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In the first BioCreative (2004) [3], conditional random fields (CRFs) [5] were employed in tagging
gene and protein mentioned in the biomedical text with high performance [8]. Therefore, we chose
CRFs as our starting point and carefully selected a rich set of 5,059,368 predicates as the features. To
further improve its performance, we combined the tagging results of forward and backward parsing [4].
We tried different combination methods, including set operations and Co-Training [1]. However, we
found that Co-Training performed poorly. Instead, we selected the best solutions from the “adjacent”
ten candidates of bidirectional parsing and then applied dictionary filtering to obtain the best F-score
result. Details are given as follows.

We applied MALLET [7] to take advantage of its feature induction capability [6]. Due to the special
characteristics of name-entities of genes and gene products [10], a rich set of features is required. Not
all features proposed in previous work are useful. After hundreds of trials, we carefully selected
predicates shown in Table 1 as our feature set, which includes commonly used orthographic predicates
and character-n-gram predicates for 2 ≤ n ≤ 4 [8]. We used {−2,−1, 0, 1, 2} as the offsets and
evaluated predicates such as word, stemmed word, part-of-speech tag, and word morphology as the
contextual features at each position. Our domain-specific features include nucleotide (i.e., types of
DNA or RNA), residues of amino acids, etc. We excluded prefix and suffix predicates used in previous
work because we found that they usually increase false positive. To extract features, the Genia
Tagger [9] was applied for stemming, tokenization and part-of-speech tagging. We modified the Genia
Tagger slightly to tokenize words with a higher granularity. For example, punctuation symbols within
words were segmented. We also applied a rule-based filter to clean up some easily fixed mistakes, such
as entities with unpaired parentheses or square brackets.

The performance of the CRF models with this feature set and the rule-based filter is given in the
first row of Table 2, which is already slightly better than previously reported figures. These inside test
results were obtained by randomly selected 10,000 sentences for training and the rest for testing from
the training data set provided by the organizers. To further improve its performance, we combined
the tagging results of forward and backward parsing. In forward parsing, the tagger reads and tags
the input sentences from left to right, while in backward parsing, the tagger reads and tags the input
sentences from right to left. Note that the training set and the features must be reversed to train
a backward parsing CRF model. We tested the forward and backward parsing models and found
that backward parsing constantly outperformed forward parsing in both recall and precision, but its
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Table 1: Features.

Feature Example Feature Example Feature Example
Word proteins Hyphen - Nucleoside Thymine
StemmedWord protein BackSlash / Nucleotide ATP
PartOfSpeech NN OpenSqure [ Roman I, II, XI
InitCap Kinase CloseSqure ] MorphologyTypeI p53→p*
EndCap kappaB Colon : MorphologyTypeII p53→a1
AllCaps SOX SemiColon ; MorphologyTypeIII GnRH→AaAA
LowerCase interlukin Percent % WordLength 1, 2, 3-5, 6+
MixCase RalGDS OpenParen ( N-grams(2-4) p53→{p5, 53}
SingleCap kDa CloseParen ) ATCGUsequece ATCGU
TwoCap IL Comma , Greek alpha
ThreeCap CSF FullStop . NucleicAcid cDNA
MoreCap RESULT Apostrophe ’ AminoAcidLong tyrosine
SingleDigit 1 QuotationMark ” AminoAcidShort Ser
TwoDigit 22 Star * AminoAcid+Position Ser150
FourDigit 1983 Equal =
MoreDigit 513256 Plus +

Table 2: System performance in inside test.

System Precision Recall F-Measure
Forward 0.8660 0.8077 0.8359
Backward 0.8733 0.8118 0.8414
Union 0.8349 0.8578 0.8462
Intersection 0.9076 0.7186 0.8021
Adjacent Ten Union + Dictionary 0.8773 0.8263 0.8510

reason is unclear. We assume that some “signals” at the end of entities are more important to well
demarcate boundaries of entities. However, distributions of nonzero features in both parsing directions
show no significant difference (data not reported here). Then, we tried different ways to combine the
bidirectional tagging results. Simple set operations failed to improve the performance. Though recall
may be enhanced by union and precision by intersection, they also degraded the other measure and
the F-score. Table 2 shows their inside test F-scores. We tried to apply Co-Training [1]. However,
since the output scores (negative log likelihood) of MALLET were not reliable to select unlabeled
training data, Co-Training seriously degraded the F-score to as low as 0.6.

Meanwhile, we found that the union of the “adjacent” ten tagging solutions of bidirectional parsing
may achieve a nearly perfect recall (0.9810 for the final test, with 0.1387 precision). That is, nearly
all true positives are in this union. The “adjacent” solutions were obtained by MALLET’s n-best
option. However, we found that the solutions are not actually the best n solutions. Instead, they
are candidate tagging results adjacent to the best tagging in the search tree grown by the A∗ search
algorithm, according to our trace of MALLET’s source code. This also explains why its output score
ranking is not appropriate for Co-Training. In fact, exhaustively search for the best n candidates
is intractable. Nevertheless, knowing that nearly all true positives are actually in the union of the
adjacent ten solutions, we distill real true positives from this union as follows.

1. Parse the input sentence in both directions to obtain the adjacent ten solutions for each direction
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Table 3: System performance of submitted runs.

System Precision Recall F-Measure
Backward 0.8930 0.8383 0.8648
Union 0.8610 0.8708 0.8658
Adjacent Ten + Dictionary 0.8930 0.8449 0.8683

with their output scores;

2. Compute the intersection of bidirectional parsing and select the solution in the intersection that
minimizes the sum of its output scores;

3. For the other 18 solutions, select the labeled terms appearing in a dictionary with its length
greater than three.

We used approved gene symbols and aliases obtained from HUGO [2] as our dictionary for the final
dictionary filtering. We submitted the results of the top three performing methods in our inside test
(see Table 2) for the 2nd BioCreative (2006). Their performances are shown in Table 3.
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