Direct Sequence Spread Spectrum
Physical Layer Specification
IEEE 802.11

Prepared by Jan Boer, Chair DS PHY
Lucent Technologies WCND Utrecht

What is DSSS?

- Signal symbol is spreaded with a sequence

\[
\begin{array}{llllllllllllll}
+1 & +1 & -1 & -1 & +1 & -1 & +1 & -1 & +1 & -1 & +1 & -1 & +1 & -1
\end{array}
\]

- Wider Bandwidth
- Less power density
11 chip BARKER sequence

- Good autocorrelation properties
- Minimal sequence allowed by FCC
- Coding gain 10.4 dB

DSSS benefits

- 10 dB coding gain:
 - Robust against interferers and noise (10 dB suppression)
- Robust against time delay spread
 - Resolution of echoes
IEEE 802.11 DSSS PHY characteristics

- 2.4 GHz ISM band (FCC 15.247)
- 1 and 2 Mb/s datarate (DBPSK and DQPSK modulation)
- Symbolrate 1MHz
- Chipping rate 11 MHz with 11 chip Barker sequence
- Multiple channels in 2.4 to 2.4835 GHz band

PLCP Frame Format

Preamble and Header always at 1Mb/s DBPSK
PLCP synchronization

- 128 scrambled 1 bits
- needed for o.a.
 - gain setting
 - energy detection
 - antenna selection
 - frequency offset compensation

Start Frame Delimiter

- 16 bit field (hF3A0)
- used for
 - bit synchronization
Signal Field

- Rate indication
 - h0A 1Mb/s DBPSK
 - h14 2Mb/s DQPSK
- Other values reserved for future use (100 kb/s quantities)

Service Field

- Reserved for future use
- h00 signifies 802.11 compliant
Length Field

• Indicates number of octets to be transmitted in MPDU
• Used for
 – End of frame detection
 – MPDU CRC sync

CRC field

• CCITT CRC-16
• Protects Signal, Service and Length Field
Data Scrambler

Scrambler Polynomial: \(G(z) = z^7 + z^4 + 1 \)

- ALL bits transmitted by the DSSS Phy are scrambled
- Purpose
 - Whitening the spectrum
 - DC blocking (Barker sequence is asymmetric)

DBPSK Modulation

<table>
<thead>
<tr>
<th>Bit Input</th>
<th>Phase Change ((\times \pi / 2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(\pi)</td>
</tr>
</tbody>
</table>

Table 1, 1 Mb/s DBPSK Encoding Table.
DQPSK Modulation

\[\begin{align*}
&\begin{array}{c|c}
\text{Dibit pattern \((d_0,d_1)\)} & \text{Phase Change \((\pm j\frac{\pi}{2})\)} \\
00 & 0 \\
01 & \frac{\pi}{2} \\
11 & \pi \\
10 & 3\pi/2 (-3\pi/2) \\
\end{array}
\end{align*} \]

Table 1, 2 Mb/s DQPSK Encoding Table

Transmit Spectrum Mask

Copyright ©1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change.
DSSS Channels

<table>
<thead>
<tr>
<th>CHNL_ID</th>
<th>FCC Channel Frequencies</th>
<th>ETSI Channel Frequencies</th>
<th>Japan Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2412 MHz</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>2417 MHz</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>2422 MHz</td>
<td>2422 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>2427 MHz</td>
<td>2427 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>2432 MHz</td>
<td>2432 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>2437 MHz</td>
<td>2437 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>2442 MHz</td>
<td>2442 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>2447 MHz</td>
<td>2447 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>2452 MHz</td>
<td>2452 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>2457 MHz</td>
<td>2457 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>2462 MHz</td>
<td>2462 MHz</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>N/A</td>
<td>N/A</td>
<td>2484 MHz</td>
</tr>
</tbody>
</table>

Table 1, DSSS PHY Frequency Channel Plan

Clear Channel Assessment

- Three methods:
 - CCA mode 1: Energy above threshold
 - CCA mode 2: Carrier sense only
 - CCA mode 3: Carrier sense with energy above threshold
- Energy detection function of TX power
 - Tx power > 100 mW: -80 dBm
 - Tx power > 50mW : -76 dBm
 - Tx power ≤ 50mW: -70 dBm
- Energy detect time: 15 µs
- Correct PLCP header --> CCA busy for full (intended) duration of of frame as indicated by PLCP Length field
DSSS Specification Summary

- Slottime: 20 μs
- TX to Rx turnaround time: 10 μs
- Rx to Tx turnaround time: 5 μs
- Operating temperature range:
 - type 1: 0 - 40 °C
 - type 2: -30 - 70 °C
- Tx Power Levels:
 - 1000 mW USA
 - 100 mW Europe
 - 10 mW/MHz Japan
- Minimum Transmitted Power: 1 mW
- Tx power level control: required above 100 mW

DSSS Specification Summary (cont)

- Tx Center Frequency Tolerance: +/- 25 ppm
- Chip Clock Frequency Tolerance: +/- 25 ppm
- Tx Power On Ramp: 2 μs
- Tx Power Down Ramp: 2 μs
- RF Carrier suppression: 15 dB
- Transmit modulation accuracy: test procedure
- Rx sensitivity: -80 dB @ 0.08FER (1024 Bytes)
- Rx max input level: -4 dB
- Rx adjacent channel rejection: >35 dB @ > 30 MHz separation between channels
PLCP Transmit Procedure

MAC

PHY TxSTART.req

PHY TXEND.req or length count met

PHY

PLCP

PMD_TXPWRLVL,
PMD_TXSTART

PMD_DATA.req

PMD_TXEND

PHY

PMD

SYNC SFD Signal, Service, Length CRC

Scramble start
TX Power RAMP

CRC16 start

CRC16 end

Rate change start

TX Power RAMP off

PLCP Receive Procedure

MAC

PHY CCA.ind(BUSY)

PHY RXSTART.ind(RXVECTOR)

PHY RXEND.ind(RXERROR)

PHY CCA(IDLE)

PHY

PLCP

PMD_ED/ PMD_CS

PMD_ED or PMD_CS

PHY

PMD

SYNC SFD Signal, Service, Length CRC

CRC start

CRC end

Rate change start