

Applying A Hybrid Method To Handwritten Character Recognition
Fu Chang†, Chin-Chin Lin†‡ and Chun-Jen Chen†

†Institute of Information Science, Academia Sinica, Taipei, Taiwan
‡Dept. of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan

E-mail: fchang@iis.sinica.edu.tw, erikson@iis.sinica.edu.tw, dean@iis.sinica.edu.tw

Abstract
In this paper, we propose a new prototype learn-

ing/matching method that can be combined with support
vector machines (SVM) in pattern recognition. This hy-
brid method has the following merits. One, the learning
algorithm for constructing prototypes determines both the
number and the location of prototypes. This algorithm
terminates within a finite number of iterations and as-
sures that each training sample matches in class types
with the nearest prototype. Two, SVM can be used to
process top-rank candidates obtained by the prototype
learning/matching method so as to save time in both
training and testing processes. We apply our method to
recognizing handwritten numerals and handwritten Chi-
nese/Hiragana characters. Experiment results show that
the hybrid method saves great amount of training and
testing time in large-scale tasks and achieves comparable
accuracy rates to those achieved by using SVM solely.
Our results also show that the hybrid method performs
better than the nearest neighbour method.

1. Introduction

In pattern recognition, one deals with either binary

classification in which each object is classified as one of
two classes, or multi-class classification in which each
object is classified as one of N classes, N > 2. SVM (Vap-
nik [11]) is very effective for binary classification and it
can be used for multi-classification by decomposing the
problem into binary classification sub-problems. Two
useful methods for decomposing the problem (Hsu and
Lin [1]) are one-against-one (Knerr et al. [5]) and
DAGSVM (Platt et al. [8]). In the training phase, both
methods require solving N(N-1)/2 binary classification
problems. In the testing phase, the one-against-one tech-
nique conducts N(N-1)/2 classifications, while DAGSVM
technique employs a directed acyclic graph that has N(N-
1)/2 nodes and N leaves. The number of classifications
for each object is reduced to N-1 in DAGSVM. The
drawback of SVM is that, when the number of classes N
becomes large, it incurs exhaustive amount of training
time and produces an extremely large set of support vec-
tors.

For large-scale pattern matching, a long-employed
approach is the nearest-neighbor (NN) (Dasarathy [3])
classification method. The NN method, which matches
each object with all training samples and finds the nearest

sample or k-nearest samples as the basis for classification,
takes no training time and is usually faster than SVM in
large-scale pattern matching applications. In practice, the
NN method is still too slow and does not perform as well
as SVM.

We propose a method that exploits the advantages of
both NN and SVM, and avoids their deficiencies. We
conduct our method as follows. In the matching process,
the set of all training samples is replaced by a much
smaller set of prototypes. The SVM method is then used
in a post-process that works on the top-rank candidates
that have been obtained in the prototype-matching proc-
ess. This paper presents all the ingredients in the training
and testing processes associated with the hybrid method.

2. Prototype-Construction Problem and Its
Solution

We assume that a set of training samples is given and

that the samples’ class types are also specified. Each sam-
ple is represented as a vector in n-dimensional Euclidean
space. For two vectors v = (v1, v2, …, vn) and w = (w1,
w2, …, wn) in this space, their distance is defined as

∑
=

=
n

i
wvdist

1

2
ii .|-|),(wv

A prototype can be any n-dimensional vector whose
class type is also specified. Let type(x) denote the class
type of x, when x is either a sample or a prototype. A set
P of prototypes is said to be a solution to the problem of
prototype construction if the following condition holds
for every sample s. There exists a prototype p in P such
that type(p) = type(s) and dist(s, p) < dist(s, q) for all
other q in P.

If P is a solution for prototype-construction, more
than one prototype for the same class type may be found
in P. If we examine the attraction domain of each proto-
type p, defined as the set of all samples for which p is the
nearest prototype, we find that it contains samples of the
same class type. For this reason, each p in P can serve as
the representative of its neighboring samples.

We now present a learning algorithm that solves the
prototype-construction problem. The algorithm dynami-
cally alters the number of prototypes as well as their loca-
tions, and is thus called dynamic algorithm (DA). It is
given below.

(1) Initiation: for each class type C, the initial C-
prototype is the geometric center of all C-samples.

(2) Absorption: for each sample s, we find the nearest
prototype p. If type(s) = type(p) and dist(s, p) <
dist(s, q) for all other prototypes q, then s is ab-
sorbed. Otherwise, it is unabsorbed.

(3) New prototype construction: for each class type C,
let the number of C-prototypes be num(C). If there
are unabsorbed C-samples, we construct num(C)+1
C-prototypes. Otherwise, C-prototypes remain the
same as in the previous iteration.

(4) Process cessation: if there are still unabsorbed sam-
ples, go to step 2. Otherwise, we stop the whole
process.

In step 3, the construction of new C-prototypes is as
follows. First, we select a sample from the unabsorbed C-
samples. Then, we use the selected sample and existing
C-prototypes as seeds and employ the K-means clustering
method to form new C-prototypes. To select an unab-
sorbed C-sample, we focus on a set Ψ consisting of unab-
sorbed C-samples that are not themselves C-prototypes.
We let each sample in Ψ cast a vote to the nearest sample
in Ψ. We then select the sample in Ψ that gains the high-
est number of votes. To construct new C-prototypes, we
apply the K-means method to group all C-samples ac-
cording to the following procedure. The K-means method
assigns each sample to the cluster whose seed is nearest,
and reset the seed as the geometric center of this cluster.
This procedure continues until all cluster seeds become
unchanged. The final cluster seeds are then assigned as
new prototypes.

It can be proved that DA terminates within a finite
number of iterations, where the number of iterations is
taken as the number of times step 3 is executed. This
comes from the fact that the total sum of distances be-
tween samples and nearest prototypes of the same class
types decreases by at least a constant number in each it-
eration. A sample thus remains unabsorbed for only a
finite number of iterations.

3. Disambiguation Using SVM

The prototype-matching method achieves very high

accuracy rates for k nearest prototypes when k > 1, but
has a noticeable gap between top-k and top-1 accuracy
rates. The disambiguation procedure bridges this gap.
There are some requisites for the training and testing
process. In the training process, we must determine which
class types can be mistaken for another during the proto-
type-matching process. These types are always paired and
are thus referred to as confusing pairs. For these pairs, we
have to specify reassessing schemes using an SVM
method. We use these schemes in the testing process to
reassess the top-k candidates for each object.

Recall that, in the prototype construction process, we
must determine the nearest prototype for each training
sample s. At the end of the process, we find k0 nearest
prototypes for each s. The class types of these prototypes
will be referred to as candidates of s. In the offline proc-
ess, k0 is a small integer but is not necessarily the same as
k1 in the testing process, in which k1 candidates of test
samples are reassessed. We collect the pairs (Ci, Cj),
where Ci and Cj are rank-i and rank-j candidates of s for
1≤ i, j ≤ k0.

For each confusing pair (A, B) and its training sam-
ples, we use SVM to create a reassessing scheme. The
purpose of the SVM is to provide decision functions for
classifying objects into class A or B, where the parame-
ters and support vectors that appear in the decision func-
tion are derived from an optimization problem using
training samples of A and B as components. Details are
given in The Nature of Statistical Learning Theory (Vap-
nik [11]). For handwritten character recognition, we
adopt the dual formulation of the optimization problem
using the polynomial kernel of degree 2. In The nature of
Statistical Learning Theory, comparisons of SVM and
other methods for classifying UPS handwritten numerals
are given. SVM is shown to perform competitively.

After completing the offline process by determining
the reassessing scheme for each confusing pair, we can
address the online process. Suppose that an object O is
given and its first k1 candidates are already found. We
apply reassessing schemes to all confusing pairs found
within the top-k1 candidates of O. When the confusing
pair is (A, B) and the unknown object is classified as A,
then A scores one unit. When all the confusing pairs in
the candidate list are reassessed, we re-order the involved
candidates. The candidate with the highest score is ranked
first, the candidate with the second highest score is
ranked second, and so on. If two candidates receive the
same score, their relative positions remain the same as
before. We then rearrange the involved candidates ac-
cording to their assigned ranks.

4. Application to Handwritten Character
Recognition

To test the effectiveness of our method, we apply it to

the recognition of handwritten characters. Since we aim
to test the hybrid method and to compare it with some
alternatives, we want to minimize the effort of searching
for the best possible features and of determining the best
possible values for certain parameters. As far as recogni-
tion methods are concerned, feature selection plays a sec-
ondary role, since our results suggest that the relative
standing of the compared methods changes little using
different feature extraction techniques, although the abso-

lute standing of their performance is strongly affected by
the selections.

There are seven applications we use in our experi-
ments. They can be divided into three groups in terms of
number of class types involved. The first group contains
two small-scale classification tasks. The databases we
employ are UPS [11] and CENPARMI [9] handwritten
numerals. The second group consists of two middle-scale
classification tasks. In each task, there are 350 class types
of handwritten Chinese/Hiragana characters taken from
ETL8B and ETL9B databases [4]. Each class type con-
tains the same number of samples as the original database.
The third group consists of two large-scale classification
tasks, in which we use full ETL8B and ETL9B sets.

For all databases except UPS and CENPARMI, we
use the feature extraction method consisting of three ba-
sic techniques: non-linear normalization (Lee and Park
[6], Yamada et al. [12]), directional feature extraction,
and feature blurring (Liu et al. [7]). According to Umeda
[10], these techniques are major breakthroughs in hand-
written Chinese character recognition. For UPS data, we
use the following extraction method. Because all images
in UPS are 16×16 in scale, we simply take each number
as a component to form a 256-dimensional vector. To
CENPARMI data, two feature extraction methods are
used. One is the same as we use for all other databases. It
is referred to as ‘direction’ in Tables 1 through 3. The
other method reduces a 64×64 original image into a
16×16 image. Each number in that image derives its value
as the sum of 1’s in a 4×4 block of the original image.
This method is referred to as ‘density’ in Tables 1
through 3. We take two feature extraction methods to the
same data set to show that the relative standings of classi-
fication methods are little affected by different feature
extraction methods.

In Table 1, we list the number of class types (# CS),
the number of training samples (# TrS) and the number of
test samples (# TeS) in each application.

Table 1. Number of class types, training samples and test
samples in the seven applications.

 # CS # TrS # TeS
UPS 10 4,000 2,000
CENPARMI (Density) 10 7,091 2,007
CENPARMI (Direction) 10 7,091 2,007
ETL8B (Subset) 350 28,000 28,000
ETL9B (Subset) 350 35,000 35,000
ETL8B (Full Set) 956 76,480 76,480
ETL9B (Full Set) 3,036 303,600 303,600

In all applications, we compare our hybrid method to

1-NN (which uses all training samples as prototypes and
finds the nearest one to each test sample) and DA. The
confusing pairs in the hybrid method are formed and used

in the following way. In the training phase, we obtain
confusing pairs (Ci, Cj), where Ci and Cj are rank-i and
rank-j candidates of a sample for 1≤ i, j ≤ 5. In the test-
ing phase, we deal only with confusing pairs that appear
in the top-3 candidates of each sample. We use the sec-
ond-degree polynomial as kernel function for SVM. The
software package, Torch [2], is used for conducting all
SVM experiments.

In small-scale and middle-scale tasks, classification
using solely SVM is feasible. We apply both one-against-
one and DAGSVM methods to these data sets. In large-
scale classifications, SVM takes an extremely long time
for training and is thus not used. In Table 2, the first row
lists all of the classification methods for comparison.
When one-against-one or DAGSVM methods are used,
the term ‘confusing pairs’ refers to the number of binary
classification problems that have to solved in the training
phase. From the results listed in Table 2, it is clear that
the hybrid method achieves comparable accuracy rates to
the two SVM methods and achieves better accuracy rates
than 1-NN.

In Table 3, we list the total training and testing time
(in seconds) of two SVM methods and the hybrid method.
The number of support vectors (# SVs) employed in each
method is also listed. Since the two SVM methods have
the same training results, the results are only listed once.
For the full ETL8B and ETL9B sets, SVM training times
would be too long. Their times are extrapolated from
those obtained from the subset data. The hybrid training
consists of two parts: prototype and SVM training. To
speed up prototype training, when we want to determine
whether each sample s is absorbed or not, we match s
only with the prototypes whose class types fall in Ωk(s).
For each s, we pre-determine Ωk(s) as follows. We match
s with all other samples and include in Ωk(s) the k candi-
dates of s. In all Chinese/Hiragana applications, k is set at
50. For a large value of k, the probability that the nearest
prototype to s assumes a class type in Ωk(s) is extremely
high, thus justifying this speed-up method.

Table 3 shows that, compared to the SVM methods,
the hybrid method requires a shorter testing time and a
smaller or equal number of support vectors. The differ-
ence greatly increases when N is large, as shown in all
Chinese/Hiragana results. The hybrid method also has a
much shorter training time than the SVM methods when
N is large. For the UPS and CENPARMI data, the hybrid
method requires the same number of confusing pairs as
SVM methods, thus incurring a slightly longer training
time than SVM methods.

5. Conclusion

To remedy the costly computation time of SVM when

N is large, we propose a hybrid solution that combines

SVM with a prototype learning/matching method. Apply-
ing this hybrid method to handwritten characters drasti-
cally cuts down training time, testing time, and the num-
ber of support vectors, as N increases. Our experiment
results also show that the hybrid method maintains rela-
tively the same accuracy rates as SVM. These results
naturally prove that the hybrid method is a successful
character recognition solution at all N scales.

6. References

[1] C.-W. Hsu and C.-J. Lin, A comparison of methods

for multi-class support vector machines, IEEE
Transactions on Neural Networks, vol. 13, no. 2,
2002.

[2] R. Collobert, S. Bengio, and J. Mariéthoz, Torch: a
modular machine learning software library. Technical
Report IDIAP-RR 02-46, IDIAP, 2002.

[3] B. V. Dasarathy, NN concepts and techniques, Near-
est Neighbor (NN) Norms: NN Pattern Classification
Techniques, B.V. Dasarathy (Ed.), IEEE Computer
Society Press, pp. 1-30, 1991.

[4] T. H. Hilderbrand and W. Liu, Optical recognition of
Chinese characters: advance since 1980, Pattern
Recognition, vol. 26, no. 2, pp. 205-225, 1993.

[5] S. Knerr, L. Personnaz, and G. Dreyfus, Single-layer
learning revisited: A stepwise procedure for building
and training a neural network, Neurocomputing: Al-

gorithms, Architectures and Applications, J. Fogel-
man, Ed. New York: Springer-Verlag, 1990.

[6] S.-W. Lee and J.-S. Park, Nonlinear shape normaliza-
tion methods for the recognition of large-set hand-
written characters, Pattern Recognition, vol. 27, no.
7, pp. 895-902, 1994.

[7] C.-L. Liu, I.-J. Kim, and J. H. Kim, High accuracy
handwritten Chinese character recognition by im-
proved feature matching method, 4th Intern. Conf.
Document Analysis and Recognition, pp. 1033-1037,
Ulm, Germany, 1997.

[8] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, Large
margin DAG’s for multiclass classification, Advances
in Neural Information Processing Systems, Cam-
bridge, MA: MIT Press, 2000, vol. 12, pp. 547–553.

[9] C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, L. Lam,
Computer recognition of unconstrained handwritten
numerals, Proceedings of the IEEE, vol. 80, no. 7,
pp.1162-1180, 1992.

[10] M. Umeda, Advances in recognition methods for
handwritten Kanji characters, IEICE Trans. Informa-
tion and Systems, vol. E79-D, no. 5, 1996.

[11] V. Vapnik, The Nature of Statistical Learning Theory,
New York: Springer Verlag, 1995.

[12] H. Yamada, K. Yamamoto, and T. Saito, A nonlinear
normalization method for handprinted Kanji charac-
ter recognition – line density equalization, Pattern
Recognition, vol. 23, no. 9, pp. 1023-1029, 1990.

Table 2. Training and testing results.

1-NN DA 1-against-1 SVM DAGSVM Hybrid
Acc # PRs Acc # PRs Acc # CPs Acc # CPs Acc # CPs

UPS 94.47% 7,291 92.37% 393 95.12% 45 95.47% 45 95.22% 45
CENPARMI (Density) 92.90% 2,000 92.45% 335 95.60% 45 95.80% 45 95.95% 45
CENPARMI (Direction) 96.45% 2,000 95.15% 214 97.10% 45 97.35% 45 97.60% 45
ETL8B (Subset) 98.16% 28,000 97.81% 767 99.47% 61,075 99.47% 61,075 99.45% 17,286
ETL9B (Subset) 98.16% 35,000 97.81% 977 99.05% 61,075 99.05% 61,075 98.94% 20,228
ETL8B (Full Set) 97.00% 76,480 96.67% 3,558 456,490 456,490 98.45% 64,884
ETL9B (Full Set) 91.90% 303,600 92.71% 22,308 4,607,130 4,607,130 96.07% 347,702

Acc: Accuracy Rates; # PRs: Number of Prototypes; # CPs: Number of Confusing Pairs.

Table 3. Training time, testing time, and number of support vectors.

1-against-1 SVM DAGSVM Hybrid
Training Testing Testing Training Testing

 Time # SVs Time Time Time (DA+SVM) # SVs Time (DA+SVM)
UPS 139.0 7,233 51.0 9.96 261 (122.0+139.0) 7,233 3.9 (0.8+3.1)
CENPARMI (Density) 46.9 4,950 27.46 8.65 96.7 (49.8+46.9) 4,950 4.1 (0.9+3.2)
CENPARMI (Direction) 50.4 2,753 19.56 5.96 72.6 (22.2+50.4) 2,753 3.1 (0.7+2.4)
ETL8B (Subset) 32,046 1,666,126 233,310 1,111 11,211 (2,184+9,027) 565,874 13.1 (3.0+10.1)
ETL9B (Subset) 37,160 1,887,218 276,362 1,504 16,029 (3,488+12,541) 689,776 16.7 (3.4+13.3)
ETL8B (Full Set) 239,520 1.2×107 4.3×106 8,281 44,155 (10,112+34,043) 1,946,922 70.0 (42.0+28.0)
ETL9B (Full Set) 2,802,977 1.5×108 1.7×108 112,901 245,421 (33,880+211,541) 11,317,700 650.0 (526.0+124.0)

