07 Process Scheduling

Outline

e Scheduling Policy
e The Scheduling Algorithm

Data Structures Used by the Scheduler

—unctions Used by the Scheduler

Rungueue Balancing in Multiprocessor Systems

‘3

zr‘? .
N
BN

Seduling Policy — Time Sh

* In the current Linux, the system tick is setto 1 ms.

« Scheduling policy is the set of rules used to determine when
and how to select a new process.

 Linux scheduling is based on the time sharing technique,
which divides the CPU time into time slices or quanta.

— If a currently running process is not terminated when its time slice or
guantum expires, a process switch may take place.

— Time sharing relies on timer interrupts and is thus transparent to
processes.

e In Linux, process priority is dynamic.

— The scheduler keeps track of what processes are doing and adjusts
their priorities periodically.

* Processes are classified as I/0O-bound or CPU-bound.

a= .A-_‘
R e
1_..3,..:

Vr:" 1
et
“Eria S

Classes of Processes

* Interactive processes
— Interact constantly with their users.

— The average delay must fall between 50 and 150 milliseconds so as
to be responsive.

— Typical interactive programs are command shells, text editors, and
graphical applications.

» Batch processes
— Do not need user interaction, and often run in the background.

— Typical batch programs are programming language compilers,
database search engines, and scientific computations.

* Real-time processes

— Should never be blocked by lower-priority processes and should
have a short guaranteed response time with a minimum variance.

— Typical RT programs are video/sound applications, robot controllers.

iSystenlcaH

Enice()

Egetpriority()
Esetpriority()
Esched_getscheduler()
Esched_setscheduler()
Esched_getparam()
Esched_setparam()
Esched_yield()
Esched_get_priority_min()
Esched_get_priority_max()
Esched_rr_get_interval()
Esched_setaffinity()
isched_getaffinity()

November 25 2013

Description

Change the static priority of a conventional process |
Get the maximum static priority of a group of conventional processes
Set the static priority of a group of conventional processes I
Get the scheduling policy of a process

Set the scheduling policy and the real-time priority of a process

Get the real-time priority of a process

Set the real-time priority of a process

Relinquish the processor voluntarily without blocking

Get the minimum real-time priority value for a policy

Get the maximum real-time priority value for a policy

Get the time quantum value for the Round Robin policy

Set the CPU affinity mask of a process

Get the CPU affinity mask of a process

Process Preemption

* When a process enters the TASK_RUNNING state and its
priority is granter than the currently running process, the
execution of current is interrupted and the scheduler is
Invoked to select another process to run.

* A process also may be preempted when its time quantum
expires.

— The TIF_NEED RESCHED flag in the thread info structure of the
current process Is set, so the scheduler is invoked when the timer
Interrupt handler terminates.

* The Linux 2.6 kernel is preemptive, which means that a
process can be preempted either when executing in Kernel
Mode or in User Mode.

How Long Must a Quantum?

* The quantum duration is critical for system
performance.

— For instance, suppose that a process switch requires 5
milliseconds and the quantum is also set to 5
milliseconds: 50% overhead.

* The choice of the average quantum duration is
always a compromise.
— The rule of thumb adopted by Linux is to choose a

duration as long as possible, while keeping good system
response time.

Outline

e Scheduling Policy

*The Scheduling Algorithm

Data Structures Used by the Scheduler

—unctions Used by the Scheduler

Rungueue Balancing in Multiprocessor Systems

Scheduling Algorithm

e In Linux 2.6:

— Selects the process to run in constant time, independently of the
number of runnable processes.

— Scales well with the number of processors because each CPU has
Its own queue of runnable processes.

* The new algorithm does a better job of distinguishing
Interactive processes and batch processes.

e At least one runnable process, the swapper process, which
has PID 0 and executes only when the CPU cannot execute
other processes.

— Every CPU of a multiprocessor system has its own swapper process
with PID equal to O.

Scheduling Classes of Linux Processes

e SCHED FIFO
— A First-In, First-Out real-time process.

«SCHED RR
— A Round Robin real-time process.

« SCHED NORMAL
— A conventional, time-shared process.

Scheduling of Conventional Processes

* Every conventional process has its own static
priority, which is a value used by the scheduler to
rate the process.

— Ranging from 100 (highest priority) to 139 (lowest
priority).
* A new process always inherits the static priority of
its parent.

—The nice() and setpriority() system calls can the static
priority.

—E.g., shell command: nice —-n 5 vi &

Base Time Quantum

* The static priority essentially determines the base time
guantum of a process.

__

base time quantum _ {(140 — static priority) x 20 if static priority < 120 (1)5
(in milliseconds) (140 — static priority) X 5 it static priority > 120
e The higher the static priority, the longer the base time
quantum.

Typical priority values for a conventional process Sleep time
~ Description Static priority Nicevalue Base time quantum| Interactivedelta threshold
Highest static priority {100 -20 800 ms -3 29ms
High static priority 110 -10 600 ms -1 499 ms
Default static priority {120 0 100 ms +2 799 ms
Low static priority 130 +10 50 ms +4 999 ms
Lowesttaticpriorty [139 +19 > ms B S 19ms

November 25, 2013 13
5 E#] EE 7

Dynamic Priority and Average Sleep Time

* A conventional process also has a dynamic priority.
— Ranging from 100 (highest priority) to 139 (lowest priority).

e The dynamic priority is the number looked up by the
scheduler when selectlng the new process to run.

— The bonus is a value ranging from 0 to 10.

» Average sleep time

— The value of the bonus is related to the average sleep time of the
process.

— The average sleep time decreases while a process is running.
— The average sleep time can is no larger 1 second.

14

namic Priority and Average Sle
(Cont.) g

——

Average sleep times, bonus values, and time slice granularity

Average sleep time Bonus Grﬁr“‘iularity

I Greater than or equal to 0 but smaller than 100 ms 0 5120
Greater than or equal to 100 ms but smaller than 200 ms 1 2560
Greater than or equal to 200 ms but smaller than 300 ms 2 1280
Greater than or equal to 300 ms but smaller than 400 ms 3 640
Greater than or equal to 400 ms but smaller than 500 ms 4 320
Greater than or equal to 500 ms but smaller than 600 ms 5 160
Greater than or equal to 600 ms but smaller than 700 ms 6 80
Greater than or equal to 700 ms but smaller than 800 ms 7 40
Greater than or equal to 800 ms but smaller than 900 ms 8 20
Greater than or equal to 900 ms but smaller than 1000 ms 9 10

1 second 10 10

November 25, 2013

Average Sleep Time

-A process IS considered “interactive” If it satlsfles

——

A process havmg highest static prlorlty (100) is
considered interactive when its bonus value

exceeds 2 (or when its average sleep time exceeds
200 ms).

A process having lowest static priority (139) is
never considered as interactive, because the
bonus value is always smaller than the value 11.

Active and Expired Processes

* The scheduler keeps two disjoint sets of runnable
pProcesses:.
— Active processes
- These runnable processes have not yet exhausted their time quantum.
— Expired processes
- These runnable processes have exhausted their time quantum.

» An active batch process that finishes its time quantum
always becomes expired.

e An active interactive process that finishes its time quantum
usually remains active.
— The scheduler refills its time quantum and leaves it in the set of

active processes unless some expired processes have already
waited for a long time.

16

November 25, 2013 17

o= r ;
2 g— %
4

zr‘? .
N
BN

Scheduling of Real-Time Processes

 Every real-time process has a real-time priority.
— Ranging from 1 (highest priority) to 99 (lowest priority).

» Teal-time processes are always considered active.

* The sched setparam() and sched setscheduler() system
calls can change the real-time priority of a process.

— If several real-time runnable processes have the same highest
priority, the scheduler chooses the process that occurs first.

* A real-time process is replaced at some conditions:
— Preempted by another process with higher real-time priority.
— The process performs a blocking operation and is put to sleep.
— The process is stopped or killed.
— The process voluntarily relinquishes the CPU with sched_yield()
— The process is SCHED_ RR and has exhausted its time quantum.

Outline

e Scheduling Policy

* The Scheduling Algorithm

- Data Structures Used by the Scheduler
* Functions Used by the Scheduler

* Rungueue Balancing in Multiprocessor Systems

The Runqueue Data Structure

e Each CPU in the system has its own runqueue.

 All runqueue structures are stored in the runqueues per-
CPU variable.

— The this_rg() macro yields the address of the runqueue of the local
CPU.

— The cpu_rg(n) macro yields the address of the runqueue of the CPU
having index n.

 Every runnable process in the system belongs to one
rungqueue.

* As long as a runnable process remains in the same
runqueue, it can be executed only by the CPU owning that
rungqueue.

November 25, 2013 20

The Rungueue Data Structure (Cont)

* The arrays field of the runqueue is an array consisting of
two prio_array t structures.
— The active field points to the set of active processes.
— The expired field points to the set of expired processes.

* The role of the two data structures in arrays changes by
exchanging actlve and expired fields.

| — active

- expired |

C priority 0

amays{0 priority 139

i [®<—>® prlorltyo
f arrays[1] :
_?Y_P?_PF!Q__?‘TI?X_T___ (P) ot 139

The runqueue structure and the two sets of runnable processes

spinlock t
unsigned long

unsigned long

unsigned long

unsigned long

unsigned long
unsigned long long

task t *
task t *

struct mm struct *

nr_running

cpu_load

nr switches

nr_uninterruptible

expired timestamp
timestamp last tick

curr
idle

prev._mm

Description
Spin lock protecting the lists of processes
Number of runnable processes in the runqueue lists

(PUload factor based on the average number of processes
in the runqueue

Number of process switches performed by the CPU

Number of processes that were previously in the run-
queue lists and are now sleeping in TASK
UNINTERRUPTIBLE state (only the sum of these fields
across all runqueues is meaningful)

Insertion time of the eldest process in the expired lists
Timestamp value of the last timer interrupt

Process descriptor pointer of the currently running pro-
cess (same as current for the local CPU)

Process descriptor pointer of the swapper process for this
CPU

Used during a process switch to store the address of the
memory descriptor of the process being replaced

21

November 25, 22

Type Name Description
' prio array t * active Pointer to the lists of active processes !
' prio array t * expired Pointer to the lists of expired processes
' prio array t [2] arrays The two sets of active and expired processes !
L int best expired prio The best static priority (lowest value) among the expired
i processes i
atomic t nr iowait Number of processes that were previously in the run- !
i queue lists and are now waiting for adisk I/0 operationto !
! complete i
' struct sd Points to the base scheduling domain of this (PU (see the
' sched _domain * section “Scheduling Domains” later in this chapter) i
Cint active balance Flag set if some process shall be migrated from this run-
| queue to another (runqueue balancing) i
int push_cpu Not used !
task t * migration thread Process descriptor pointer of the migration kernel thread

struct list head J migration queue List of processes to be removed from the runqueue

November 25, 2013 23

Fields Process Descriptor for Scheduling
Eu‘r’:Eigned long T::]:adinfo»ﬂags IS)tZsrcerSI:ftl:::IF NEED RESCHED flag)which is set if

the scheduler must be invoked (see the section “Return-
ing from Interrupts and Exceptions” in Chapter 4)

wunsigned int thread_info->cpu Logical number of the CPU owning the runqueue to !
! which the runnable process belongs i
wunsigned long state The current state of the process (see the section “Pro- !
! cess State” in Chapter 3) i
iint prio Dynamic priority of the process i
iint static_prio Static priority of the process i
istruct 1ist_head run_list Pointers to the next and previous elements in the run- !
| queue list to which the process belongs i
\prio_array t * Pointer to the runqueue’sprio array t setthat !
! includes the process i
iunsigned long sleep avg Average sleep time of the process i
iunsigned long long timestamp Time of last insertion of the process in the runqueue, or i
i time of last process switch involving the process !
iunsigned long long last ran Time of last process switch that replaced the process
iint activated Condition code used when the process is awakened !
iunsigned long policy The scheduling class of the process (SCHED NORMAL, i
i SCHED RR, or SCHED FIFO) |
icpumask_t cpus_allowed Bit mask of the CPUs that can execute the process i
unsigned int Ticks left in the time quantum of the process !
iunsigned int first time slice Flag setto 1 if the process never exhausted its time i
i quantum |

iunsigned long ‘ rt priority Real-time priority of the process

November 25, 2013 24

Process Descriptor

* When a new process is created, sched fork(), invoked by
copy process(), sets the time_slice field of both current
(the parent) and p (the child) processes.

* The number of ticks left to the parent is split in two halves.

§ p->time slice = (current->time slice + 1) >> 1;§
. current->time slice >>= 1; |

— To prevent any process from refreshing time quantum by creating
new child processes.

* The copy process() function also initializes a few other
fields of the child’s process descriptor related to scheduling:

——

: p- >first time slice = 1;-""" The child has never exhausted its time quantum.

p >timestamp = sched clock()“'“““““"“"""""“"“"""“""""""""“""""""""""""""

Outline

e Scheduling Policy
* The Scheduling Algorithm
e Data Structures Used by the Scheduler

* Functions Used by the Scheduler
* Runqueue Balancing in Multiprocessor Systems

November 25, 2013 26
} A & " D
u_‘ ‘

__

'scheduler_tick()

: Keeps the time slice counter of current up-to-date
Etry_to_wake_up()

- Awakens a sleeping process

Erecalc_task_prio()

. Updates the dynamic priority of a process

Eschedule()

- Selects a new process to be executed

Eload balance()

' Keeps the runqueues of a multiprocessor system balamed

November 25, 2013 27

The scheduler_tick() Function (1/5)

* The scheduler _tick() is invoked every tick:

— 1. Stores in the timestamp_last tick field of the local runqueue the
current value of the TSC converted to nanoseconds, by invodking
sched_clock().

— 2. Checks if the current process is the swapper of the local CPU. If so.

- a.itsetsthe TIF_ NEED RESCHED flag of the current process to force
rescheduling if the local runqueue has another runnable process.

- b. Jumps to step 7.

— 3. Checks whether current->array points to the active list of the local
runqueue. If not, set the TIF_ NEED RESCHED flag to force
rescheduling, and jumps to step 7.

— 4. Acquires the this_rq()->lock spin lock.
- 5. Decreases the time slice counter of the current process.
— 6. Releases the this_rq()->lock spin lock.

— 7. Invokes the rebalance _tick() function to rebalance the number
runnable processes on various CPUSs.

November 25, 2013 28

Updatlng the Time Slice of a Real
Process

e If the current process is a FIFO real-time process,
scheduler _tick() has nothing to do.

e If current is a Round Robin real-time process,

scheduler_tick()
— (1) decreases its time slice counter and
Time slice exhausted
— (2) checks whether the quantum is exhausted: =
'if (current->policy == SCHED RR 88 !--current->time slice) {
current->time_slice = task timeslice(current);--.... &+
current->first time slice = 0; Ref||| time S||Ce 1
set _tsk need resched(current),ﬁ__‘_____ I S
llst_del(¤t >run list); \ -"Set TIF_NEED _ RESCHED flag
| list add tail(¤t-»>run list,
E this rq()->active- >queue+current >DI10)
) S

November 25, 2013 29

Udatlng the Time Slice of a Conventlonal

Process | | | |
* 1. Decreases the time slice counter. (current->time_slice)

o 2. If the time quantum is exhausted:

— a. Invokes dequeue task() to remove current from the this_rq()-
>active set of runnable processes.

— b. Invokes set_tsk need resched().

———

— €. Updates the dynamic priority: | current->prio = effective prio(current); |

- d Reﬂ”S the t|me quantum Of the pI‘OCGSS ' current->time slice = task timeslice(current); :

| current->first _time slice = 0;

— e. If current->expired_timestamp = 0, =

.1 ('this_rq()->expired timestamp)

Update the eXpII’e time: I this rq()->expired timestamp = jiffies;!

(if (ITASK INTERACTIVE(current) || EXPIRED STARVING(this rq()) {

'Not L':;Z“ enqueue_task(current, this_rq()->expired); L oo !
ilnteractive if (current->static prio < this rq()->best expired prio) Some expired
‘process? i this_rq()->best_expired prio = current->static_prio; IIOFOCGSS is
TR L) else . istarving

enqueue_task(current, this rq()->active);

November 25 2013 30

Updating the Time Slice of a Conventional
Process (Cont.)

e 3. If the time quantum is not exhausted, check whether the
remaining time slice of the current process is too Iong:

———

__

if (TASK INTERACTIVE(p) && |((task _timeslice(p) -
' p->time slice) % TIMESLICE GRANULARITY(p)) &&
(p->time_slice >= TIMESLICE GRANULARITY(p)) &8
(p->array == rg->active)) { O

list_del(¤t->run_list); ___--'Putinto the tall of runqueue

this rq() sactive- >queue+current >pr10)
set_tsk need resched(p); \v-n:“_;__"-"_"_"_“_“_“_"_"l“_"_“_"_“_nj

4

o o o ey e PR

November 25, 2013 31

The try _to _wake up() Function (2/5)

* Awake a sleeping or stopped process by setting its state to
TASK RUNNING and inserting it into the runqueue of the
local CPU.

e Parameters:
— The descriptor pointer (p) of the process to be awakened
— A mask of the process states (state) that can be awakened

— A flag (sync) that forbids the awakened process to preempt the
process currently running on the local CPU

November 25, 2013 32

try to _wake up() Function (2) (Cont)

* 1. Invokes the task rq_lock() function to disable local interrupts.

» 2. Checks if the state of the process p->state belongs to the mask of
states state.

« 3. If the p->array field is not NULL, the process already belongs to a
rungueue. Jump Step 8.

4. It checks whether the process to be awakened should be migrated in
multiprocessor systems.

* 5. If the process is in the TASK_UNINTERRUPTIBLE state, it
decreases the nr_uninterruptible field of the target runqueue.

* 6. Invokes the activate task() function to activate the process.
7. Check whether reschedule is needed.
8. Sets the p->state field of the process to TASK_RUNNING.

9. Invokes task rg_unlock() to unlock the runqueue and reenable the
local interrupts; and then return.

November 25, 2013 33

The recalc_task prio() Function (3/5)

* To update the average sleep time and the dynamic priority
of a process.

isleep_time stores the N : |
* Parameter: Enumber of nanoseconds The timestamp of the |

: . that th . /process switch that
— descriptor pointer p that In€ process spent ., 4he process to

: 'sleeping since its last | .
— timestamp now | N :
:executlon R o e

» Operations: L)
— 1. Stores in sleep tlme Iocal variable min(now — p- >t|mestamp, 109)

— 2. Checks (1) whether the process is not a kernel thread, (2)
whether it is awakening from the TASK_UNINTERRUPTIBLE state,
and (3) whether it has been continuously asleep beyond a given
sleep time threshold: Set p->sleep avg field to the equivalent of 900
ticks (an empirical value). Then jump to Step 8.

- The empirical rule is to ensure that processes having been asleep for a long time
in uninterruptible mode have a reasonable sleep average value.

Ay,
“Earia SV

Th recalc_task prio() Functi
(Cont.)

— 4. Executes the CURRENT BONUS macro to compute the bonus
value of the previous average sleep time of the process.

— 5. If the process is in TASK_UNINTERRUPTIBLE mode and it is not
a kernel thread, it limits the increment of the average sleep time of
the process so as to prevent rewarding too much batch processes.

- If the sum sleep time + p->sleep _avg is greater than or equal to the

sleep time threshold, it sets the p->sleep_avg = sleep time threshold, and
sets sleep_time =0.

— 6. Adds sleep_time to the average sleep time of the process (p-
>sleep_avg).

— 7. Checks whether p->sleep _avg exceeds 1000 ticks: cut down to
1000 ticks.

=

The schedule() Function (4/5)

* The schedule() function implements the scheduler.

..........

e Direct Invocation

—The scheduler is invoked directly when the current process
must be blocked right away because the resource it needs is
not available.

— Steps:
- 1. Inserts current in the proper wait queue.

- 2. Changes the state of current either to TASK_INTERRUPTIBLE or
to TASK_UNINTERRUPTIBLE.

- 3. Invokes schedule().
- 4. Checks whether the resource is available. If not, go to Step 2.
- 5. Once the resource is available, remove current from the wait queue.

The schedule() Function (4/5) (Cont.)

e Lazy invocation

—The scheduler can is invoked in a lazy way by setting the
TIF_NEED_RESCHED flag of current.

— Typical examples of lazy invocation:

- When current has used up its quantum of CPU time: done by the
scheduler _tick() function.

- When a process is woken up and its priority is higher than that of
the current process: done by the try to _wake up() function.

- When a sched setscheduler() system call is issued.

November 25, 2013 37

Actions Performed by schedule() beforea
Process Switch

* The key outcome of the function is to set a local variable
called next, so that it points to the descriptor of the process
selected to replace current.

* The schedule() function starts by

__

5 need_resched: Dlsable interrupt

_,‘ __________________________________

preempt dlsable() ______
. prev = currenty

Tq - this 190);- _"_“_“_"‘"‘""‘“‘"‘._A_sgy!r?—_ the runqueue.
: if (prev->lock depth = 0) | Makessurethat _________
up(8kernel sem); ™ prey doesn't hold the

,blg kernel lock.

Process Switch (Cont.)

* The sched clock() function is invoked to read the TSC. The
run_time value is used to charge the process for the CPU

usage. now - sched clock(); .
run_time = now - prev->timestamp;
" if (run time > 1000000000)
' run_time = 1000000000;

— CURRENT_BONUS returns a value between 0 and 10 that is
proportional to the average sleep time of the process.

 Before starting to look at the runnable processes,

November 25 2013 39

Actlons Performed by schedule() before a
Process Switch (Cont.)
. Look iInto the PF_DEAD flag to see whether prev is a to be

__

rev->tlags & PF DEAD | CTTTTTTTTTTToTToTmTTTooTon T omennnnn et
(Erev—>sta%e BT DEiD'i not runnable and it has not

_————

e R s /Jbeen preempted in Kernel
___ Mode
(if (prev->state != TASK RUNNING &&=
, |(preempt_count() 8 PREEMPT_ACTIVE)) ;
SR ~-+ if (prev->state == TASK INTERRUPTIBLE &8 signal pending(prev))
It has nonblocked '"‘f;f'prev >state = TASK_RUNNING; |
pending signals and - “c15e {
its state is i if (prev->state == TASK_UNINTERRUPTIBLE) |
TASK_INTERRUPTIBL | e e S
e 5 rq->nr_uninterruptibles+; deactivate_task function:
deactivate task(prev, rq); - N T
! } __________________) % ,:’_/______________! _________
B rq >NT_Tunning--;

e dequeue task(p, p- >array)
‘p->array = NULL; '

__

November 25, 2013

Atlons Performed by schedule() before a ‘
Process Switch (Cont.)

* Check the number of runnable processes left in the runqueue.
— If there are some runnable processes, the function invokes the

'if (rg->nr_running) { |
| f (dependent sleeper(smp processor id(), 1q)) {l

__

next = 1q- >idle; T s
f hyper threading is supported, check the process that is

goto SWHCh _tasks; 'going to be selected for execution has significantly lower

.g,‘r‘(_.;(‘:ess descnptorpomter 'priority than a sibling process already running on a logical

'} iof the swapper process {CPL @rine eeme pyseallClPb, |
F (T SNT. TUNMING) (oo oo L P
idle balance(smp_processor id(), rq); NorunnableprocesseX|sts -----
if (lrg->nr running) ~feeeeoooo i
| next = rg->idle; - Idle_balance() falls to move some
R TR - ; ; _ ‘process into the local runqueue. ,
' The set of expired qu>ex§1red tlgestagp o = d ------------------------------
process is empty . wake_sleeping depen ent_ggm_e‘p.lie_cessor id(),),:
it R " if (!rg->nr_running) “*~~F~_:_:_:_:_;_;_-_ ________________ o
} goto switch_tasks; 'Reschedule runnable processes. :
3

40

41

= & L

. =) 3
10 N
Epia SV

Actions Performed by schedule() before a
Process Switch (Cont.)

* Let’'s suppose that the schedule() function has determined that the
runqueue includes some runnable processes.

——

‘array = rq->active; | 'No runnable process in

(if (larray->nr_active) { —==="""""the active array

rq->active = rg->expired; S
i rq->expired = array; } Exchange active and expired fields
array = rqg-»active; e
i rq->expired_timestamp = 0;—=-=The setof expired process is empty. |
} rq->best expired prio = 140;--*;-'-‘-'-‘-’-':::::::ZEFN0 expired process

» Find a runnable process: ibased on the bsfl a§s_embly language m_strggﬂon, |
‘which returns the bit index of the least significant bit

November 25, 2013 42

Atlons Performed by schedule() before »' ‘
Process Switch (Cont.)

» The schedule() function looks at the next->activated field.

‘Table 7-6. The meaning of the activated field in the process descriptor

Value Description
0 The process was in TASK_RUNNING state.

1 The process was In TASK_INTERRUPTIBLE or TASK _STOPPED state, and itis being awakened by a system caII
service routine or a kernel thread. !

2 The processwas in TASK_INTERRUPTIBLE or TASK_STOPPED state, and itis being awakened by an mterrupt
handler or a deferrable function. .

| iif (next->prio >= 100 &8 next->activated > 0) {
| unsigned long long delta_= _now - next->timestamp; |

1f (next->activated == 1) \I:fj“"a process awakened by an interrupt handler or
delta =t(delta 38) /71285 - deferrable function. The scheduler adds the
orray = hexteratiays who1e fungueue waiting time. |

dequeue task(next, array); = e T T o

recalc_task prio(next, next- >t1mestamp ¥ dPlta) !
enqueue_task(next, array); process awakened by a system call |

) - 'service routine or a kernel thread. it adds just a |
‘next->activated = 0; ‘fraction of that time. |

November 25, 2013 43

B T

r‘, &
Ty ST
1A SV

Actions Performed by schedule() to
the Process Switch

* Perform context switch, started from bring the contents of the first fields

prefetch(next);
+Dosome administrative work: ——Geaste
5 clear tsk need resched(prev); TIF_NEED_RESCHEDﬂag
rcu_gsctr inc(prev->thread info->cpu) ’theCPUISgomgthrougha

__

' prev->sleep avg -= run time;

'if ((long)prev->sleep avg <= 0)

: prev->sleep avg = 0; |
' prev->timestamp = prev->last ran now;i

if (prev == next) {
spin_unlock irq(&rg->lock);i — rooooorrooi :
goto finish schedule; - 0 o

November 25 2013 44

Actlons Performed by schedule()
the Process Switch (Cont.)

» Perform context switch inext->timestamp = now;
:rq >NT switches++;

|TQ->Curr = next; |
‘prev = context_switch(rq, prev, next); |

if (!next->mm) {

next->active mm = prev->active mm;
atomic inc(8prev->active mm->mm count);
enter lazy tlb(prev->active mm, next); |

— If previs a kernel thread or an exmng process. i 1 (prev->mm) { . |
_________ ; t(t) Iq->prev_mm = prev->active mm; :
* Perform context switch: switch to(prev, next, prev);: | prev-sactivemn = NULL;

return prev; D)

45

o

5y

Actions Performed by schedule() after
Process Switch

——

barrier(); """‘“““-----:—----_--Z:yields an optimization barrier
finish task switch(prev); forthecode
 Finish task SWitCh(): If prev is a kernel thread, the
_ Tfﬂrﬁ"=_"t_ﬁ_is_"r_cii_)"-_{;_)fé_f"r_rn_ﬁ-_m_i ‘prev_mm field of the runqueue

~ " stores the address of the memory
‘prev_task flags = prev->flags; “.descriptor that was lent to prev

__

'spin_unlock irq(&this rq()->lock); i~ :
if () - .decreases the usage counter of the |
: mmdrop (mm) ; --=.—.--—::::::::221313333-----EW_‘?!“__‘?F}{_E’_?_S_‘?F_'RF‘_’F________________________i
if (prev_task flags & PF DEAD) TS S :
put task struct(prev); _____,_,_,___—_—_-_—_—__Free the process descrlpt(.)r.reference :
i T icounter and drop all remaining

. finish schedule:
iprev = current; '

if (prev->lock depth >= 0)

| __reacquire kernel lock();

' preempt_enable no_resched(); i

| if (test bit(TIF_NEED RESCHED, ¤t_thread_info()->flags):

| goto need resched; :

| return;

Outline

e Scheduling Policy

* The Scheduling Algorithm

e Data Structures Used by the Scheduler

* Functions Used by the Scheduler

 Runqueue Balancing in Multiprocessor Systems

Types of Multiprocessor Machines

 Classic multiprocessor architecture

— These machines have a common set of RAM chips shared by all
CPUs.

» Hyper-threading
— A microprocessor that executes several threads of execution.

— Itincludes several copies of the internal registers and quickly
switches between them.

— Allows the processor to exploit the machine cycles to execute
another thread while the current thread is stalled for a memory
access.

* NUMA

— CPUs and RAM chips are grouped in local “nodes”.

— When a CPU accesses a “local” RAM chip inside its own node, there
IS little or no contention.

47

November 25, 2013 48

hedullng Domain

* A scheduling domain is a set of CPUs whose workloads should be kept
balanced by the kernel.

» Every scheduling domain is partitioned, in turn, in one or more groups,
each of which represents a subset of the CPUs of the scheduling domain.

* Workload balancing is always done between groups of a scheduling

domain. ! domainoflev.:
i 2 groups,
1 physical CPU per group domain of lev.1: base domains (lev.0) |
I - o base domains (lev.0): 2 groups, ase domains (lev. v): !
i base domain (lev. 0): 2 groups 1 node per group 4 groups, :
| 2groups, Tioaical CPU / 1 CPU per group |
' 1(PUpergroup | /og|ca pergrotp / :
“ N\ L ~ T\ (
(U0 | | CPUO eur || ceuo (PUT CPU4 US|
wur | i o2 ws || o2 (PU3 (PU6 CPU7

__

Scheduling Domain (Cont.)

e Every scheduling domain is represented by a
sched domain descriptor.

— Every group inside a scheduling domain is represented
by a sched group descriptor.

— Each sched_domain descriptor includes a field groups,
which points to the first element in a list of group
descriptors.

—The parent field of the sched domain structure points to
the descriptor of the parent scheduling domain.

The rebalance_tick() Function

* To keep the rungueues Iin the system balanced.
 Invoked by by scheduler tick() once every tick.

e Parameter:

—The address this_rqg of the local runqueue

— A flag, idle, which can assume the following values

- SCHED IDLE

- The CPU is currently idle. current is the swapper process.
- NOT_IDLE

- The CPU is not currently idle.

November 25, 2013
: P SRR

The rebalance tick() Function (Cont.)

* Determine first the number of processes in the runqueue
and updates the runqueue’s average workload.

— To do this, the function accesses the nr_running and cpu_load fields
of the runqueue descriptor.

e Start a loop over all scheduling domains in the path from
the base domain ((referenced by the sd field).

— In each iteration the function determines whether the time has come
to invoke the load balance() function, thus executing a rebalancing
operation on the scheduling domain.

— Ifidle is equal to SCHED IDLE, then the runqueue is empty, and
rebalance_tick() invokes load balance() quite often. (roughly once
everyl0 milliseconds for scheduling domains corresponding to
logical CPUS).

The load balance() Function (5/5)

* The load_balance() function checks whether a scheduling domain is
significantly unbalanced.

* It checks whether unbalancing can be reduced by moving some
processes from the busiest group to the runqueue of the local CPU. If
S0, it attempts the migration.

* Parameter:
— this_cpu
- The index of the local CPU
— this_rq
- The address of the descriptor of the local runqueue
— sd
- Points to the descriptor of the scheduling domain to be checked
— idle
- Either SCHED _IDLE (local CPU is idle) or NOT_IDLE

I~ ‘.A\
3 J,gr_ T
i\

The load_balance() Function (5/

* 1. Acquires the this_rg->lock spin lock.

» 2. Invokes the find busiest group() function to analyze the workloads of
the groups inside the scheduling domain.

— The function returns the address of the sched group descriptor of the busiest
group and the number of processes to be moved.

* 3. Release this_rg->lock if find _busiest _group() returns NULL.

4. Invokes the find_busiest queue() to find the busiest CPUs in the group.

* 5. Acquires a second spin lock, namely the busiest->lock spin lock.

* 6. Invokes the move_tasks() function to try moving some processes from
the busiest runqueue to the local rungueue this_rg.

« 7. If the move_task() function failed, wake up the migration kernel thread
that walks the chain of the scheduling domain.

— If an idle CPU is found, the kernel thread invokes move_tasks() to move one
process into the idle runqueue.

* 8. Release the two locks.

53

November 25, 2013 54

The move_tasks() Function

* The move_tasks() function moves processes from a source runqueue to
the local runqueue.

— The function first analyzes the expired processes of the busiest runqueue,
starting from the higher priority ones.

— When all expired processes have been scanned, the function scans the
active processes of the busiest runqueue.

— For each candidate process, the function invokes can_migrate task(), which
returns 1 if all the following conditions hold:
- The process is not being currently executed by the remote CPU.
- The local CPU is included in the cpus_allowed bitmask of the process descriptor.

- At least one of the following holds:
- The local CPU is idle.
- The kernel is having trouble in balancing the scheduling domain
- The process to be moved is not “cache hot”.

— If can_migrate_task() returns the value 1, move tasks() invokes the
pull_task() function to move the candidate process to the local runqueue.

	投影片編號 1
	Outline
	Scheduling Policy – Time Sharing�
	Classes of Processes�
	System Calls Related Scheduling
	Process Preemption
	How Long Must a Quantum?
	Outline
	Scheduling Algorithm
	Scheduling Classes of Linux Processes
	Scheduling of Conventional Processes
	Base Time Quantum�
	Dynamic Priority and Average Sleep Time
	Dynamic Priority and Average Sleep Time (Cont.)
	Average Sleep Time
	Active and Expired Processes
	Scheduling of Real-Time Processes�
	Outline
	The Runqueue Data Structure
	The Runqueue Data Structure (Cont.)�
	Fields of the Runqueue Structure
	Fields of the Runqueue Structure (Cont.)
	Fields Process Descriptor for Scheduling�
	Process Descriptor
	Outline
	Important Scheduling Functions
	The scheduler_tick() Function (1/5)�
	Updating the Time Slice of a Real-time Process
	Updating the Time Slice of a Conventional Process
	Updating the Time Slice of a Conventional Process (Cont.)
	The try_to_wake_up() Function (2/5)
	The try_to_wake_up() Function (2/5) (Cont.)�
	The recalc_task_prio() Function (3/5)
	The recalc_task_prio() Function (3/5) (Cont.)
	The schedule() Function (4/5)
	The schedule() Function (4/5) (Cont.)
	Actions Performed by schedule() before a Process Switch
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() to Make the Process Switch
	Actions Performed by schedule() to Make the Process Switch (Cont.)
	Actions Performed by schedule() after a Process Switch
	Outline
	Types of Multiprocessor Machines
	Scheduling Domain�
	Scheduling Domain (Cont.)
	The rebalance_tick() Function
	The rebalance_tick() Function (Cont.)
	The load_balance() Function (5/5)
	The load_balance() Function (5/5) (Cont.)�
	The move_tasks() Function

