
CRE: An Automatic Citation Record Extractor
for Publication List Pages

Kai-Hsiang Yang1, Shui-Shi Chen2, Ming-Tai Hsieh1, Hahn-Ming Lee12, and
Jan-Ming Ho1

1 Institute of Information Science, Academia Sinica,Taipei, Taiwan
{khyang, mthsieh, hmlee, hoho}@iis.sinica.edu.tw

2 Department of Computer Science and Information Engineering,
National Taiwan University of Science and Technology, Taipei, Taiwan

{M9515001,hmlee}@mail.ntust.edu.tw

Abstract. Today a huge amount of researchers’ publication list pages
are available on the Web, which could be an important resource for many
value-added applications, such as citation analysis and academic network
analysis. How to automatically extract citation records from those pub-
lication list pages is still a challenging problem because many of those
pages are crafted manually by researchers themselves, and the layouts
of those pages could be quite different according to different researchers’
affinities. In this paper, we propose a system, called the Citation Record
Extractor (CRE), to automatically extract citation records from publi-
cation list pages. Our key idea is based on two observations form pub-
lication list pages. First, citation records are usually presented in one
or more contiguous regions. Second, in the form of HTML structure, ci-
tation records are usually presented by using similar tag sequences and
organized under a common parent node. Our system first identifies can-
didate common style patterns (CSPs) within pages in the DOM tree
structure, and then filters out irreverent patterns by using a classifier
which is based on the length distribution of citation records. Experimen-
tal results show that our method can perform well on real dataset with
precision and recall at 80.4 % and 83.7% respectively, and provides more
that 80% of F-measure for a majority of (around 90%) of the publication
list pages in the real world.

1 Introduction

Researchers usually create their homepages on the Web for various reasons,
such as describing their research and contributions, or providing material for
their new courses. These Web pages often contain up-to-date information of
the researchers, because some researchers often provide their new papers on
their own publication list pages before they are formally published on journal
magazines or conferences. Hence, it is possible to learn about the state-of-the-art
knowledge and technologies from those researchers publication list pages.

Although publication information are really important, it is not easy to de-
velop an automatic system to extract all publication records from publication list



2 Kai-Hsiang Yang et al.

pages, because many publication list pages are crafted manually by researchers
themselves, and the layouts of them could be quite different due to different re-
searchers affinities. In this paper, we call a single publication record as a citation
record.

Fig. 1 shows three examples of publication list pages with totally different
presentation styles. For showing their position, each citation record is enclosed
with a rectangle. We can easily observe that, in the first and second styles, there
are some extra data like images or descriptions written in natural languages; in
the third style, there are also some descriptive tags such as related topics for each
citation record. Obviously, what we need is only the publication records enclosed
with rectangles, while other data should be discarded. We also observe that a
few publication list pages are created using a common interface, which provides
a unified layout for Web presentation, and that will make this problem easier.
Hence, we are most interested in the manually crafted personal publication list
pages, since they contain various layouts and are, therefore, more practical and
challenging.

Fig. 1. Examples of different citation presentation styles

In this paper, we propose a system, called the Citation Record Extractor
(CRE), to automatically extract citation records from publication list pages.
Our key idea is based on two observations. First, citation records are usually
presented in one or more contiguous regions within a publication list page. Sec-
ond, citation records are usually presented by using similar HTML tag sequences
and organized under a common parent node. Based on these two observations,
our system first identifies candidate common style patterns (referred to as CSPs
hereafter) in the DOM tree structures of pages, and then filters out irreverent



CRE: An Automatic Citation Record Extractor for Publication List Pages 3

Common Style Finder

Citation

Records

Publication List 

Web Page 

Finder

Parsing

p

lili

a em

Tag Tree

a

Normal Citation 

Model

Ranking

Records

Citation Extractor

Mining

Common Style 

PatternsPublication List

Pages

Candidate

Citation

Records

CiteSeer

Citation Extraction System

Extracting

Candidate

Records

p

lili

a ema

p

lili

a ema

T1

T2

T3 T4

T5

Combing Text 

Nodes

TnT..

T3T4T5

T1T2

Estimating

Citation

Length

Fig. 2. System architecture of CRE

patterns by using a classifier which is based on the length distribution of cita-
tion records. Experimental results show that our approach can perform well on
datasets with precision and recall at 80.4% and 83.7% respectively; and, more-
over, provides more that 80% of F-measure for a majority of (around 90%) of
the publication list pages in the real world.

2 Related Work

Many researches had been conducted to extract regular patterns from semi-
structured Web pages, and these researches are mainly related to wrapper gen-
eration. A wrapper is a program that extracts records from Web pages auto-
matically, and there are several different ways to generate wrappers. First, a
wrapper can be crafted based on the observation of pattern formats within Web
pages. Such an approach is not scalable since it requires human labor and is
thus time-consuming. Furthermore, the extraction rules must be modified once
the format of the Web page changes. Systems proposed by Chawathe et al. [1]
and Chidlovskii et al. [2] are based on such hand-coded extractors. The second
approach is wrapper induction, which is based on machine learning techniques.
This approach requires a set of manually labeled positive and negative exam-
ples to learn extraction rules, and the labeling process is also labor intensive.
Proposed systems based on this approach include Stalker [3], Softmealy [5], WL
[4] [6] and WIEN [7]. Because of the intensive labor work of previous two ap-
proaches, some automatic extraction methods are therefore proposed. Chang et



4 Kai-Hsiang Yang et al.

al. proposed Information Extraction based on Pattern Discovery(IEPAD) [10]
which encodes HTML tags as a binary string and applies the PAT tree and a
sequence alignment tool to find maximal repeated patterns in the Web page. In
[8], Liu et al. proposed MDR that takes advantage of the DOM tree structure to
segment a Web page into several data regions composed of similar tag sequences
and use heuristics to extract data records. They further proposed an improved
system DEPTA (Data Extraction based on Partial Tree Alignment) [9] which
is based on partial tree alignment. NET [11] improves DEPTA so that it can
handle nested tables.

3 Proposed System

As mentioned before, our proposed system is designed according to the obser-
vations that citation records usually share similar presentation styles and are
located at a contiguous region in a publication list page. For example, publica-
tion list pages usually contain more than one citation records and use a set of
style tags like: <i>, <em>, etc. to present them. Our task is to extract citation
records in a given Web page by mining its CSPs, while CSPs are mined via
analyzing the regularity of tag sequences in the DOM tree structure.

Fig. 2 depicts the system architecture, which contains two modules, namely,
a Common Style Finder and a Citation Extractor. The Common Style Finder
extracts all possible CSPs by analyzing pairs of nodes (or combined nodes) at
all levels of the DOM tree structure for the given Web page, and the Citation
Extractor then filters out irreverent patterns caused by some repetitive items
within Web pages by using a classifier. The classifier is built by establish a normal
length distribution model for citation records, and can calculate the probability
of a given string to be a citation record according to the model. Here, we use the
online available CiteSeer database to build a normal distribution for the length
of citation records, which is very useful to filter out patterns caused by some
repetitive items in a Web page. In the following sections we will provide more
details about each module.

Common Style Finder The Common Style Finder finds all possible CSPs
formed by pairs of nodes or combined nodes. As shows in Fig. 3, citation records
are usually arranged in parallel in a DOM tree, and therefore we can find the
CSPs by analyzing their tag similarities. Since a citation record may be presented
by more than one node, we have to concern whether a combination of adjacent
nodes forms a citation record. Instead of searching all possible combinations
of nodes, we only compare adjacent nodes at each level of the DOM tree. We
define a pair of adjacent nodes (or a pair of adjacent combined nodes of equal
size n, where n denotes the number of nodes to be combined) share a CSP if the
similarity of their tag sequences is under a pre-defined threshold, where each of
the two adjacent (combined) nodes constitutes a candidate citation record. The
tag sequence of a node x is defined as the concatenation of all tags in the subtree
rooted at x through a Depth First Search (DFS) traversal. For a combined node



CRE: An Automatic Citation Record Extractor for Publication List Pages 5

y, its tag sequence is the concatenation of all tag sequences of the nodes that
comprise y.

Banner

N
av

ig
ato

r

B
ar

Publication List

Citation Record

Citation Record

Citation Record

Citation Record

Fig. 3. DOM tree presentation of a Web page

Table 1 shows the algorithms for all modules. For the Common Style Finder,
the similarity checking processes are performed for all adjacent nodes (or adja-
cent combined nodes with size from 2 to K) at the same level of the DOM tree.
We set K = 10 empirically because it is unlikely that a citation record consists
of more than ten tag nodes. In line 5-6, tag sequences of a pair of nodes (or
combined nodes) are built via a function Encoding, which parses the DOM trees
into tag sequences through a DFS traversal.

We use the edit-distance to calculate the similarity between two tag se-
quences. In this paper, similarity between two strings s1 and s2 is normalized
between 0 and 1 as follows:

Similarity(s1, s2) =
EditDistance(s1, s2)

Max(|s1|, |s2|) (1)

Citation Extractor The goal of Citation Extractor is to extract all citation
records by using the CSPs information. We define a record set as the union
of several non-overlapping records extracted by one or a sequence of adjacent
CSPs composed of equal number of nodes. There are two steps for extract-
ing all candidate record sets. First, adjacent CSPs composed of equal number
of nodes are merged, and the record set produced by a merged CSP is the
union of non-overlapped records produced by each individual CSP. Second, text
of each record is obtained by concatenating all text within the subtrees that
form the CSP through a DFS traversal. For example, in Fig. 4, the CSP1 pro-
duces two records (”A1T1Y1”, ”A2T2Y2”), CSP2 produces (”A2T2Y2”, ”A3T3Y3”)
and CSP3 produces (”A3T3Y3”, ”A4−1A4−2T4Y4”), so the record set produced
by CSP1−3(whichmeansCSP1, CSP2, andCSP3) is the union of above records
(”A1T1Y1”, ”A2T2Y2”, ”A3T3Y3”, ”A4−1A4−2T4Y4”).



6 Kai-Hsiang Yang et al.

Table 1. Common Style Finder and Citation Extractor algorithms

Commom Style Finder Algorithm

1 Procedure CommonStyleFinder(Node parent)
2 children =parent.children;
3 FOR i=1 to K
4 FOR j=1 to candidates.length
5 CNode1=Encoding(children (j to j+i-1));
6 CNode2=Encoding(children (j+i to j+2*i-1));
7 parent.SimilarityMatrix(i,j)=sim (CNode1, CNode2);
8 j=j+2*i;
9 END FOR
10 END FOR
11 FOR i=1 to children.length DO
12 CommonStyleFinder(children(i));
13 END FOR
14 END Procedure

Citation Extractor Algorithm

1 Procedure CitationExtractor(Tagtree T)
2 CRSets[]=T.ALL_Record_Sets;
3 TCRSets[];
4 FOR i=0 to CRSets.length -1 DO
5 OLPRSets[];
6 FOR j=i+1 to CRSets.length DO
7 IF CRSets [j] is overlap with CRSets [i] THEN
8 OLPRSets.add(CRSets [j]);
9 END IF
10 END FOR
11 IF OLPRSets!=empty THEN
12 OLPRSets.add(CRSets [i]);
13 TRSet=RankRecordSet(OLPRSets);
14 ELSE
15 TRSet = CRSets [i];
16 END IF
17 CRSets.remove(TRSet);
18 CRSets.remove(RecordSets overlap with TRSet);
19 END FOR
20 Return TCRSets;
21 END Procedure

BODY

A3 T3 Y3

EMIA

P

A4-1 T4 Y4

EMIA

P

A4-2

A

CSP1

A2 T2 Y2

EMIA

P CSP2

A1 T1 Y1

EMIA

P CSP3

CSP4

Fig. 4. An example of Common Style Patterns



CRE: An Automatic Citation Record Extractor for Publication List Pages 7

In Fig. 4, the correct record set should be those extracted by CSP1−3, but not
(”A1T1Y1A2T2Y2”, ”A3T3Y3A4−1A4−2T4Y4”) extracted by CSP4, which overlap
with the record set extracted by CSP1−3. In other words, the CSP4 is not a
correct combination for extracting citation records. To find the correct CSPs,
for those overlapped record sets we design a scoring function to give each record
set a score to represent the probability that the text in the record set is a citation
record, and the record set with highest probability is then chosen as candidate
citation record set. Suppose S is the text of a record set with word count |S|,
the scoring function is defined as follows:

Score(S) = P(S is Citation | |S|) (2)

In order to model the distribution of word count in a citation record, we
collected an online dataset which consists of 6,568 citation records from CiteSeer
Web cite as our sampling dataset. Fig. 5 depicted the histogram of the dataset.
Observing from the shape of histogram, we use a normal distribution model to
fit it such that the probability model can be expressed by a probability density
function:

P(l) =
1√

2πσ2
exp{− (l − µ)2

2σ2
}, (3)

where the l indicates the word count of a citation record, σ =6.09 and µ=25.60,
respectively. We empirically define a threshold 0.01 to filter out strings in a
record set with a probability less than the threshold.

0

200

400

600

800

-17 -7 3 13 23 33 43 53 63

Word Count

F
re

q
u
e
n
c
e
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

b
ab

il
it

y

Fig. 5. Distribution of word count of a string

The main steps of Citation Extractor algorithm are shown in below part of
Table1. In line 4, we extract all record sets of a given tag tree with CSPs labeled



8 Kai-Hsiang Yang et al.

and store them as candidate citation record sets. From line 4 to 19, we find the
overlapped record sets ranked by using our scoring function. Finally the citation
records are reported without any text overlap.

4 Experiments

Data Sets We build two datasets for our experiments. Dataset (I) consists of
60 publication list pages collected randomly from computer science faculties of
Pennsylvania, Berkley and Stanford universities. Dataset (I) is used as a training
dataset for tuning the best similarity threshold of CSPs. For dataset (II), we
collected the computer science faculties from the top 12 universities in America
based on a Computer Science Ranking. We randomly select 240 researchers from
the collected faculties, and only 187 of them have their personal publication
list pages. Some researchers have their publications written in PDF format,
and we do not handle such cases since our algorithm is involved in the HTML
processing. We manually labeled answer sets of dataset (I) and dataset (II),
while dataset (II) is used as our testing dataset, and there are no overlapped
pages between dataset (I) and (II). In some cases, a researcher may have his/her
publications distributed in several publication list pages. These pages are usually
separated using different research topics or date of publishing. For such cases,
we randomly select one of these publication pages to represent the researchers
whole publications, since most of these publication list pages have similar layouts
because they are created by the same author.

Before conducting experiments, we need to determine which kinds of publi-
cations should be regarded as citation records in our data sets. There are miscel-
laneous kinds of information that may appear in personal publication list pages,
including non-publication information such as e-mail, office, education, etc., and
publications. There are also many different kinds of publications, such as jour-
nal articles, conference papers, books, technical reports, and so forth. According
to Bibtex format, title, author and year are three basic elements that almost
all kinds of publications possess. Therefore, we define a rule for determining
whether a particular citation record shall be counted as a correct answer during
the labeling process. Generally, a title is always required for a citation record.
Besides, at least two out of three elements (name, year, origin) must appear in a
citation record, where the origin is a multi-option element that can be a journal,
a publisher, a school or an institution.

Evaluation Metrics Instead of using exact string matching, we apply an ap-
proximating string matching scheme as our evaluation metrics, since the answer
set is created through human labeling and there might be some slight differences
between automatically extracted citation records and manually labeled ones.
We therefore adapt an approximated string matching technique by using longest
common subsequence (LCS) [12]. For a set of sequences, the LCS is the longest
subsequence that appears in all sequences, and the LCS can be noncontiguous.
The idea is that if a LCS of an extracted citation record and the answer string



CRE: An Automatic Citation Record Extractor for Publication List Pages 9

covers most portion of the corresponding answer string, this citation record is
regarded as being extracted correctly.

Assume X is an extracted citation record, Y is the manually labeled answer
string corresponding to X, and Z is the LCS of X and Y , where |X| indicates the
number of characters of X. A citation record is defined to be extracted correctly
if both of the following constraints are satisfied:

|Z| ≥ 0.95× |Y | and
|X| − |Y |
|Y | ≤ 0.5 (4)

In the first constraint, we allow a small range of difference between an ex-
tracted citation record and its corresponding answer string. That is, Z should
cover at least 95 percent of the characters of answer string Y . The second con-
straint avoids the situation that even the first constraint is satisfied, the extracted
citation record X is actually much longer than the answer string Y , meaning
that X may cover a large portion of unrelated text on the publication list page.
For each publication list page i, assume |C| is the number of correct citation
records, |E| is the number of extracted citation records and |CE| is the number
of correctly extracted citation records. The precision (Pi) and recall (Ri) values
for i are expressed as follows:

P(i) =
|CE|
|E| , R(i) =

|CE|
|C| . (5)

The overall precision P and recall R are averages of all Pi and Ri of publication
list pages:

P =
1
n

n∑

i=1

Pi , R =
1
n

n∑

i=1

Ri. (6)

4.1 Experimental Results

In our experiments, we use an open source tool (JTidy) to process Web pages,
which is a java program to clean up malformed HTML tags, and provides some
DOM APIs for us to build a DOM tree structure for a web page.

We had compared our system with the MDR system [8] proposed by Liu et
al. A threshold is also needed to measure edit distance similarity both for the
MDR and CRE, so we incrementally test the performances of MDR and CRE
on our dataset (I) under different threshold values as shown in Fig. 6. We can
easily see that, when T=0.3 results in best performance for CRE; while when
T=0 has best result for MDR. Hence, we use these settings for each system in
the following experiments.

For further analyzing our system performance, we classify the dataset (I) and
(II) into ten subsets according to the coverage rate of citation records, which is
defined as the ratio of the number of characters of all citation records to the
whole text of a Web page. The reason for doing such classification is that if a
publication list page contains only few citation records or too much noise, it
would have much more difficulty to correctly extract citation records. Fig. 7(a)



10 Kai-Hsiang Yang et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T

F
-M

e
a
s
u

re MDR

CRE

Fig. 6. Performances under different thresholds

shows the distribution of each subset in dataset (I) and (II). We can easily see
that more than 50% of pages in dataset (I) and more than 40 % of pages in
dataset (II) have very high coverage rate (more than 90%), and around 90% of
pages in dataset (I) and (II) have the coverage rate more than 40%.

Fig. 7(b) shows the average performance of CRE and MDR only for each
subset of dataset (II), because dataset (I) is only used for training thresholds.
In Fig. 7(b), it is clear to see that our proposed system performs well and stable
(around 75% to 90%) when the coverage rate is higher than 30%, while it provides
poor performance (around 40% for coverage rate from 10% to 30%) when the
coverage rate is less than 30%. Generally, in such cases when the coverage rate
is less than 30%, it is really hard to determine the CSPs because there are fewer
citation records in those Web pages.

Compared with the MDR, our system definitely reaches a better perfor-
mance. The main reason for this is that most citation records are not organized
within tables that MDR system mainly focuses on. Besides, since we aim to solve
domain-specific problem, say, citation extraction, it benefits a lot from the length
distribution of citation records obtained from Citeseer database, and we believe
that greatly boosts the accuracy of determining record boundaries; while MDR
applies general heuristics of how people present data records on Web pages.

5 Discussion

Even through our experimental results show that the CRE can extract citation
records presented with various layouts of publication list pages correctly and
efficiently, there are still few pages that report poor performance mainly caused
by two reasons. First, some errors exist in the DOM tree structures, which are



CRE: An Automatic Citation Record Extractor for Publication List Pages 11

0

10

20

30

40

50

60

0~10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90 90~100

Coverage Rate(%)

D
is

tr
ib

u
ti

o
n

(%
) DataSet(I)

DataSet(II)

(a) Coverage rate distribution in datasets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0~10 10~20 20-30 30~40 40~50 50~60 60~70 70~80 80~90 90~100

Coverage Rate (%)

F
-m

ea
su

re

CRE

MDR

(b) System performance in each subset of dataset(II)

Fig. 7. Coverage rate distribution in datasets and System performance in each subset
of dataset(II)



12 Kai-Hsiang Yang et al.

caused by misusing HTML tags. Second, sometimes citation records are distrib-
uted in several sub-trees that do not share a common parent node, so that our
algorithm can not find a single node in the DOM tree to represent exactly a
citation record. In our future work we will focus on extracting those special case
citation records.

6 Conclusion

In this paper, we present an automatically system to extract citation records
from the researchers publication list pages on the Web. Our system applies the
DOM tree structure and edit-distance techniques to identify candidate common
style patterns (CSPs) within pages, and then filters out irreverent patterns by
using a classifier which is based on the length distribution of citation records. Our
experiments prove that calculating the tag sequence similarity is an applicable
way to extract citation records accompanied with some citation-specific knowl-
edge. Our system can perform well and stable (more that 80% of F-measure) for
a majority (around 90%) of publication list pages.

In the future, we plan to provide an academic search system by integrating
the CRE system with two of our previous works: (1) the PLF [13], which is a
system to automatically retrieve researchers’ publication lists on the Web, and
(2) the BibPro [14], which is a citation parser system to extract metadata from
the citation records extracted by the proposed CRE system. Implementation of
such a system will facilitate and reduce the effort of academic searching, and
due to the up-to-date characteristic of publication lists on the Web for most
researchers, reliable and up-to-date query results which reflect to current trend
can also be guaranteed. We believe that more research in these areas would
definitely be worthwhile.

Acknowledgments. This work was supported in part by the National Science
Council of Taiwan under grants NSC 96-2628-E-011-064-MY3, NSC 96-2221-E-
011-084-MY3, NSC 96-2217-E-011-002 and NSC 95-2221-E-001-021-MY3.

References

1. S. Chawathe, H. Garcia-Molina and J. Hammer: The TSIMMIS project: integra-
tion of heterogeneous information sources. Journal of Intelligent Information Systems
8(2):117-132 (1997)

2. B. Chidlovskii, U. Borghoff, and P. Chevalier: Towards sophisticated wrapping of
Web-based information repositories. The 5th International RIAO Conference, Mon-
treal, Quebec, Canada, pp. 123-135 (1997)

3. I. Muslea, S. Minton and C. Knoblock: A hierarchical approach to wrapper induc-
tion. The third annual conference on Autonomous Agents pp. 190-197 (1999)

4. W. Cohen, M. Hurst and L. Jensen: A flexible learning system for wrapping tables
and lists in HTML documents. The 11th International World Wide Web conference
(2002)



CRE: An Automatic Citation Record Extractor for Publication List Pages 13

5. C.-N. Hsu and M.-T. Dung: Generating finite-state transducers for semi-structured
data extraction from the Web. Information Systems 23(8), pp. 521-538 (1998)

6. D.Pinto, A. McCallum, X. Wei and W. Bruce Croft: Table Extraction Using Con-
ditional Random Fields. The 26th ACM SIGIR (2003)

7. N. Kushmerick: Wrapper induction: efficiency and expressiveness Artificial Intelli-
gence. Artificial Intelligence 118(1-2):15-68 (2000)

8. B. Liu, R. Grossman, and Y. Zhai Mining: data records in Web pages. The ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining pp. 601-
606 (2003)

9. Y. Zhai and B. Liu: Web Data Extraction Based on Partial Tree Alignment. The
14th International Conference on World Wide Web pp. 76-85 (2005)

10. C.-H Chang and S.-C Lui: IEPAD: Information extraction based on pattern dis-
covery. The 10th International Conference on World Wide Web pp. 223-231 (2001)

11. Y. Zhai and B. Liu: NET - A system for extracting Web data from flat and nested
data records. The 6th International Conference on Web Information Systems Engi-
neering (2005)

12. D.S. Hirschberg: A linear space algorithm for computing maximal common subse-
quences. Communications of the ACM V.18, 6, pp. 341-343 (1975)

13. K.-H. Yang, J.-M. Chung and J.-M. Ho: PLF: A Publication List Web Page Finder
for Researchers. The 2007 IEEE/WIC/ACM International Conference on Web Intel-
ligence (WI-2007) (2007)

14. C.-C. Chen, K.-H. Yang and J.-M. Ho: BibPro: A Citation Parser Based on Se-
quence Alignment Techniques. The IEEE 22nd International Conference on Advanced
Information Networking and Applications (AINA-08) (2008)


