

LDAP Cross-searching for Traditional and Simplified Chinese

Chi-Chien Pan and Kai-Hsiang Yang and Tzao-Lin Lee
Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan, R.O.C.
E-mail: {d5526001, f6526004, tl_lee}@csie.ntu.edu.tw

0. Abstract

Chinese language has a lot of different properties with

the western language, such as encoding methods,
vocabulary, and character sets, etc.; it is usually presented
in two forms: Simplified Chinese (SC), used in the PRC
and Singapore, and Traditional Chinese (TC), used in
Taiwan, Hong Kong, Macao, and among most overseas
Chinese. Therefore, it is very difficult to search or
integrate information from Chinese data containing the
two forms. On the other hand, as the Internet services
rapidly grow up, the LDAP service is widely deployed for
the convenience of management, however the search
mechanism in LDAP does not consider the properties of
Chinese language. In this paper, we designed a new
mechanism for LDAP server to cross-search between
Traditional and Simplified Chinese, and we also
implemented it in an open source LDAP server
(OpenLDAP) [20].

1. Introduction

As the interaction between Taiwan and PRC
increases persistently, more and more enterprises have
branch companies at both regions; the company
members come from different places, and even use
different Operating Systems (such as TC or SC). Those
enterprises always face an urgent need to integrate all
kinds of resources by the Internet VPN network
technology, however, the first incoming problem is the
conversion between the TC and SC information., such as:
document, email, database, etc.

Recently LDAP service is widely deployed to
integrate and manage all kinds of resources for a
company; however, the original design of LDAP does
not consider the special properties of Chinese language
at all, this makes the integration of company resources
more difficult. For example, one enterprise has two
branch companies at Taiwan and PRC, and the names of
employees may be in both TC and SC. There are several
problems needed to be solved: (1) How to integrate all
name strings into LDAP server, and (2) the employees

of two branch companies use different Operating
Systems (one for TC, and one for SC), but how to input
data simultaneously into one LDAP server, and (3) how
could we search or retrieve data from the information
containing both forms in the LDAP server. (4) How to
convert between TC and SC documents when we search
for one employee’s name.

Against these problems, there are several researches
[2,3] have been proposed for conversion between the TC
and SC, and there are also a variety of products to
perform different level conversion for special needs, for
example: e-mail content conversion [21] , text
processing, and Web Page conversion [22] , etc.

In this paper, we focus on how to design a
mechanism to handle TC and SC information, in order
to search data efficiently in LDAP server. The processes
we have to do include: (1) the analysis of the LDAP
server internal, and (2) the investigation of conversion
between TC and SC. Our platform is the “OpenLDAP”
system which is developed by LDAP community and is
an open source [20].

2. LDAP Internal

In order to design an efficient mechanism in LDAP to
perform the cross-search, we need to survey related
standards and investigate the internal of LDAP server.
LDAP was originally developed as a lightweight
alternative to DAP [4,8,12]. The first version of LDAP
was defined in X.500 Lightweight Access Protocol (RFC
1487), which was replaced by Lightweight Directory
Access Protocol (RFC 1777). The latest LDAP Version 3
was defined by Lightweight Directory Access Protocol
(v3) (RFC 2251) [5].

2.1 Information Model

The basic unit of information stored in the directory is
called an entry. Entries represent objects of interest in the
real world such as people, organizations, and so on. Each
entry has a name called a distinguished name (DN) that
uniquely identifies it, and it consists of a sequence of

parts called relative distinguished names (RDNs). Entries
are composed of a collection of attributes that contain
information about the object, and every attribute has a
type and one or more values. The type of the attribute is
associated with syntax which specifies what kind of
values can be stored. The relationship between a directory
entry and its attributes and their values is shown in figure
1. In addition to define what data can be stored as the
value of an attribute, syntax of attribute also defines how
those values behave during searches and other directory
operations.

On the other hand, the schema of LDAP defines the
type of objects that can be stored in the directory, and also
lists the attributes of each object type no matter these
attributes are required or optional. Each directory entry
has a special attribute called “ObjectClass”, and the value
of it is a list of two or more schema names; that is, the
schema defines what type of object(s) the entry
represents.

Figure 1: The architecture of one directory tree.

2.2 String Encoding

LDAP uses strings to represent data rather than
complicated structured syntaxes such as ASN.1. As the
LDAPv3 specifies, all data have to be represented by
UTF-8 character encoding, and figure 2 illustrates the
UTF-8 encoding algorithm [6,13].

Data = c Bits Byte 0 Byte 1 Byte 2 Byte 3

< 0x80 7 C - - -

< 0x800 11 0xC0 | c
>>6

0x80 | c
& 0x3F - -

<
0x10000 16 0xE0 |

c>>12

0x80 |
c>>6 &

0x3F

0x80 | c
& 0x3F -

<
0x20000 21 0xF0 | c

>> 18

0x80 |
c>>12 &

0x3F

0x80 |
c>>6 &

0x3F

0x80 | c
& 0x3F

Figure 2: The UTF-8 encoding algorithm.

Note that in the UTF-8 algorithm, characters in the
ASCII region (0x0000 through 0x007F) are represented
as the original ASCII characters in a single byte, and the
other characters in different ASCII regions are encoded
to variable-length bytes.

There are several related RFC standards: (1)
Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names (RFC
2253), and (2) The String Representation of LDAP
Search Filters (RFC 2254) [6,7].

2.3 Search Index

Since the design of LDAP server is optimized for
quick searching, the search index plays a very important
role; the search performance depends on the indexing
method. In order to search quickly, OpenLDAP uses
additional spaces to speed up the search performance,
and makes independent index for each attribute.
Furthermore, LDAP supports three types of filter to
search: (Equality, Approximate, Substring), and
OpenLDAP also provides different type of indices for
each filter.

A ttr A ttr … .

o = x y z

c = u s

T y p e V a lu e … .V a lu e

o b je c t
e n try

a lia s
e n try

In the kernel of OpenLDAP server, the Berkeley DB
library is used to handle the search indices as folloes.
The attribute prefix, value, and syntax are used to
perform the MD5 hashing. Then the corresponding
hashing key is produced. The OpenLDAP server stores
the pairs (hashing key, entry id) in the Berkeley DB
database as search index.

There are two main processes for searching data in
the LDAP server:

(1) The first process is to compute the MD5
hashing key by using filter conditions (prefix + value +
syntax), then retrieve one possible entry list from which
each entry is checked with the filter conditions (And, Or,
Not). Finally we will get the candidate list or fail to do
so. Figure 3 shows the architecture of the filter :
(ou=computer), scope is subtree.

(2) The second process is to check each attribute
of the entry in the candidate list, then get the final
correct answers. However, if the search attribute does
not have index for it, all entries in LDAP would be in
the candidate list during process (1), and the search
speed will be very slow.

Figure 3: The architecture of the filter:

(ou=computer).

The design of LDAP server does not consider the
properties of Chinese, especially in the search process.
For example, it uses the “Soundex” method designed for
western language to perform the approximate searching
function. However, it is not adequate for other language.
Besides, all LDAP client APIs support Unicode, but we
have to convert Chinese (TC: Big5, CNS11643 or SC:
GB2312) to Unicode when we call these LDAP APIs.

3. Chinese Conversion

3.1 Character Sets and Encoding

Chinese language has two different forms for most of
Chinese characters: Traditional Chinese (TC) and
Simplified Chinese (SC). There are a lot of differences
between these two forms including character sets,
encoding methods, and choice of vocabulary.

In TC, the common character sets are Big5, and
CNS11643 (Chinese National Standard); the Big5
character set has its special encoding method, and the
CNS11643 [9] character set uses the EUC-TW as its
encoding method. On the other hand, in SC, there are
some character sets, such as: GB2312, and its expanded
version GBK; both two character sets use the EUC-CN as
their encoding methods.

Ten years ago, we encountered great difficulties in the
conversion between TC and SC, but as the Unicode
Operating Platform is widely accepted, and its character
set simultaneously includes the major portions of TC and
SC, Unicode seems to solve the problem of
simultaneously existence of TC and SC.

3.2 Conversion

As we know, SC comes from the character
simplification of TC, however, there are still lots of
different situations; that is, this is not a straightforward
correspondence between the two forms. Some
differences are as follows:

1. There are many new created SC words without
corresponding TC words.

2. One SC word may maps to many TC words.
3. Although one SC word maps to many TC words,

only one of them is correct in the document, depending
on the context of document.

For the conversion between TC and SC, it is quite
simple to convert from TC to SC, but the reverse
conversion from SC to TC is relatively complicated and
full of pitfalls [2]. According to different needs, the
conversion can be implemented on four levels (as figure
4 shows), in increasing order of sophistication, from a
simplistic code conversion that generates numerous
errors, to a complex approach that takes the semantic
and syntactic context into account and aims to achieve

near-perfect results. Each of these levels is described
below.

Level 1 Code
Character-to-character, code-based substitution

Level 2 Orthographic
Word-to-word, character-based conversion

Level 3 Lexemic
Word-to-word, lexicon-based conversion

Level 4 Contextual
Word-to-word, context-based translation

Figure 4: The four conversion levels

[Level 1 Code Conversion] character-to-character,
code-based substitution mapping table

This method is an easiest, but most unreliable, way to
convert between TC and SC. It uses a one-to-one
mapping table to replace each single word. There are
several familiar methods such as: Simplistic conversion
(mapping table), Frequency-based conversion (selected
from a list ordered by frequency of occurrence),
Candidate-based conversion (either interactively in the
user interface (UI), or as a list in brackets). The result of
Code Conversion is not good enough for common
applications.

[Level 2 Orthographic Conversion] word-to-word,
character-based conversion

The basic conversion unit in this level is called
orthographic unit: one word or one term (which is the
meaningful combinations of words), and it is treated as a
single entry in dictionaries and mapping tables. This level
conversion focuses on the mapping from one SC word to
many TC words, and it use some technologies to identify
meaningful nouns to help the mapping correct. These
processes are :

1. Segmenting the source sentence or phrase into
word-units.

2. Looking up the word-units in orthographic
(word-unit) mapping tables.

3. Generating the target word-unit.
4. Outputting the target word-unit in the desired

encoding.

[Level 3 Lexemic Conversion] word-to-word,
lexicon-based conversion

A lexeme is a basic unit of vocabulary, such as a
single-character word, affix, or compound word. This
level of conversion mainly focuses on the cases where SC
and TC have entirely different words for the same
concept. For example, “计算机” (SC)-“電腦” (TC), “信
息” (SC)-“資訊” (TC), “网络” (SC)-“網路” (TC), etc.

On the other hand, we could regard this level of
conversion as one kind of translation between two
languages, and it is similar to the word-units used in
orthographic conversion, but the term lexeme is used here
to emphasize the semantic nature of the conversion
process.

The main processes are like the orthographic
conversion, but the mapping tables must map one lexeme
to another at a semantic level. The segmentation
algorithm must be sophisticated enough to identify proper
nouns, since the choice of target term depends on whether
the lexeme is a proper noun or not.

[Level 4 Contextual Conversion] word-to-word,
context-based translation

In this level, the semantic and syntactic context must
be analyzed to correctly convert certain ambiguous
lexemes that map to multiple target lexemes. This level of
conversion focuses on the phases both existing in TC and
SC, but having entirely different meaning. For example,
in SC “文件” (which means “data file”) should map to
“檔案” in TC, and can not map to “文件” (which means
“document”) in TC. It is very complicated to achieve this
level of conversion, so we don’t implement it.

3.3 Segmentation

Because the meaningful units “words” in Chinese are
not delimited by spaces, tokenizing is considerable more
difficult than for western languages. The segmentation of
Chinese text is the basic technique to process Chinese,
and it had been applied to many application areas:
information retrieval, text processing, machine translation,
text-to-speech, linguistic analysis, etc.

Furthermore, on the conversion from SC to TC, the
quality of segmentation has great influence on the
accuracy of conversion. In fact, we have to segment TC
and SC respectively because of the different vocabulary
sets used in them.

There are a lot of researches [1,2,9] on the
segmentation in Chinese, such as: lexical method,
statistical method, and hybrid of statistical and lexical
method. The lexical method and statistical method have
their different advantages and could be applied for
different needs.

In this paper, we focus on the LDAP server, and
therefore, the search speed is our main concern. The
segmentation algorithm we choose to implement is the
updated “Maximum Matching Algorithm”, and on the
other hand, we also strengthen segmentation to identify
people names [19].

4. System Design

In this section, we describe our system architecture
and main concerns.

4.1 Definition

In the LDAP server, all data are stored in the
attributes of entry. However, Chinese words could be
used in the DN to identify one entry. In this paper we
focus on the search function for data, therefore, our topic
focuses only on the attribute value. On the other hand,
according to the search types in LDAP, we mainly divide
them into two types: equality search and approximate
search, and we also implemented different Chinese
conversion level for these two kinds of search. We apply
the level1 and level2 conversions to equality search, and
level3 conversions to approximate search.

We have defined the following functions:
(L is the input string, n is the conversion level.)

(1) Convert-S-T(n, L): convert L from SC to TC using

level n.
(2) Convert-T-S(n, L): convert L from TC to SC using

level n.
(3) Basis(L): update L to the basis word.

In the third function above, we change the original

string L into its basis word. It is not only for the different
forms (TC and SC) but also for the same forms. For
example, the two words ‘台’ and ‘臺’ are the same in TC,
they should be regarded as the same word in our system.

4.2 The language form

The LDAP server provides several search APIs for
users to send suitable search filters for their needs.
However, the filter string is composed of Unicode
characters, so the system could not identify what Chinese
form user use, and what display mode user want. Besides,
the segmentation process depends on the input form, and
our system want to provide suitable display mode to user,
so we first have to identify the input form (which is either
TC or SC).

In our system, we provide two approaches to identify
the input form; one is user specified and the other is
program automatically identified.

1. User specified:
To concern about the consistency with the existing

systems, we do not change any APIs and filter format, but
directly extend the filter to specify the input form and
display mode. The filter also follows current LDAP
protocols. We describe the extension approach below.

If f is the original filter, we extend the filter to f1 by
inserting one “OR” operation; that is, we use additional
filter element (c=xx) in OR operation to specify the input
form. For example, we want to specify that the input form
is TC and the output form is the original form of output
document, then the filter will be (OR (c=T) f), which is in
prefix style defined in the LDAP. The related symbols are
as follows.

Output form

Input

Document form TC SC

TC in filter T TT TS

SC in filter S TS SS

On the other hand, we also have to change the filter

parser, so that it could restore the filter f1 to original filter
f, and get the input and output forms user specified.

2. Program automatically identified:
We use the n-grams technique to automatically

identify the input form, and perform two parses (one is
n=1, and the other is n=2) to compute the matching score.
We define the score function to store the score of different
n-grams and forms, for example: score(1,t) is the
matching score of TC when applying 1-gram to detect.

(1) for n=1, we created in advance one mapping table
[15,16,17] which stores the forms (TC or SC or both) of
all Unicode Chinese words in order to lookup each
1-gram of filter string from it; if the 1-gram exists in TC,
the score(1,t) adds 1, and if the 1-gram exists in SC, the
score(1,s) adds 1, and if both of TC and SC have the
1-gram, both of the two scores add 1 respectively.

(2) for n=2, we use separate thesauruses for TC and
SC to lookup each 2-gram of filter string; if the 2-gram
exists in TC, the score(2,t) adds 1, and if the 2-gram
exists in SC, the score(2,s) adds 1, and if both of TC and
SC have the 2-gram, both of the two scores add 1
respectively.

Finally, we sum up the two scores (score(x) =
score(1,x) + score(2,x)), and choose the bigger one as the
input and output forms; when the two scores equal, we
choose SC form.

4.3 Search Processes

According to the LDAP RFCs, one search process
contains three parameters: the first one is “base dn” which
is the starting node to search, the second one is scope
(base, or one level, or subtree) which defines how to
search, and the last one is filter string, such as “name=孫
中山”. The new Chinese search processes in LDAP server
are described as follows.
1. Identification of input and output forms.
2. Parse and Rebuild Filter (this is for approximate search,

we discuss this in section 4.5).
3. Retrieve all candidate entries by each filter condition.
4. Perform logical operation for candidate entries.
5. Detailed match all candidate entries.
6. Conversion and output the answers.

4.4 Equality Search

[Indexing processes]
On the other hand, LDAP server makes individual

index for each filter type. Therefore, we design the

indexing processes for equality search:
1. Identification of input and output forms.
2. Convert(L): convert each word of L into its base word.
3. Convert-T-S(1,L): convert L to SC by using level 1
conversion.
4. Perform MD5 hashing [14] on L as the original LDAP
server does.

[Searching processes]

We divide the search processes into filter and match
processes. The filter processes are similar to the indexing
processes, and we use the same functions Convert(L) and
Convert-T-S(1,L) to convert the input search filter, then
match it by the indices created beforehand, and finally get
the candidate entries. However, there are still some errors:
1. Because in the searching processes all words are
converted to SC form, one TC word may match one error
TC word which is converted to the same SC word, for
example: ‘干’, ‘幹’, and ‘乾’ in TC are all mapped to ‘干’
in SC. Against this situation, the following match
processes have to check the input form, and it must
satisfy Basis(L1) = Basis(L2) when both words are TC.
2. When we search one term having two or more words,
and perform the word-level conversion to SC, this may
cause some errors, for example: the answer may be “干
淨”, or “乾淨”, but it can’t be ”幹淨”.

Additionally, the MD5 hashing in LDAP server also
causes some errors, match processes have to perform the
real complex matching. Finally, the system needs to
convert the answers into output form. The function
Convert-T-S(1,L) could easily convert TC to SC by
merely table mapping, however, the inverse process is not
quite easy, so the system has to perform the level2
Convert-S-T(2,L). We use the segmentation technique
based on SC thesaurus to segment the data, then lookup
each term in order to retrieve corresponding TC term, and
finally reform the output answers.

4.5 Approximate Search

In the approximate search, we focus on two parts: one
is approximation between different words having the
same meaning in TC and SC, and the other is
approximation of pronunciation.

[Approximation between TC and SC]

We perform the level3 conversion between TC and
SC, and directly use the preceding indices and equality
processes to achieve the translation. The main work is the
“Parse and Rebuild Filter”, which is to segment filter
string, then retrieve all corresponding words. However,
we use OR operator to rebuild the filter, for example: (1)
original filter (AND F1 F2), rebuild filter (AND (OR F1
F1’) (OR F2 F2’), where F1’ and F2’ are the words
converted from F1 and F2. (2) search(“ 資 訊 ”) is
converted to (OR ”資訊” “信息”), then we perform the
equality search to get the answers.

[Approximation of pronunciation]

Because the pronunciation differs from the other
properties, we need to make new index for this
approximation. The indexing processes are listed as
follows.
1. Identification of input and output forms.
2. Segment search filter and convert each of terms to its
sound basic word.
3. Use the original MD5 hashing to process.
The key point of these processes is how to find the correct
sound basis words for those words having several
pronunciations. We segment filter string first, then lookup
each term from one table [17] to get its sound basic word.
For example, “一”, “依”, and “伊” have the same sound
basic word “一”.

5 Conclusion

In this paper, we implemented the mechanism for
cross-search between TC and SC in OpenLDAP server,
however, there are still some problems needed to be
studied in advance:
1. Word Segmentation and Named Entity Extraction:

In practice, LDAP server always has a great amount
of named entities, and therefore, we need better
techniques of segmentation and named entity
extraction to achieve acceptable outcomes. On the
other hand, LDAP server is optimized for quick
searching, and there are many techniques and
algorithms for segmentation, how to balance
between the search time and correctness is a
difficult task.

2. In the segmentation and conversion between TC and
SC, we need separate thesauruses [15,16,17] for
them. However, the management and maintenance
of these thesauruses costs a lot and is not easy. We
need some automatic mechanisms to handle it, for
example: robots which could collect information
automatically from the Internet.

3. According to RFC2253, distinguished name (DN)
could be encoded by UTF-8, the conversion
problem may also happen. However, the
distinguished name is related to entire directory tree
architecture, this problem needs to be studied.

4. Some Chinese words in CNS11643 are not
contained in Unicode, and we also need some
means to deal with it.

References

[1] Thomas EMERSON. Segmenting Chinese in Unicode.
In Proceedings of the 16th International Unicode
Conference, Amsterdam, The Netherlands, March 2000.
[2] Jack Halpern, and Jouni Kerman. The Pitfalls and
Complexities of Chinese to Chinese Conversion. In
Proceedings of the 14th International Unicode
Conference, Cambridge, Massachusetts, March 1999.
[3] Liu, Shing-Huan. An automatic translator between

Traditional Chinese and Simplified Chinese in Unicode.
In Porceedings of the 7th International Unicode
Conference, San Jose, California, September 1995.
[4] An LDAP Roadmap website:
http://www.kingsmountain.com/ldapRoadmap.shtml.
[5] Lightweight Directory Access Protocol (v1) RFC1487
(v2) RFC1777 (v3) RFC2251.
[6] LDAP v3 UTF-8 String Representation of
Distinguished Names RFC2253.
[7] The String Representation of LDAP Search Filters
RFC2254.
[8] Tim Hows, Mark Smith. (Book) LDAP: Programming
Directory-Enabled Applications With Lightweight
Directory Access Protocol. March 1997.
[9] CJKV Information Processing. Web site:
(http://www.oreilly.com/people/authors/lunde/cjkv-ip.htm
l).
[10] Hih-Hao Tsai, MMSEG: A Word Identification
System for Mandarin Chinese Text Based on Two
Variants of the Maximum Matching Algorithm. Web site:
(http://www.geocities.com/hao510/mmseg/).
[11] Hsin-Hsi Chen, Yung-Wei Ding, Shih-Chung Tsai
and Guo-Wei Bian. Description of the NTU system used
for MET2. In Proceedings of 7th Message Understanding
Conference, Fairfax, VA, 29 April - 1 May, 1998.
[12] Understanding LDAP (IBM redbook). Web site:
(http://publib-b.boulder.ibm.com/Redbooks.nsf/
RedbookAbstracts/sg244986.html?Open).
[13] Unicode Transformation Formats. Web site: (http://
czyborra.com/utf).
[14] MD5 Hash Algorithm (v1). Web site:
(http://www.w3.org/TR/1998/REC-DSig-label/MD5-1_0)
.
[15] Simplified Chinese thesaurus. The “纵横” input
method. Web site: (www.zhhz.suda.edu.cn).
[16] Traditional Chinese thesaurus. The “纵横” input
method, and EZ input method (http://ezinput.
100k.com.tw/) , and Chih-Hao Tsai's Technology Page
(http://www.geocities.com/hao510/).
[17] Thesauruses of basic word, and sound basic word,
and Unicode table for TC and SC. CJKV Information
Processing. Web site:
(http://www.oreilly.com/people/authors/lunde/cjkv-ip.htm
l).
[18] Guo-Wei Bian and Hsin-Hsi Chen (2000). "Cross
Language Information Access to Multilingual Collections
on the Internet." In Journal of American Society for
Information Science, Special Issue on Digital Libraries,
51(3), 2000, 281-296.
[19] Hsin-Hsi Chen, Yung-Wei Ding and Shih-Chung Tsai
(1998). "Named Entity Extraction for Information
Retrieval." In Computer Processing of Oriental
Languages, Special Issue on Information Retrieval on
Oriental Languages, 12(1), 1998, 75-85.
[20] The OpenLDAP web site:
(http://www.openldap.org/).
[21] Email content conversion. The product “兩岸文件

通 ”. Web site: (http://www.winperturn.com.tw
/big5/html/body_page115943.html).
[22] Web Page conversion. The product “龍之旅”. Web
site: (http://input.foruto.com/ cccl/cccl_article019.htm).

