High-Dynamic-Range Parallel Multi-Scale Retinex Enhancement with Spatially-Adaptive Prior

Soo-Chang Pei
Chih-Tsung Shen

National Taiwan University
Outlines

• Motivation
 ▫ Synthesize the input to be a HDR(-like) image

• Our Proposed System
 ▫ Single-Scale Illumination Estimator
 ▫ Multi-Scale Illumination Estimator with Spatially-Adaptive Prior
 ▫ Illumination/Reflectance Tuning

• Experimental Results

• Conclusions
Motivation:

Original

Retinex

Our Synthesized HDR Result
Illumination/Reflectance Model

- intensity = illumination \cdot reflectance
- \(I(x,y) = L(x,y) \cdot R(x,y) \)
- \(0 \leq R(x,y) \leq 1 \)
- \(L(x,y) \geq I(x,y) \)
Our proposed system

RGB to HSV

I(x,y) → L*(x,y) → L_E(x,y)

Divide

Illumination Estimator

Γ

β

Merge

output
Illumination Estimation

- The illumination should be piece-wise smooth.
- We can obtain the illumination by minimization:

\[F(L(x, y)) = \int_{\Omega} \| \nabla L(x, y) \|^2 + \alpha \cdot \| L(x, y) - I(x, y) \|^2 \]

- We can extend it to multi-scale cases and make it spatially-adaptive to the content:

\[F(L_{-n}(x, y)) = \int_{\Omega} \| \nabla L_{-n}(x, y) \|^2 + w_{-n}(x, y) \cdot \| L_{-n}(x, y) - I_{-n}(x, y) \|^2 \]

such that \(L_{-n}(x, y) \geq I_{-n}(x, y) \)
Illumination Estimation

- We solve the illumination by using gradient-descent algorithm.

\[
L_n(x, y) \leftarrow L_n(x, y) - \mu \cdot G_n(x, y)
\]

\[
G_n(x, y) = -\Delta L_n(x, y) + w_n(x, y) \cdot (L_n(x, y) - I_n(x, y))
\]

- To avoid the Halo artifact, we force the weighting function to related to the intensity signal: \(L(x,y)\) is hard to calculate in the cost-function, so we use \(I(x,y)\).

\[
w_n(x, y) = w(\nabla I_n(x, y))
\]

\[
\approx \alpha \cdot D_n \{ |I(x, y) \otimes H_x(x, y)| + |I(x, y) \otimes H_y(x, y)| \}\]
Illumination Estimation

- We can easily choose H; however, in order to detect strong edges:

$$H_x = \begin{pmatrix}
1 & 1 & 1 & 0 & -1 & -1 & -1 \\
1 & 2 & 2 & 0 & -2 & -2 & -1 \\
1 & 2 & 3 & 0 & -3 & -2 & -1 \\
1 & 2 & 3 & 0 & -3 & -2 & -1 \\
1 & 2 & 2 & 0 & -2 & -2 & -1 \\
1 & 1 & 1 & 0 & -1 & -1 & -1
\end{pmatrix}$$

- We upsample the resulting illumination after calculating the operation inside a given scale:

$$L_{-n+1}(x, y) = U\{L^*_n(x, y)\}$$
Synthesize HDR by Illumination/Reflectance Tuning

- Since we obtain the final illumination $L_0^*(x,y)$, we can obtain the reflectance:
 \[
 R(x, y) = I(x, y) / L_0^*(x, y)
 \]

- We can tune up the illumination and reflectance to synthesize a HDR image:
 \[
 L_{EN}(x, y) = \Gamma(L_0^*(x, y)) = W \cdot \left(\frac{L_0^*(x, y)}{W} \right)^k \cdot (1 + \frac{L_0^*(x, y)}{W})
 \]
 \[
 R_{EN}(x, y) = \beta(R(x, y)) = \exp(g \cdot \left(\frac{1}{1 + e^{-b \cdot \log(R(x, y))}} - \frac{1}{2} \right))
 \]

W is the white value; $k=0.4$, $b=2$, and $g=4$.
Synthesize HDR by Illumination/Reflectance Tuning

\[\Gamma(L_0^*(x, y)) \]

\[\beta(R(x, y)) \]
Synthesize HDR by Illumination/Reflectance Tuning

- The final HDR image can be obtained:
 \[I_{EN}(x, y) = L_{EN}(x, y) \cdot R_{EN}(x, y) \]

- Why Multi-Scale? Why Parallel?
 - The operation is proportional to the area of image. Multi-scale approach can save the computational power and time.
 - Our proposed system is designed to suitable for parallel computing, e.g. Multi-core, GPU.
Experimental Results

Original

Kimmel et al.

Saponara et al.

Ours
Illumination images against Halo

Original Kimmel et al. Saponara et al. Our Results
Experimental Results

Original

Melyan et al.

Saponara et al.

Ours
Experimental Results

Original

Melyan et al.

Shan et al.

Ours
Illumination Estimation:
Size=1000x1600. Matlab Simulation (4 Cores, 3 Scales/Core, 50 iters/Scale) = 1.2766 sec
Illumination Estimation:
Size=1200x1600. Matlab Simulation (4 Cores, 3 Scales/Core, 50 iters/Scale) = 1.6675 sec
Illumination Estimation:
Size=331x550. Matlab Simulation (4 Cores, 3 Scales/Core, 50 iters/Scale) = 0.2005 sec
Illumination Estimation:
Size=374x550. Matlab Simulation (4 Cores, 3 Scales/Core, 50 iters/Scale) = 0.2071 sec
Illumination Estimation:
Size=302x510. Matlab Simulation (4 Cores, 3 Scales/Core, 50 iters/Scale) = 0.1941 sec
Illumination Estimation:
Size=1200x1920. Matlab Simulation (4 Cores, 3 Scales/Core, 50 iters/Scale) = 1.7492 sec
Illumination Estimation:
Size=768x1024. Matlab Simulation(4 Cores,3 Scales/Core,50 iters/Scale)=0.6593 sec
Illumination Estimation:
Size=897x1600. Matlab Simulation (4 Cores, 3 Scales/Core, 50 iters/Scale) = 1.199 sec
Conclusions

• We propose a system to synthesize LR image into a HDR(-like) output.

• We estimate the illumination using a spatially-adaptive cost function.

• Our proposed system is suitable for multi-core processor, and GPU. Moreover, we speed up the process by using multi-scale approach.