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Abstract 
As the E-Commerce rapidly grows up, searching 

data is almost necessary in every application. 
Approximate string matching problems play a very 
important role to search with errors. Against these 
problems “Edit distance” and “Soundex” are two 
common techniques, especially the latter one is a 
“sound-like” method and had been applied to the 
LDAP server. Nevertheless, it is not adequate for 
certain situations especially when we perform the 
symbol matching (as in DNA); it doesn’t make sense 
to use the “sound-like” method. On the other hand, 
“Edit distance” has a clear definition and also is 
widely used in many fields of application. Since the 
design of LDAP server is optimized for reading, 
applying edit distance technique to LDAP server has 
the problem of lowering speed. In this paper we 
design efficient data structures and an algorithm to 
solve the speed problem, and furthermore we use 
three filter conditions [1] based on the n-gram 
technique to achieve a well filter performance. 
Finally we also demonstrate experimentally the 
benefits of applying our algorithm and its limitations. 

 
 

1. Introduction 
 

With the explosive deployment of the 
E-Commerce, more and more companies update their 
application systems to be used in the Internet. No 
matter the application system is web-based or not, it 
needs a large number of various applications and 
services to organize and manage information 
efficiently in distributed environments. Especially the 
directory related services are very important for those 
distributed systems. It could be applied to Operating 
System, asset management systems, security systems, 
etc. Furthermore, The Gartner Group [2], a market 
research firm, predicts that 40% to 90% portion of 
new software and hardware will be directory related 
products at end of year 2001 to 2003. 

LDAP (Lightweight Directory Access Protocol) 
is an IETF standard for accessing directory 
information, and it is the most advanced, popular 
method for the directory service. It was originally 
designed to be just a gateway between X.500 
directory server agents. LDAP version 1, RFC1478 
[3], is a lightweight alternative to the X.500 
Directory Access Protocol (DAP). It is simpler and 
easier to implement than DAP, and uses TCP/IP 
stack versus the overly complex OSI stack. 

LDAP services provide a variety of searching 
functions, and use “Soundex” method [16] to 
perform the approximate string matching function. 
However, it is not adequate for certain applications 
such as the DNA symbol matching. Traditional 
approximate string matching models use the edit 
distance as the measurement of similarity, and they 
could achieve different similar levels by setting 
different error threshold values. When we applied 
edit distance to LDAP server containing a huge 
amount of data, the performance decreased 
substantially because it spends a lot of time for 
computing edit distance of each data. This does not 
agree with the LDAP server design goal for quick 
searching, therefore we need efficient methods to 
reduce the searching time. Two approaches could be 
considered: one is to optimize the algorithm of edit 
distance, and the other is to filter out lots of records 
impossible to be the answers before the computing 
of edit distance. There are already many papers 
about the former [8,9,10,11], but in this paper we 
focus on the latter approach. The goal of our 
research is to filter LDAP database records 
efficiently, and to design an algorithm with suitable 
filter conditions in order to improve the 
performance. During each filter process, we use the 
sort and merge methods (like merge-sort algorithm) 
to reduce the filter time in O(n), this makes our 
algorithm a good candidate to be incorporated by 
the LDAP server. 

This paper is organized as follows: Section 2 
presents related work, section 3 lists some basic 
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concepts about our algorithm, section 4 outlines the 
algorithm and data structures, section 5 presents 
experimental performance results, and the last 
section is the conclusion. 

 
2. Related Work 

 
A lot of researches have been published about the 

“approximate string matching” problem. For two 
strings of length n and m, there exists a dynamic 
programming algorithm to compute the edit distance 
of the strings in O(nm) time and space [4], and 
improvements to the average and worst case have 
appeared [11,12,13]. 

Indexed approximate string matching is a 
relatively new problem where it is possible to build 
some indices beforehand in order to answer queries 
later. Indices such as built by Glimpse [5] store a 
dictionary and use an algorithm to obtain a set of 
words to retrieve. These approaches are limited in 
scope due to the static dictionary, and they are not 
suitable for dynamic environments. For the Netscape 
LDAP servers, they use the “sound-like” method to 
reduce each word into a short form (such as 
“Washington” is coded “W252”) [16] in order to 
perform the approximate searching. However, each 
language may need its own particular sound-like 
algorithm. 

In [1], they solve the problem of approximate 
string joins in a database, using n-gram as index 
stored in database and using three filter conditions for 
quickly joins. In the field of database, several 
indexing techniques proposed for the “approximately 
string matching” problem, however such techniques 
have to be supported by the database management 
system [14,15]. 

 
3. Basic Concepts 

 
In this section, we describe some basic concepts 

about our algorithm. 
 

3.1 Approximate String Matching 
 

For any string s, we denote its length as |s|. The 
problem of approximate string matching is to find all 
the data strings that match a given pattern with up to 
k errors. The k value is the threshold of the edit 
distance. 

 
3.2 Distance function 

 
The edit distance d(x, y) between two strings x 

and y is the minimal cost of a sequence of operations 
that transform x into y. The cost of a sequence of 
operations is the sum of the costs of the individual 
operations. In this paper we use the three standard 
operations of cost 1 such as follows.  

─ Insertion: inserting the letter a.   
─ Deletion: deleting the letter a. 
─ Replacement: for a≠b, replacing a by b. 
 

3.3 N-grams: Indices for Approximate 
String Matching 

 
For a given string s, its positional n-grams are 

obtained by “sliding” a window of length n over the 
characters of s. Since n-grams at the beginning and 
the end of the string have fewer than n characters 
from s, we introduce new characters “#” and “$”, and 
conceptually extend the string by prefixing it with 
occurrences of “#” and suffixing it with occurrences 
of “$”. Thus, each n-gram contains exactly n 
characters. 

 
Definition 3.1 [Positional n-gram]: A positional 
n-gram [6] of a string s is a pair ( i , k ) ,where k is 
the q-gram of s that starts at the position i ,counting 
on the extended string. The set Gs of all positional 
n-grams of a string s is the set of all the |s|+n-1 pairs 
constructed from all n-grams of s. □ 

The concept behind using n-grams is that when 
two strings a, b are within a small edit distance of 
each other, they must share a large number of 
n-grams in common [6]. 

 
3.4 Number of the n-grams 

 
For any string s (its length is |s|), we can easily 

find out the number of its n-gram is |s| + n –1. (Figure 
1) 

 
3.5 Filtering technique using n-gram 

 
In a very large string database, we use three filter 

conditions to filter out strings which is impossible 
having edit distance less then k with a given target 
string A. In this section, we present the three filtering 
conditions [1] based on the n-gram and edit distance. 
The key objective here is to efficiently identify 
candidate answers to our problem before we use the 
“expansive” distance function to compute the real 
distance. The three filtering conditions are as follows: 
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 # # D I G I T A L $ $ 
GIT     ◆ ◆ ◆     
DIG   ◆ ◆ ◆       
IGI    ◆ ◆ ◆      
TAL       ◆ ◆ ◆   
ITA      ◆ ◆ ◆    
#DI  ◆ ◆ ◆        
AL$        ◆ ◆ ◆  
##D ◆ ◆ ◆         
L$$         ◆ ◆ ◆

Figure1: The 3-grams for the string “DIGITAL”. The number of 3-grams: 9 = 7 (length) + 3(n) – 1. 

Count Filtering: Consider strings s1 and s2, of 
lengths |s1| and |s2|, respectively. If the equation 
d(s1,s2) <= k holds, then the two strings must have at 
least ( max(|S1|,|S2|)–1–(k-1)*n ) the same n-grams. 
□ 

 
Position Filtering: If strings s1 and s2 are within 
an edit distance of k, then a positional n-gram in one 
cannot correspond to a positional n-gram in the other 
that differs from it by more than k positions.  □ 

 
Length Filtering: The last condition is that string 
length provides useful information to quickly prune 
strings that are not within the desired edit distance. If 
two strings s1 and s2 are within edit distance k, their 
lengths cannot differ by more then k. □ 

 
4. Algorithm and data structures 

 
In this section we introduce our algorithm and 

data structures for the three filtering conditions. 
 

4.1 Symbol Definition 
 

We define some symbols below used in this 
paper: 

S: the string pattern we want to search. 
L: the length of S. (L = |S|). 
D: a very large string database. 
RID: the unique recode identifier in the string 

database D. 
Ds: one string in the string database D, which has 

unique RID in D. 
Gs: the set of n-grams of Ds. 
Gs,i: the positional n-grams of Ds starting at the 

i-th position. 

K: the distance error threshold. 
 

4.2 Index Architecture 
 

During the existent implementations of the LDAP 
server, some of them (such as OpenLDAP) use 
n-grams as the indices of each string. We also use the 
set of n-gram (Gs ) as the original indices. For each 
string Ds in D, we put the indices Gs into a large 
table (called “Index Set”). The Index Set contains 
four fields: 1.n-gram 2.string length (denote L) 
3.position (the position which n-gram appears) 
4.RID.  

 
Example 4.1 [Index Set] Assume that string Ds = 
“HELLO”, Length(Ds)= |Ds| = 5, we use the 3-grams 
as indices(n = 3), then we get the following 3-grams: 
G3,1=”##H”, G3,2=”#HE”, G3,3=”HEL”, G3,4=”ELL”, 
G3,5=”LLO”, G3,6=”LO$”, G3,7=”O$$”. We collate all 
the indices into a table as figure 2 shows: 

 

  

Figure 2: the indices for string Ds using 3-grams. 

N-grams Length Position RID 

##H 3 1 00001 

#HE 3 2 00001 

HEL 3 3 00001 

ELL 3 4 00001 

LLO 3 5 00001 

LO$ 3 6 00001 

O$$ 3 7 00001 
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4.3 Searching Processes and Structures 
 

The approximate searching processes using 
n-gram is as follows: 
1. For each string Ds, we produce all the n-grams of 

Ds. 
2. Retrieve each filter list in the Index Set 
corresponding to each n-gram. 

3. In all the filter lists, we sum the records which 
have the same RID. If the sum is greater then the 
Count Filtering, the record with the RID maybe is 
the answer. Then we check it for the Length 
Filtering, and add it into the last result list when it 
passes the condition.  

4.Use the distance function to compute the real 
distance for the records in the last result list. 

 
Some problems arise during these processes, 
especially when the amount of record in filter lists is 
very large. Therefore we need an efficient method for 
these merge processes. We sort records in each filter 
list by record id (RID) field, like the merge-sort 
algorithm. The following j iterations present the 
method: 
 

List 1 => Result List (initiation). 
List 2 + Previous Result List => new Result List  
(because we sort the records by record id (RID) in 
lists, we can do the counting linearly in time 
O(n) ). 
List j + Previous Result List => new Result List 
 

During the Merge iterations, we can observe that the 
preceding list records also appear in the latter lists, 
and the space and time used for counting increases 
quite substantially. For the purpose to reduce the 
space and time, we sort all lists by size beforehand, 
and the first list has the smallest size. The goal of 
LDAP server is for searching quickly, therefore we 
design all data structures to reduce searching time by 
using reasonable space. Figure 3 is our searching 
process and data structure. 
 

 
Figure 3. Lists contain fields (length, id, pos) and 
are sorted by each field. Result lists contain fields 

(length, id, count) and are the candidate set for 
each filtering process. 

 
4.4 Algorithm Design 

 
In this section, we propose our efficient algorithm 

using the three conditions to filter data efficiently. We 
use the example string “HELLO” and 3-grams to 
explain our algorithm. 

 
Algorithm 4.1 [Algorithm using n-grams with 
sorted Index Set] 
1. We produce the 3-grams of the S = “HELLO”, and 

easily retrieve lists corresponding to its 3-grams in 
the sorted Index Set. Then we sort lists by size. For 
example, we retrieve the “HEL” list containing 
10,000 records, and the “LLO” list containing 5,000 
records, and “ELL” list containing 100 records, and 
go on. Then we sort the lists by size, the smallest 
list is called List1, and go on. In general, the 
n-grams “##H” and “O$$” have a lot of records, 
and are sorted to be the last ones. 

2. From List1 to List 7(because S has 7 3-grams), we 
cut each list by the Length Filtering to a small one. 
For example, S = ”HELLO”, L = |S| = 5, assume K 
(distance threshold) = 2, then we have the cut 
condition ( 3 <= L <= 7) to filter each list . 

3. During merge processes, we filter out many strings 
by using Count Filtering and Position Filtering to 
avoid computing real distance because of its 
expensive cost. These processes check two conditions: 
one is to check whether the distance of corresponding 
n-grams (called positional n-grams) is less then or 
equal to K = 2, and the other is to check whether total 
number of same n-grams passes the Count Filtering, 
Especially we can filter out any record immediately 
when we are sure it is impossible to pass the Count 
Filtering. For example: S = “HELLO”, L = |S| = 5, k 
= 2, n = 3, when string length |Ds| = 7, it must have at 
least 7-1-(2-1)*3 = 3 same 3-grams with S. 

4. After the merge processes we use distance function 
to compute real distance for the records in the last 
result list. 

 
Algorithm 4.1 [The formal definition] 
1. Retrieve all lists corresponding to each n-grams of 
the search pattern S. 

2. Filter each list by the Length Filtering. 
3. Sort all lists by size in ascend order.  
4. Prepare a null result list, and two pointers for the 
result list and list 1. 

5. For j = 1 to k  
5.1 Move the pointer to next record in the list j 
If there is no data, go to (3), else check the 

Position Filtering, if it passes the filter, then add 
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record score by 1, score = score + 1. 
Check whether the next record has the same pair 
(L, RID). If it is true, check the condition again, 
and update the score of the record. Then we can 
get the triple (L, RID, score). 

5.2 Check the record in the result list: 
5.2.1 If (L, RID) result < (L, RID) List j: check 

whether the score of the record in the result 
list plus the number ((L+n-1)-j) is less then ( ), 
if it is true, we delete the record immediately 
by the Count Filtering, else we insert the 
record of the result list into new result list. 

5.2.2 If (L, RID) result = (L, RID) List j : sum 
the two score in two lists, and check whether 
the score plus (L+n-1)-j is less then  , if it is 
true, we delete the record, else we insert the 
record into new result list. 

5.2.3 If (L, RID) result > (L, RID) List j: check 
whether the score of the record in the list j plus 
the number ((L+n-1)-j) is less then the value ( ), 
if it is true, we delete the record, else we insert 
the record of the list j into new result list.  Go 
to (1). 

5.3 Check the remnant records for the condition 
above, if it is true, we insert it into new result list. 
5.4 Change the new result list as result list. 
Next j 

6. For the last result list, we compute the real distance 
for each record. Then we get the answer set. 

 
5. Experimental performance 

 
According to our algorithm and data structures, 

we developed programs and used a lot of practical 
data to verify the effectiveness of the filter. 
Furthermore, we experiment on different n-gram, 
string length (L), and distance value (k) to evaluate 
their relation. In this section, we start in Section 5.1 
by describing the implementation environment. In 
Section 5.2, we evaluate the performance and list 
their limitations. 

 
5.1 Environment 

 
All data used in our experiments are the strings of 

real trademarks. The data set contains about 510,000 
short strings that generate more then 5,000,000 
n-gram data.  

Our platform is the “OpenLDAP” system which 
is developed by LDAP community and is an open 
source (http://www.openldap.org), and we also use 
the DB library developed by the University of 
Berkeley. 

Our programs contain two parts:  
1. Index Generation 

The part is responsible for generating n-grams 
and making the sorted Index Set mentioned above, 
and sorting lists, etc. In order to experience different 
n-grams we generate four different grams (2-grams, 
3-grams, 4-grams, 5-grams).  

 
2. Filtering and Searching 

Programs could search for different parameters 
such as edit distance or n-gram. Furthermore, we also 
add some parameters like “sort-order” for the purpose 
of experiments. 

Our programs use the “Levenshtein” distance 
algorithm [7] to compute the real distance between 
two strings. 

 
5.2 Performance Analysis 

 
In this section, we perform three experiments on 

the relations between L, k, and n. Programs chose 
dynamically 30 strings of length 5, 8, 10, 15 
respectively to search, then reported the average 
results. The experiments are: 

 
5.2.1 First, we want to evaluate the effect of different 
L and k values upon the filter performance. Under 
fixed n-grams (n=2, 3, 4, 5) we searched for different 
(L, K) pairs, and recorded the amount of real answers 
(“answer” in the figure 4) and the amount of 
candidate records passed the three filter conditions 
(“filter” in the figure 4). Figure 4 shows the results. 

Analysis: As the figure 4 shows, we could 
discover that:  

(1) Some (L, K) pairs are not suitable for the filter, 
because the triple (L, k, n) makes the record to be an 
answer even it has 0 same n-grams. Therefore, the 
filter loses its functionality. 

(2) The k value increases with the decrease in 
filter performance under all n-grams. Furthermore, as 
the increase of L, we could still have good 
performance for a bigger k. 

(3) The algorithm filtered candidate strings from 
510,000 to hundreds, and therefore it could search 
very quickly. These results proof the effectiveness of 
the algorithm. 

 
5.2.2 In the second experiment, we want to 
understand the effect of the n-grams and sort order 
upon the amount of comparisons during the merge 
processes. Therefore under fixed k value (k=1, 2, 3, 
4), we searched for different (L, n) pairs and uses 
three different kinds of sort order (S: Sequential, A: 
Ascend, D: Descend). The results are presented in 
Figure 5. 

Analysis: As the figure 5 shows, the comparison 
count is smallest under the ascend sort order. Besides, 
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the comparison count decreases as we use bigger 
n-grams under the ascend sort order. 

 
5.2.3 In the third experiment, we want to know about 
the effect of different (L, n) pairs upon the filter 
performance.  

Analysis: In the results showed in the figure 6, 
we can discover that: 

(1) The case (K=1) is a special situation. Different 
n-grams have the same performance, because the 

Count Filtering condition is independent of n when 
k=1. However for k>1, the filter performance 
decreases rapidly as the n value increases. Another 
fact is that, the performance increases with the L 
value. 

 
5.2.4 According to the results from (1) to (3), we 
know the limitation for the three parameters is from 
the Count Filtering: max(|S1|,|S2|) – 1 – (k-1) * n > 0.
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Figure 4: the results of (1).

Figure 5: the result of (2). 
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Figure 6: the result of (3). 
 
  

6. Conclusions 
 
We successfully apply the n-gram technique to 

LDAP server for approximate string searching. By 
sorting the n-grams into the Index Set we improve the 
search performance, especially when the program 
retrieves all the lists correspond to n-grams, and 
when it merges the lists, like a “merge-sort” process. 
In other words, we develop an efficient algorithm for 
searching the approximate strings in the LDAP server. 
And the algorithm with the sorted Index Set brings 
the three filter conditions into a full play. 
Furthermore we list the limitation between the pattern 
length (L), error threshold (K), and n-gram. The 
limitation could help programs to choose suitable 
n-grams for different searching in order to improve 
the performance.  
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