Frequency Hopping Spread Spectrum
PHY of the 802.11 Wireless LAN
Standard

Presentation to IEEE 802
March 11, 1996

Naftali Chayat
BreezeCom

Why Frequency Hopping?

• Frequency Hopping is one of the variants of Spread Spectrum- a technique which enables coexistence of multiple networks (or other devices) in same area
• FCC recognizes Frequency Hopping as one of the techniques withstanding “fairness” requirements for unlicensed operation in the ISM bands.
• 802.11 Frequency Hopping PHY uses 79 nonoverlapping frequency channels with 1 MHz channel spacing.
• FH enables operation of up to 26 collocated networks, enabling therefore high aggregate throughput.
• Frequency Hopping is resistant to multipath fading through the inherent frequency diversity mechanism
Regulatory requirements for FH

- North America (CFR47, Parts 15.247, 15.205, 15.209):
 - Frequency band: 2400-2483.5 MHz
 - At most 1 MHz bandwidth (at -20 dB re peak)
 - At least 75 hopping channels, pseudorandom hopping pattern
 - At most 1 W transmit power and 4 W EIRP (including antenna)
- Europe (ETS 300-328, ETS 300-339):
 - Frequency band: 2400-2483.5 MHz
 - At least 20 hopping channels
 - At most 100 mW EIRP
- Japan (RCR STD-33A):
 - Frequency band: 2471-2497 MHz
 - At least 10 hopping channels

802.11 FH PHY vs. Regulations

- 1 MHz Bandwidth
- 79 hopping channels in North America and Europe; pseudorandom hopping pattern.
- 23 hopping channels in Japan.
- At most 1 W power; devices capable of more than 100 mW have to support at least one power level not exceeding 100 mW.
802.11 FHSS Modulation Objectives

- Achieving at least 1 Mbit/sec rate
- Familiar, field proven, low cost technology - FSK
 - Constant Envelope- Saturated Amplifiers
 - Limiter-Discriminator detection
- Multichannel operation - transmit signal shaping to reduce adjacent channel interference
- Multiple rates - medium use optimization by taking advantage of short-range/good-propagation scenarios to increase rate

802.11 FHSS Modulation

- Gaussian shaped FSK (GFSK) at $F_{clk} = 1$ Msymbol/sec
 - NRZ data is filtered with $BT=0.5$ low-pass Gaussian filter (500 KHz bandwidth at 3 dB) and then FM modulates a carrier
- 1 or 2 Mbit/sec with multilevel GFSK
 - 1 Mbit/sec: 2 level GFSK $h_2=0.34$
 - 2 Mbit/sec: 4 level GFSK $h_4=0.45h_2=0.15$
- 1 Mbit/sec operation mandatory; 2 Mbit/sec- optional
 - facilitates production of interoperable lower-rate/ lower-cost and higher-rate/higher-cost equipment
802.11 FHSS Frame Format

- PHY header indicates payload rate and length; CRC16 protected
- Data is whitened by a synchronous scrambler and formatted to limit DC offset variations
- Preamble and Header always at 1 Mbit/sec; Data at 1 or 2 Mbit/sec

PLCP Preamble

- PLCP preamble starts with 80 bits of 0101 sync pattern, used to
 - detect presence of signal
 - to resolve antenna diversity
 - to acquire symbol timing
- Follows 16 bit Start Frame Delimiter (SFD)
 - the pattern is 0000 1100 1011 1101 (left bit transmitted first)
 - the SFD provides symbol-level frame synchronization
 - the SFD pattern is designed to optimize autocorrelation properties in conjunction with the 0101 pattern in front of it
 - the SFD pattern is balanced
PLCP Header

- A 32 bit PLCP header consists of PLW (PLCP_PDU Length Word), PSF (PLCP Signaling Field) and 16 bit HEC (Header Error Check)
 - PLW (PLCP_PDU Length Word) is 12 bit field indicating the length of PLCP_PDU in octets, including the 32 bit CRC at the PLCP_PDU end, in the range 0 .. 4095
 - PSF (PLCP Signaling Field) is 4 bit field, of which currently 3 are reserved and the fourth is used to signal the PLCP_PDU data rate (1 or 2 Mbit/s)
 - HEC is a 16 bit CRC with CCITT generator polynomial \(G(x)=x^{16}+x^{12}+x^5+1 \)
- The PLCP header is always transmitted at 1 Mbit/sec.

PLCP_PDU Formatting

- Delineating data octets into serial stream, LSB first
- Scrambling: the data is XORed with periodic 127 bit LFSR sequence generated by a \(1+x^4+x^7 \) feedback polynomial
- Dividing serial bit stream into symbols:
 - at 1 Mbit/s, each bit is converted into 2FSK symbol
 - at 2 Mbit/s, each 2 bits are encoded into 4FSK symbol using Gray mapping
- DC offset control:
 - A polarity indication symbol is inserted in front of each 32 symbol block
 - The 33 symbol block is either inverted or not, as to maintain lower cumulative DC bias
 - DC offset control is important in PLL-based transmitters
FH PHY Scrambler

- Scrambling is applied just to PLCP_PDU, not to PLCP header
- Scrambling is performed by a bitwise XOR with LFSR sequence with 127 bit period, with \(1+x^4+x^7\) feedback polynomial
- Same method is used for scrambling and descrambling

```
Initialize all registers with ones
```

Bits to Symbol Mapping

- 1 bit (with 2GFSK) or 2 bits with (4GFSK) are mapped to a symbol
- at 2 bits/symbol Gray coded mapping is used, as customary with multilevel modulations.
- 2GFSK and 4GFSK have same RMS frequency deviation

```
<table>
<thead>
<tr>
<th>Symbol</th>
<th>2GFSK</th>
<th>4GFSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>-225 KHz</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>-75 KHz</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+225 KHz</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+75 KHz</td>
<td></td>
</tr>
</tbody>
</table>
```

Copyright ©1996 IEEE, All rights reserved. This contains parts from an unapproved draft, subject to change
DC Bias Control

- The DC offset control is instrumental in reducing "baseline wander" in PLL based implementations (problem similar to transformer coupling in wired networks).
- Polarity indication symbol is added in front of each 32 symbol block - "0" for 2GFSK, "00" for 4GFSK (the symbol with most negative frequency offset).
- The sign of DC offset contribution of the 33 symbol block is compared to sign of previous accumulated DC offset; if same sign, the block is inverted (frequency deviation reversed at each symbol).
- At receive side, the polarity of the first (indication) symbol is tested - if positive, next 32 symbols are inverted.

Transmit Ramp Up and Ramp Down

- The gradual Ramp Up and Ramp Down are required to reduce the splatter (spikes) in adjacent channels at start and ending of the packet.
- Up to 8 microseconds of the PLCP idle pattern and 8 microseconds following the last symbol of the PLCP_PDU are allocated to gradual increase and decrease of transmit power.
- The minimal ramp time is dictated by adjacent channel interference specifications, and is not specified directly in the standard.
Indoor Environment - Multipath Fading

• Multiple propagation paths, interfering with each other, create a frequency selective fading.
• The fades are correlated at adjacent frequencies and get decorrelated after few megahertz in an indoor environment.

Frequency Hopping Sequences- Reqs.

• Design Criteria:
 – Assured minimum hop distance for multipath diversity performance
 – Minimizing hits and adjacent channel hits between different hopping patterns
 – Minimizing consecutive hits between different hopping patterns
• FCC 15.247 requirement: Pseudorandomly ordered frequency list
Frequency Hopping Sequences

- Predesigned computer generated pseudorandom list of 79 frequencies
- Minimum hop distance of 6 channels
- Additional hopping sequences derived by modulo 79 frequency offset
- 78 hopping patterns organized in 3 sets of 26 patterns each.
 - Sequences from same set collide 3 times on average, 5 times worst case, over a hopping pattern cycle, including hits and adjacent channel hits.
- Aggregate throughput continues to increase up to about 15 colocated networks, at high load conditions.

Frequency Hopping Sequences- cont.

- Denote frequency as 2402+b[i], b[i] is the base sequence in range 0..78.
- k-th sequence is formed from the base sequence as 2402+(b[i]+k) mod 79
- Example:
 - Base seq: 2402, 2456, 2472, 2447, ...
 - 30-th seq: 2432, 2407, 2423, 2477, ...

FHSS Transmitter Specifications

- Deviation:
 - Upper bounded by FCC requirements
 - Lower bounded to +/-110 KHz in order to maintain sensitivity
- Shape accuracy:
 - Zero crossing instants accuracy - +/- 1/8 symbol (at 2GFSK)
 - Level accuracy
- Center Frequency accuracy - 60 KHz (25 PPM)
- Symbol rate - 1 MHz +/- 50 ppm
- Hop Time- transmitter has to settle within 224 microseconds to within 60 KHz off nominal center frequency after

Receiver Performance Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1 Mb/s</th>
<th>2 Mb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>-80 dBm</td>
<td>-75 dBm</td>
</tr>
<tr>
<td>Desensitization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 2 Mhz offset</td>
<td>30 dB</td>
<td>40 dB</td>
</tr>
<tr>
<td>@ 3 Mhz or more</td>
<td>20 dB</td>
<td>30 dB</td>
</tr>
<tr>
<td>Intermodulation Protection</td>
<td>30 dB</td>
<td>25 dB</td>
</tr>
</tbody>
</table>
CCA- Clear Channel Assessment

• CCA is used to:
 – Initiate frame reception
 – Avoid transmitting when the channel is busy
• The Backoff Slot width for FHSS PHY is 50 microseconds. The CCA should detect a signal which started up to 16 microseconds before end of the slot
• CCA Sensitivity:
 – -85 dBm for $P_T < 20$ dBm, reduced by 0.5 dB for each dB of power increase
 – Detection during 0101 pattern within 20 microseconds with 90% probability