
07 Process Scheduling

Outline
• Scheduling Policy
• The Scheduling Algorithm

• Data Structures Used by the Scheduler

• Functions Used by the Scheduler

• Runqueue Balancing in Multiprocessor Systems

November 25, 2013 2

Scheduling Policy – Time Sharing
 • In the current Linux, the system tick is set to 1 ms.

• Scheduling policy is the set of rules used to determine when
and how to select a new process.

• Linux scheduling is based on the time sharing technique,
which divides the CPU time into time slices or quanta.

– If a currently running process is not terminated when its time slice or
quantum expires, a process switch may take place.

– Time sharing relies on timer interrupts and is thus transparent to
processes.

• In Linux, process priority is dynamic.
– The scheduler keeps track of what processes are doing and adjusts

their priorities periodically.

• Processes are classified as I/O-bound or CPU-bound.

November 25, 2013 3

Classes of Processes
 • Interactive processes

– Interact constantly with their users.
– The average delay must fall between 50 and 150 milliseconds so as

to be responsive.
– Typical interactive programs are command shells, text editors, and

graphical applications.

• Batch processes
– Do not need user interaction, and often run in the background.
– Typical batch programs are programming language compilers,

database search engines, and scientific computations.

• Real-time processes
– Should never be blocked by lower-priority processes and should

have a short guaranteed response time with a minimum variance.
– Typical RT programs are video/sound applications, robot controllers.

November 25, 2013 4

System Calls Related Scheduling

November 25, 2013 5

Process Preemption
• When a process enters the TASK_RUNNING state and its

priority is granter than the currently running process, the
execution of current is interrupted and the scheduler is
invoked to select another process to run.

• A process also may be preempted when its time quantum
expires.

– The TIF_NEED_RESCHED flag in the thread_info structure of the
current process is set, so the scheduler is invoked when the timer
interrupt handler terminates.

• The Linux 2.6 kernel is preemptive, which means that a
process can be preempted either when executing in Kernel
Mode or in User Mode.

November 25, 2013 6

How Long Must a Quantum?
• The quantum duration is critical for system
performance.
– For instance, suppose that a process switch requires 5

milliseconds and the quantum is also set to 5
milliseconds: 50% overhead.

• The choice of the average quantum duration is
always a compromise.
– The rule of thumb adopted by Linux is to choose a

duration as long as possible, while keeping good system
response time.

November 25, 2013 7

Outline
• Scheduling Policy

• The Scheduling Algorithm
• Data Structures Used by the Scheduler

• Functions Used by the Scheduler

• Runqueue Balancing in Multiprocessor Systems

November 25, 2013 8

Scheduling Algorithm
• In Linux 2.6:

– Selects the process to run in constant time, independently of the
number of runnable processes.

– Scales well with the number of processors because each CPU has
its own queue of runnable processes.

• The new algorithm does a better job of distinguishing
interactive processes and batch processes.

• At least one runnable process, the swapper process, which
has PID 0 and executes only when the CPU cannot execute
other processes.

– Every CPU of a multiprocessor system has its own swapper process
with PID equal to 0.

November 25, 2013 9

Scheduling Classes of Linux Processes

• SCHED_FIFO
– A First-In, First-Out real-time process.

• SCHED_RR
– A Round Robin real-time process.

• SCHED_NORMAL
– A conventional, time-shared process.

November 25, 2013 10

Scheduling of Conventional Processes

• Every conventional process has its own static
priority, which is a value used by the scheduler to
rate the process.
– Ranging from 100 (highest priority) to 139 (lowest

priority).

• A new process always inherits the static priority of
its parent.
– The nice() and setpriority() system calls can the static

priority.
– E.g., shell command: nice –n 5 vi &

November 25, 2013 11

Base Time Quantum
 • The static priority essentially determines the base time

quantum of a process.

• The higher the static priority, the longer the base time
quantum.

November 25, 2013 12

Dynamic Priority and Average Sleep Time
• A conventional process also has a dynamic priority.

– Ranging from 100 (highest priority) to 139 (lowest priority).

• The dynamic priority is the number looked up by the
scheduler when selecting the new process to run.

– The bonus is a value ranging from 0 to 10.

• Average sleep time
– The value of the bonus is related to the average sleep time of the

process.
– The average sleep time decreases while a process is running.
– The average sleep time can is no larger 1 second.

November 25, 2013 13

Dynamic Priority and Average Sleep Time
(Cont.)

November 25, 2013 14

Unit: time slice

Average Sleep Time
• A process is considered “interactive” if it satisfies:

or

• A process having highest static priority (100) is
considered interactive when its bonus value
exceeds 2 (or when its average sleep time exceeds
200 ms).

• A process having lowest static priority (139) is
never considered as interactive, because the
bonus value is always smaller than the value 11.

November 25, 2013 15

Interactive delta (pp. 12)

Active and Expired Processes
• The scheduler keeps two disjoint sets of runnable

processes:
– Active processes

- These runnable processes have not yet exhausted their time quantum.
– Expired processes

- These runnable processes have exhausted their time quantum.

• An active batch process that finishes its time quantum
always becomes expired.

• An active interactive process that finishes its time quantum
usually remains active.

– The scheduler refills its time quantum and leaves it in the set of
active processes unless some expired processes have already
waited for a long time.

November 25, 2013 16

Scheduling of Real-Time Processes
 • Every real-time process has a real-time priority.

– Ranging from 1 (highest priority) to 99 (lowest priority).

• Teal-time processes are always considered active.

• The sched_setparam() and sched_setscheduler() system
calls can change the real-time priority of a process.

– If several real-time runnable processes have the same highest
priority, the scheduler chooses the process that occurs first.

• A real-time process is replaced at some conditions:
– Preempted by another process with higher real-time priority.
– The process performs a blocking operation and is put to sleep.
– The process is stopped or killed.
– The process voluntarily relinquishes the CPU with sched_yield()
– The process is SCHED_RR and has exhausted its time quantum.

November 25, 2013 17

Outline
• Scheduling Policy

• The Scheduling Algorithm

• Data Structures Used by the Scheduler
• Functions Used by the Scheduler

• Runqueue Balancing in Multiprocessor Systems

November 25, 2013 18

The Runqueue Data Structure
• Each CPU in the system has its own runqueue.

• All runqueue structures are stored in the runqueues per-
CPU variable.

– The this_rq() macro yields the address of the runqueue of the local
CPU.

– The cpu_rq(n) macro yields the address of the runqueue of the CPU
having index n.

• Every runnable process in the system belongs to one
runqueue.

• As long as a runnable process remains in the same
runqueue, it can be executed only by the CPU owning that
runqueue.

November 25, 2013 19

The Runqueue Data Structure (Cont.)
 • The arrays field of the runqueue is an array consisting of

two prio_array_t structures.
– The active field points to the set of active processes.
– The expired field points to the set of expired processes.

• The role of the two data structures in arrays changes by
exchanging active and expired fields.

November 25, 2013 20

type prio_array_t

The runqueue structure and the two sets of runnable processes

Fields of the Runqueue Structure

November 25, 2013 21

Fields of the Runqueue Structure (Cont.)

November 25, 2013 22

Fields Process Descriptor for Scheduling

November 25, 2013 23

Process Descriptor
• When a new process is created, sched_fork(), invoked by

copy_process(), sets the time_slice field of both current
(the parent) and p (the child) processes.

• The number of ticks left to the parent is split in two halves.

– To prevent any process from refreshing time quantum by creating
new child processes.

• The copy_process() function also initializes a few other
fields of the child’s process descriptor related to scheduling:

November 25, 2013 24

The child has never exhausted its time quantum.

Initialize the child’s timestamp.

Outline
• Scheduling Policy

• The Scheduling Algorithm

• Data Structures Used by the Scheduler

• Functions Used by the Scheduler
• Runqueue Balancing in Multiprocessor Systems

November 25, 2013 25

Important Scheduling Functions

November 25, 2013 26

The scheduler_tick() Function (1/5)
 • The scheduler_tick() is invoked every tick:

– 1. Stores in the timestamp_last_tick field of the local runqueue the
current value of the TSC converted to nanoseconds, by invodking
sched_clock().

– 2. Checks if the current process is the swapper of the local CPU. If so.
- a. it sets the TIF_NEED_RESCHED flag of the current process to force

rescheduling if the local runqueue has another runnable process.
- b. Jumps to step 7.

– 3. Checks whether current->array points to the active list of the local
runqueue. If not, set the TIF_NEED_RESCHED flag to force
rescheduling, and jumps to step 7.

– 4. Acquires the this_rq()->lock spin lock.
- 5. Decreases the time slice counter of the current process.

– 6. Releases the this_rq()->lock spin lock.
– 7. Invokes the rebalance_tick() function to rebalance the number

runnable processes on various CPUs.

November 25, 2013 27

Updating the Time Slice of a Real-time
Process
• If the current process is a FIFO real-time process,

scheduler_tick() has nothing to do.

• If current is a Round Robin real-time process,
scheduler_tick()

– (1) decreases its time slice counter and
– (2) checks whether the quantum is exhausted:

November 25, 2013 28

Time slice exhausted

Refill time slice

Set TIF_NEED_RESCHED flag

Enqueue into runqueue of the corresponding array

Updating the Time Slice of a Conventional
Process
• 1. Decreases the time slice counter. (current->time_slice)

• 2. If the time quantum is exhausted:
– a. Invokes dequeue_task() to remove current from the this_rq()-

>active set of runnable processes.
– b. Invokes set_tsk_need_resched().
– c. Updates the dynamic priority:
– d. Refills the time quantum of the process:
– e. If current->expired_timestamp = 0,

update the expire time:
– f. Inserts the current process either in the active or in the expired set:

November 25, 2013 29

Not
Interactive
process?

Some expired
process is
starving

Updating the Time Slice of a Conventional
Process (Cont.)
• 3. if the time quantum is not exhausted, check whether the

remaining time slice of the current process is too long:

November 25, 2013 30

Set TIF_NEED_RESCHED flag

Put into the tail of runqueue

The remaining time slice is too long

The try_to_wake_up() Function (2/5)

• Awake a sleeping or stopped process by setting its state to
TASK_RUNNING and inserting it into the runqueue of the
local CPU.

• Parameters:
– The descriptor pointer (p) of the process to be awakened
– A mask of the process states (state) that can be awakened
– A flag (sync) that forbids the awakened process to preempt the

process currently running on the local CPU

November 25, 2013 31

The try_to_wake_up() Function (2/5) (Cont.)
 • 1. Invokes the task_rq_lock() function to disable local interrupts.

• 2. Checks if the state of the process p->state belongs to the mask of
states state.

• 3. If the p->array field is not NULL, the process already belongs to a
runqueue. Jump Step 8.

• 4. It checks whether the process to be awakened should be migrated in
multiprocessor systems.

• 5. If the process is in the TASK_UNINTERRUPTIBLE state, it
decreases the nr_uninterruptible field of the target runqueue.

• 6. Invokes the activate_task() function to activate the process.

• 7. Check whether reschedule is needed.

• 8. Sets the p->state field of the process to TASK_RUNNING.

• 9. Invokes task_rq_unlock() to unlock the runqueue and reenable the
local interrupts; and then return.

November 25, 2013 32

The recalc_task_prio() Function (3/5)
• To update the average sleep time and the dynamic priority

of a process.

• Parameter:
– descriptor pointer p
– timestamp now

• Operations:
– 1. Stores in sleep_time local variable min(now − p->timestamp, 109)
– 2. Checks (1) whether the process is not a kernel thread, (2)

whether it is awakening from the TASK_UNINTERRUPTIBLE state,
and (3) whether it has been continuously asleep beyond a given
sleep time threshold: Set p->sleep_avg field to the equivalent of 900
ticks (an empirical value). Then jump to Step 8.

- The empirical rule is to ensure that processes having been asleep for a long time
in uninterruptible mode have a reasonable sleep average value.

November 25, 2013 33

The timestamp of the
process switch that
put the process to
sleep

sleep_time stores the
number of nanoseconds
that the process spent
sleeping since its last
execution

The recalc_task_prio() Function (3/5)
(Cont.)

– 4. Executes the CURRENT_BONUS macro to compute the bonus
value of the previous average sleep time of the process.

– 5. If the process is in TASK_UNINTERRUPTIBLE mode and it is not
a kernel thread, it limits the increment of the average sleep time of
the process so as to prevent rewarding too much batch processes.
- If the sum sleep_time + p->sleep_avg is greater than or equal to the

sleep time threshold, it sets the p->sleep_avg = sleep time threshold, and
sets sleep_time =0.

– 6. Adds sleep_time to the average sleep time of the process (p-
>sleep_avg).

– 7. Checks whether p->sleep_avg exceeds 1000 ticks: cut down to
1000 ticks.

– 8. Updates the dynamic priority of the process:

November 25, 2013 34

The schedule() Function (4/5)
• The schedule() function implements the scheduler.

• Direct invocation
– The scheduler is invoked directly when the current process

must be blocked right away because the resource it needs is
not available.

– Steps:
- 1. Inserts current in the proper wait queue.
- 2. Changes the state of current either to TASK_INTERRUPTIBLE or

to TASK_UNINTERRUPTIBLE.
- 3. Invokes schedule().
- 4. Checks whether the resource is available. If not, go to Step 2.
- 5. Once the resource is available, remove current from the wait queue.

November 25, 2013 35

The schedule() Function (4/5) (Cont.)
• Lazy invocation

– The scheduler can is invoked in a lazy way by setting the
TIF_NEED_RESCHED flag of current.

– Typical examples of lazy invocation:
- When current has used up its quantum of CPU time: done by the

scheduler_tick() function.
- When a process is woken up and its priority is higher than that of

the current process: done by the try_to_wake_up() function.
- When a sched_setscheduler() system call is issued.

November 25, 2013 36

Actions Performed by schedule() before a
Process Switch
• The key outcome of the function is to set a local variable

called next, so that it points to the descriptor of the process
selected to replace current.

• The schedule() function starts by

November 25, 2013 37

Disable interrupt

Put current to prev

Acquire the runqueue

:Makes sure that
prev doesn’t hold the
big kernel lock.

Actions Performed by schedule() before a
Process Switch (Cont.)
• The sched_clock() function is invoked to read the TSC. The

run_time value is used to charge the process for the CPU
usage.

• A process having a high average sleep time is favored:

– CURRENT_BONUS returns a value between 0 and 10 that is

proportional to the average sleep time of the process.

• Before starting to look at the runnable processes,
schedule() must disable the local interrupts:

November 25, 2013 38

Actions Performed by schedule() before a
Process Switch (Cont.)
• Look into the PF_DEAD flag to see whether prev is a to be

terminated process.

November 25, 2013 39

not runnable and it has not
been preempted in Kernel
Mode

deactivate_task function:

It has nonblocked
pending signals and
its state is
TASK_INTERRUPTIBL
E

Actions Performed by schedule() before a
Process Switch (Cont.)

• Check the number of runnable processes left in the runqueue.
– If there are some runnable processes, the function invokes the

dependent_sleeper() function:

November 25, 2013 40

If hyper-threading is supported, check the process that is
going to be selected for execution has significantly lower
priority than a sibling process already running on a logical
CPU of the same physical CPU.

Process descriptor pointer
of the swapper process

No runnable process exists

Idle_balance() fails to move some
process into the local runqueue.

The set of expired
process is empty.

Reschedule runnable processes.

Actions Performed by schedule() before a
Process Switch (Cont.)
• Let’s suppose that the schedule() function has determined that the

runqueue includes some runnable processes.

• Find a runnable process:

November 25, 2013 41

No runnable process in
the active array

Exchange active and expired fields

No expired process

The set of expired process is empty.

based on the bsfl assembly language instruction,
which returns the bit index of the least significant bit
set to one in a 32-bit word.

Actions Performed by schedule() before a
Process Switch (Cont.)
• The schedule() function looks at the next->activated field.

November 25, 2013 42

a process awakened by an interrupt handler or
deferrable function. The scheduler adds the
whole runqueue waiting time.

A process awakened by a system call
service routine or a kernel thread. it adds just a
fraction of that time.

Actions Performed by schedule() to Make
the Process Switch
• Perform context switch, started from bring the contents of the first fields

of next’s process descriptor.

• Do some administrative work:

• Decrease the avg sleep time

November 25, 2013 43

To hint the hardware cache.

clears the
TIF_NEED_RESCHED flag

the CPU is going through a
quiescent state

Skip context switch

Actions Performed by schedule() to Make
the Process Switch (Cont.)
• Perform context switch

– If next is a kernel thread:

– If next is a regular process:

– If prev is a kernel thread or an exiting process:

• Perform context switch:

November 25, 2013 44

Actions Performed by schedule() after a
Process Switch

• Finish_task_switch():

November 25, 2013 45

yields an optimization barrier
for the code

If prev is a kernel thread, the
prev_mm field of the runqueue
stores the address of the memory
descriptor that was lent to prev

decreases the usage counter of the
memory descriptor

Free the process descriptor reference
counter and drop all remaining
references to the process

Outline
• Scheduling Policy

• The Scheduling Algorithm

• Data Structures Used by the Scheduler

• Functions Used by the Scheduler

• Runqueue Balancing in Multiprocessor Systems

November 25, 2013 46

Types of Multiprocessor Machines
• Classic multiprocessor architecture

– These machines have a common set of RAM chips shared by all
CPUs.

• Hyper-threading
– A microprocessor that executes several threads of execution.
– It includes several copies of the internal registers and quickly

switches between them.
– Allows the processor to exploit the machine cycles to execute

another thread while the current thread is stalled for a memory
access.

• NUMA
– CPUs and RAM chips are grouped in local “nodes”.
– When a CPU accesses a “local” RAM chip inside its own node, there

is little or no contention.

November 25, 2013 47

Scheduling Domain
 • A scheduling domain is a set of CPUs whose workloads should be kept

balanced by the kernel.

• Every scheduling domain is partitioned, in turn, in one or more groups,
each of which represents a subset of the CPUs of the scheduling domain.

• Workload balancing is always done between groups of a scheduling
domain.

November 25, 2013 48

Scheduling Domain (Cont.)
• Every scheduling domain is represented by a
sched_domain descriptor.
– Every group inside a scheduling domain is represented

by a sched_group descriptor.
– Each sched_domain descriptor includes a field groups,

which points to the first element in a list of group
descriptors.

– The parent field of the sched_domain structure points to
the descriptor of the parent scheduling domain.

November 25, 2013 49

The rebalance_tick() Function
• To keep the runqueues in the system balanced.

• Invoked by by scheduler_tick() once every tick.

• Parameter:
– The address this_rq of the local runqueue
– A flag, idle, which can assume the following values

- SCHED_IDLE
· The CPU is currently idle. current is the swapper process.

- NOT_IDLE
· The CPU is not currently idle.

November 25, 2013 50

The rebalance_tick() Function (Cont.)
• Determine first the number of processes in the runqueue

and updates the runqueue’s average workload.
– To do this, the function accesses the nr_running and cpu_load fields

of the runqueue descriptor.

• Start a loop over all scheduling domains in the path from
the base domain ((referenced by the sd field).

– In each iteration the function determines whether the time has come
to invoke the load_balance() function, thus executing a rebalancing
operation on the scheduling domain.

– If idle is equal to SCHED_IDLE, then the runqueue is empty, and
rebalance_tick() invokes load_balance() quite often. (roughly once
every10 milliseconds for scheduling domains corresponding to
logical CPUs).

November 25, 2013 51

The load_balance() Function (5/5)
• The load_balance() function checks whether a scheduling domain is

significantly unbalanced.

• It checks whether unbalancing can be reduced by moving some
processes from the busiest group to the runqueue of the local CPU. If
so, it attempts the migration.

• Parameter:
– this_cpu

- The index of the local CPU
– this_rq

- The address of the descriptor of the local runqueue
– sd

- Points to the descriptor of the scheduling domain to be checked
– idle

- Either SCHED_IDLE (local CPU is idle) or NOT_IDLE

November 25, 2013 52

The load_balance() Function (5/5) (Cont.)
 • 1. Acquires the this_rq->lock spin lock.

• 2. Invokes the find_busiest_group() function to analyze the workloads of
the groups inside the scheduling domain.

– The function returns the address of the sched_group descriptor of the busiest
group and the number of processes to be moved.

• 3. Release this_rq->lock if find_busiest_group() returns NULL.

• 4. Invokes the find_busiest_queue() to find the busiest CPUs in the group.

• 5. Acquires a second spin lock, namely the busiest->lock spin lock.

• 6. Invokes the move_tasks() function to try moving some processes from
the busiest runqueue to the local runqueue this_rq.

• 7. If the move_task() function failed, wake up the migration kernel thread
that walks the chain of the scheduling domain.

– If an idle CPU is found, the kernel thread invokes move_tasks() to move one
process into the idle runqueue.

• 8. Release the two locks.

November 25, 2013 53

The move_tasks() Function
• The move_tasks() function moves processes from a source runqueue to

the local runqueue.
– The function first analyzes the expired processes of the busiest runqueue,

starting from the higher priority ones.
– When all expired processes have been scanned, the function scans the

active processes of the busiest runqueue.
– For each candidate process, the function invokes can_migrate_task(), which

returns 1 if all the following conditions hold:
- The process is not being currently executed by the remote CPU.
- The local CPU is included in the cpus_allowed bitmask of the process descriptor.
- At least one of the following holds:

· The local CPU is idle.
· The kernel is having trouble in balancing the scheduling domain
· The process to be moved is not “cache hot”.

– If can_migrate_task() returns the value 1, move_tasks() invokes the
pull_task() function to move the candidate process to the local runqueue.

November 25, 2013 54

	投影片編號 1
	Outline
	Scheduling Policy – Time Sharing�
	Classes of Processes�
	System Calls Related Scheduling
	Process Preemption
	How Long Must a Quantum?
	Outline
	Scheduling Algorithm
	Scheduling Classes of Linux Processes
	Scheduling of Conventional Processes
	Base Time Quantum�
	Dynamic Priority and Average Sleep Time
	Dynamic Priority and Average Sleep Time (Cont.)
	Average Sleep Time
	Active and Expired Processes
	Scheduling of Real-Time Processes�
	Outline
	The Runqueue Data Structure
	The Runqueue Data Structure (Cont.)�
	Fields of the Runqueue Structure
	Fields of the Runqueue Structure (Cont.)
	Fields Process Descriptor for Scheduling�
	Process Descriptor
	Outline
	Important Scheduling Functions
	The scheduler_tick() Function (1/5)�
	Updating the Time Slice of a Real-time Process
	Updating the Time Slice of a Conventional Process
	Updating the Time Slice of a Conventional Process (Cont.)
	The try_to_wake_up() Function (2/5)
	The try_to_wake_up() Function (2/5) (Cont.)�
	The recalc_task_prio() Function (3/5)
	The recalc_task_prio() Function (3/5) (Cont.)
	The schedule() Function (4/5)
	The schedule() Function (4/5) (Cont.)
	Actions Performed by schedule() before a Process Switch
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() before a Process Switch (Cont.)
	Actions Performed by schedule() to Make the Process Switch
	Actions Performed by schedule() to Make the Process Switch (Cont.)
	Actions Performed by schedule() after a Process Switch
	Outline
	Types of Multiprocessor Machines
	Scheduling Domain�
	Scheduling Domain (Cont.)
	The rebalance_tick() Function
	The rebalance_tick() Function (Cont.)
	The load_balance() Function (5/5)
	The load_balance() Function (5/5) (Cont.)�
	The move_tasks() Function

