.
The PPS Update adds the continuous updates of the clock drift
and the Collaborative Calibration adds further the PPS outlier
filtering.

We sample the 3D-fix, PPS, and the clock ticks by the
Saleae logic analyzer from all the nodes available and then
use the same set of traces to compare the various PPS-
based solutions. The synchronization errors are derived from
discrete-event simulations. The simulator walks through the
events and executes the actions described previously and
records the adjusted time of each node per second. After the

Fig. 1. The CDF of GPGGA-Message Synchronization Errors

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5 0 0.5 1 1.5

CD
F

Clock Drift (millisecond)

PPS Naive
PPS Initial
PPS Update

Collaborative
Reference PPS

Fig. 2. The result of ∆t using 1.PPS naive, align when valid PPS signal
acquired 2. PPS self-calibration, 3. Collaborative Calibration

simulations are completed for all nodes, we calculate the pair-
wise differences which give rise to the synchronization errors.

IV. RESULTS

GPGGA-Message Synchronization. Figure 1 plots the
CDF of the time drifts among nodes synchronizing via the
GPGGA messages. Our experimental result shows that 80%
of the time difference is larger than ±5 ms and the maximum
can be as high as 84ms. With this level of accuracy, GPGGA-
message-based time synchronization is too coarse-grained for
efficient TDMA-fashioned data transmission.

PPS Synchronization. Figure 2 shows the result of the
5 PPS-based solutions. We can see that PPS naive perform
the worst. By calibrating the local clock during the GPS-off
period, PPS Initial and PPS Update improve synchronization
error significantly. By filtering out the noisy PPS signals,
Collaborative Calibration takes the synchronization accuracy
to the next level and the performance is very close to the
best case. The 80-percentile synchronization error is ±0.135
ms and the maximum is 1.924 ms. This is approximately two
orders of magnitude better than that of the GPGGA-message-
based time synchronization.

V. CONCLUSION

We design, implement, and evaluate a time synchronization
mechanism that improves the synchronization precision by
approximately two orders of magnitude. With the success
of the time synchronization, we look forward to bring the
YuShanNet into realization and promote hiker safety in the
Yushan region.

REFERENCES

[1] Y.-T. Huang, Y.-C. Chen, J.-H. Huang, L.-J. Chen, and P. Huang.
Yushannet: A delay-tolerant wireless sensor network for hiker
tracking in yushan national park. In Mobile Data Management:
Systems, Services and Middleware, 2009. MDM ’09. Tenth Inter-
national Conference on, pages 379 –380, may 2009.

[2] J. Mannermaa, K. Kalliomaki, T. Mansten, and S. Turunen. Tim-
ing performance of various GPS receivers. In IEEE International
Frequency Control Symposium, 1999.

