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Abstract— Opportunistic network is a type of Delay Tolerant
Networks (DTN) where network communication opportunities
appear opportunistic. In this study, we investigate opportunistic
network scenarios based on public network traces, and our
contributions are the following: First, we identify the censorship
issue in network traces that usually leads to strongly skewed
distribution of the measurements. Based on this knowledge, we
then apply the Kaplan-Meier Estimator to calculate the survivor-
ship of network measurements, which is used in designing our
proposed censorship removal algorithm (CRA) that is used to
recover censored data. Second, we perform a rich set of analysis
illustrating that UCSD and Dartmouth network traces show
strong self-similarity, and can be modeled as such. Third, we
pointed out the importance of these newly revealed characteristics
in future development and evaluation of opportunistic networks.

I. INTRODUCTION

Opportunistic network is a type of challenged networks,
where network contacts are intermittent, an end-to-end path
between the source and the destination may have never existed,
disconnection/reconnection is common, and/or link perfor-
mance is highly variable or extreme. Therefore, traditional
Internet and Mobile Ad-hoc NETwork (MANET) routing
techniques can not be directly applied to networks in this
category. With numerous emerging opportunistic networking
applications, such as wireless sensor networks (WSN) [4][22],
underwater sensor networks (UWSN) [12], transportation net-
works [3][7], pocket switched networks(PSN) [8][16], and
people networks [20][21], it remains desirable to develop
effective schemes that can better accommodate the character-
istics of opportunistic networks.

Knowing fundamental properties of opportunistic networks
is the key for the design of effective routing protocols and/or
applications. Among all, knowledge of inter-contact time
distribution is particularly important, since this distribution
provides a good description of network connectivity. By inter-
contact time, we mean that the time duration between two
contiguous network contacts (between a particular node pair).
The more inter-contact time events in the network trace, the
more reconnection/disconnection events have occurred during
the network measurement period.
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It is the interest of this study to further analyze oppor-
tunistic network scenarios based on realistic opportunistic
people network traces. Using publicly available network traces
from UCSD [2] and Dartmouth college [1], we first propose
a survival analysis based approach to cope with censorship
among network traces. The censorship issue commonly exists
in most network measurements since it is inevitable to have
measured events lasting longer then the measurement period.
While previous studies simply ignore censored measurement
data, our contributions are the following: First, we identify
the censorship issue in network measurement traces, and
propose a simple yet effective algorithm to recover censored
measurements. Second, using recovered network measure-
ments, we perform a set of analysis showing the existence of
self-similarities in opportunistic people networks. Lastly, we
pointed out the importance of these characteristics in future
development and evaluation of opportunistic networks.

The rest of the paper is organized as follows. In section
II, we summarize related work in this area. In section III,
we briefly describe the basic properties of the opportunistic
network traces examined. Section IV presents our survival
analysis and the proposed censorship removal algorithm for the
employed network traces. Section V performs self-similarity
analysis on the recovered network traces. Finally, section VI
concludes the paper.

II. RELATED WORK

Statistical analysis of opportunistic network traces has been
performed [8][16], and the power-law distribution (with heavy
tails) has been proposed to model the distribution of inter-
contact time and contact duration in opportunistic networks.
However, as we will elaborate later in this paper, these studies
simply ignore the presence of censorship that is common in
network measurements, and they only concentrate on fitting
the distribution curve whereas thorough statistical analysis
of other fundamental network properties are still lacking.
Particularly, while Internet traffic has been well-recognized to
be self-similar [10][14][18][19], it is one of our interests to
investigate whether the same property holds in opportunistic
networks. We present detailed analysis and discussion in the
followings.
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Fig. 1. Illustration of inter-contact time distribution of UCSD and Dartmouth traces.

TABLE I

COMPARISON OF OPPORTUNISTIC NETWORK TRACES.

Trace Name UCSD Dartmouth
Device PDA WiFi Adapter

Network Type WiFi WiFi
Duration (days) 77 1,177
Granularity (sec) 120 300

Devices participating 273 5,148
Number of contacts 195,364 172,308,320

Avg # Contacts/pair/day 0.06834 0.01105
% of censored measurements 7% 1.3%

III. DESCRIPTION OF OPPORTUNISTIC NETWORK TRACES

In this paper, we select two publicly available network
traces, namely UCSD [2] and Dartmouth [1] traces, due to
their large number of participating nodes and sufficiently long
measurement duration. Table I outlines the basic properties of
the two network traces1.

More specifically, the UCSD trace is a client-based trace that
records the visibility of WiFi based access points (APs) with
each participating portable device (e.g., PDAs and laptops)
on UCSD campus. The network trace is about two and half
months long, and there are 273 devices participated. Similar
to [8][16], we make the assumption that a communication
opportunity (i.e., network contact) is encountered between two
participating devices (in ad hoc mode) if and only if both of
them are associated to the same AP during some time period.

Similarly, the Dartmouth trace is an interface-based trace
that records the APs that have been associated with a particular
wireless interface during a three year (1177 days) period.
However, we do not intend to use the full length trace in
the following analysis due to the costly overall computation
overhead. We will use only a subset of the trace, which is

1In Dartmouth trace, there were a total of 13,888 devices in the network,
but only 5,148 of them have contact experience with other devices.

with the same period (77 days, from 09/22/02 to 12/08/02) as
the UCSD trace, for analysis purpose, and use the full trace
to verify the correctness of our censorship removal algorithm
that we will detail in the next section.

Similar to [8][16], the goal of this study is to analyze the
distribution of the inter-contact time, Ti c, in that this property
reflects the connectivity of the network. Fig. 1 depicts the
inter-contact time distribution of the two employed network
traces, and each point on the figure represents one inter-contact
time measurement that starts at the corresponding time point
(horizontal axis).

In Fig. 1, it is clear that the inter-contact time distribution
is strongly skewed and upper-bound by a straight line (i.e.,
Tupper bound = 11 − Tcur, where Tcur is the starting day of
the inter-contact time in the network trace and 11 is the trace
length in weeks). Moreover, one can also find that the data
points can be classified into two groups: one is uncensored
inter-contact time, and the other is censored inter-contact
time2. More precisely, 7% of inter-contact time measurements
are censored in UCSD trace, and 1.3% are censored in
Dartmouth trace. In addition, all censored data lie on the upper
bound straight line, whereas uncensored data are located in the
lower region of the straight line. It turns out that the censorship
leads to strongly skewed inter-contact time measurements, and
it is necessary to recover those censored measurements in
order to have more precise analysis for opportunistic networks.

IV. CALIBRATING CENSORED MEASUREMENTS

As identified previously, the inter-contact time measurement
is a kind of survival data (i.e., time to death or event) [13]
by nature, since an inter-contact time is likely to start when
the measurement is going on, but stop after the end of the
measurement. Analysis of survival data has been extensively

2An inter-contact time is called censored if starts during the measurement
time but terminates after the end of the measurement.
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Fig. 2. Illustration of inter-contact time distribution of UCSD and Dartmouth traces after calibration.

Algorithm 1 The CRA algorithm for calibrating censorship
of inter-contact time measurements in network traces.

1: for i = 1 to N − 1 do
2: Randomly select Ŝ(ti)−Ŝ(ti−1)

Ŝ(ti)
of Ci and move them to

Di

3: Move remaining entities of Ci to Ci+1

4: end for
5: Move CN into DN

studied in many disciplines, such as biostatistics, bioinfor-
matics, life science, and etc., and it has been applied to the
subject of network analysis for online gaming traffic recently
[9]. However, survival analysis has not yet been applied to
opportunistic network traces, even though censored data are
prevalent and measurements are strongly skewed.

Targeting this issue, we present one survival analysis tech-
nique, called Kaplan-Meier Estimator, in subsection IV-A to
estimate the survivorship of the employed network traces.
We present the Censorship Removal Algorithm (CRA) in
subsection IV-B, and the evaluation of CRA in IV-C.

A. Kaplan-Meier Estimator

The Kaplan-Meier Estimator (K-M Estimator, a.k.a. Product
Limit Estimator) [17] has been proposed by Kaplan and Meier
in 1958. The basic idea of K-M estimator is that, given
survival data as an independent random variable, the censored
measurements shall have the same likelihood of distribution as
the uncensored ones as long as the number of uncensored mea-
surements is sufficiently large. More specifically, we define
a survival function (a.k.a. survivorship function or reliability
function), S(t), as the probability that an inter-contact time
measurement from the given network trace is larger than t,
i.e., S(t) = Pr [Ti c > t].

Suppose there are N distinct Ti c observations in the net-
work trace (i.e., t1, t2, ..., tN in ascending order such that

t1 < t2 < ... < tN ), ni events (i.e., Ti c measurements) have
Ti c ≥ ti, and di events are uncensored with Ti c = ti, the K-
M Estimator is a nonparametric maximum likelihood estimate
of S(t) as defined by Eq. 1.

Ŝ(t) =
∏

ti≤t
Pr [t > ti |t ≥ ti]

=




1 ; t1 > t∏
ti≤t≤tN

[
ni − di

ni

]
; t1 ≤ t

(1)

Note that, since the calculation of K-M Estimator is based
on the likelihood of uncensored data, the survivorship does
not exist when t > tN , that is the maximum inter-contact
time measurement in the trace.

B. Censorship Removal Algorithm (CRA)

It turns out that a censorship removal scheme that can
recover censored measurements is still highly desired for
further analysis of inter-contact time measurements in oppor-
tunistic networks. Based on the K-M Estimator results, we
propose a censorship removal algorithm (CRA) to calibrate the
censorship based on Ŝ(t) estimates. More specifically, suppose
Ci/Di denotes the set of censored/uncensored inter-contact
time measurements with Ti c = ti, the censorship removal
algorithm iteratively moves a portion of censored data (based
on the probability, Ŝ(ti)−Ŝ(ti−1)

Ŝ(ti)
) from Ci to Di and moves

the remaining entities of Ci to Ci+1 afterward. Alg. 1 shows
the algorithm.

For simplicity, we assume the decision process is uniformly
distributed. Fig. 2 shows the results of inter-contact time
distribution after censorship removal for both UCSD and
Dartmouth traces.

C. Evaluation

Here we present evaluation showing the correctness of the
proposed CRA technique. The shortened Dartmouth trace (77
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Fig. 3. Comparison of measured Ti c distribution, calibrated Ti c distribution,
and real Ti c distribution (the full version trace) of Dartmouth trace.

days long) is employed as the raw network trace, and the full
trace (1177 days long) is used to provide complete Ti c infor-
mation censored in the shortened one. As we have discovered
previously, about 1.3% events (i.e., Ti c measurements) are
censored in the shortened network trace, and 80.4% of them
become uncensored when the 1177-day trace is employed (i.e.,
the Ti c measurement ends after the 77th day but before the
end of network measurements). Fig. 3 compares the CCDF of
the measured Ti c (using the shortened trace), recovered Ti c,
and real Ti c (using the 1177-day long trace) of Dartmouth
trace. The results clearly show that, after applying CRA, the
recovered Ti c has nearly identical distribution as the real
one. This clearly shows that the proposed CRA algorithm can
correctly calibrate censorship in time-limited network traces.

V. ANALYSIS OF SELF-SIMILARITIES USING

OPPORTUNISTIC NETWORK TRACES

In this section, we perform analysis of self-similarities on
inter-contact time measurements of opportunistic people net-
work traces that have been calibrated using the proposed CRA
technique as presented. We firstly investigate the power-law
property that shows heavy tails in the distribution in subsection
V-A, recap the definition of self-similarity in subsection V-B
and show the analysis of self-similarity in subsection V-C.

A. Heavy-Tailed Distribution

As mentioned previously, the inter-contact time distribu-
tion of opportunistic networks has been found power-law
distributed, and thus heavy-tailed [8]. In this subsection, we
first give an overview of the heavy-tailed distribution and then
show that both UCSD and Dartmouth traces are heavy-tailed.

The distribution of a random variable X is called heavy-
tailed if Eq. 2 is satisfied with 0 < α < 2 as x → ∞, where
c is a positive constant and α is the power-law exponent [11].

P [X > x] ∼ cx−α (2)

We find that the alpha value for the tail (slope of the
curve in log-log scale) is 0.26 for UCSD trace and 0.47 for
Dartmouth trace. Therefore, we conclude that both UCSD and
Dartmouth traces are heavy-tailed, which confirms the results
of previous studies [8].

B. Self-Similarity Definition

A standard notation of a continuous-time process states Z =
{Z(t), t ≥ 0} is self-similar if it satisfies the condition:

Z(t) = a−HZ(at); ∀t ≥ 0,∀a > 0, 0 < H < 1 (3)

where the equality is in the sense of finite-dimensional
distributions. The H is called hurst that expresses the degree
of self-similarity of the series. If the series is self-similar, then
1/2 < H < 1. Moreover, as H approaches 1, the degree of
self-similarity increases. Note that a process satisfying Eq. 3
can never be stationary but Z is typically assumed to have
stationary increments.

C. Graphical Methods and Statistical Analysis

In this subsection, we apply four techniques (namely
variance-time plot, R/S plot, periodogram plot, and Whittle
estimator) [5][6][15] to investigate self-similarities within our
network traces. We present the analysis in the followings.

1) Variance-Time Plot: The variance-time plot tests the
property of the slowly decaying variance that exists in self-
similar series. In Fig. 4-a, the slope of is estimated by
regression as -0.4, and the hurst parameter, H , is estimated
to be 0.8; whereas, in Fig. 4-b, the slope is about -0.405 and
the hurst estimate is about 0.797.

2) Rescaled Adjusted Range Plot: The R/S method sequen-
tially divides the dataset in dichotomy to calculate the rescaled
adjusted range for each sub-dataset and then takes the average
of all calculated values [15]. Fig. 5 shows the R/S plot of the
employed network traces, and the hurst parameter, H , is thus
estimated by the regression slope. Specifically, the H estimate
is 0.747 in UCSD trace and 0.749 in Dartmouth trace that
indicates the inter-contact time measurements of both network
traces are self-similar.

3) Periodogram Plot: A Periodogram Plot can be obtained
by collecting multiple periodograms of various frequency
values [6]. Fig. 6 illustrates the periodogram plots of UCSD
and Dartmouth traces. The hurst estimate is about 0.78 in
UCSD trace and 0.76 in Dartmouth trace that again confirm
the inter-contact time measurements are self-similar in both
traces.

4) Whittle Estimator: Whittle estimator is usually regarded
as the most robust indicator for self-similarity analysis in that
it provides a confidence interval [11]. As shown in Fig. 7, the
Whittle estimator is stabilized to about 0.8 for UCSD trace and
0.75 for Dartmouth trace while the comparison results of the
three graphical methods are all within 95% confidence interval
when the aggregation level is greater than 1000. We conclude
here again the inter-contact time measurements of UCSD and
Dartmouth traces are both self-similar.



(a) UCSD Trace (H=0.801)

(b) Dartmouth Trace
(H=0.797)

Fig. 4. Variance-Time Method.

(a) UCSD Trace (H=0.747)

(b) Dartmouth Trace
(H=0.749)

Fig. 5. R/S Method.

(a) UCSD Trace (H=0.782)

(b) Dartmouth Trace
(H=0.765)

Fig. 6. Periodogram Method.
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(a) UCSD Trace
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(b) Dartmouth Trace

Fig. 7. Whittle Estimator.

VI. CONCLUSION

In this study, we investigate fundamental properties of
opportunistic people networks. Using public network traces
from UCSD and Dartmouth college, we identify the censorship
issue in network traces that usually leads to strongly skewed
distribution of the measurements. Based on this knowledge,
we then apply the Kaplan-Meier Estimator to calculate the
survivorship of network measurements, which is used in
designing our proposed censorship removal algorithm (CRA)
to recover censored data. We show that, after applying CRA,
the recovered network trace has nearly identical inter-contact
time distribution as the real one. Additionally, we perform
a rich set of analysis illustrating that UCSD and Dartmouth
network traces shows strong self-similarity, and we pointed out
the importance of these newly revealed characteristics to the
future of opportunistic people network research. The results
of this study is indeed influential and should be taken into
consideration in the design, evaluation, and deployment of
future opportunistic network applications.
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