
Kai-Hsiang Yang1, Jan-Ming Ho2

1 Department of Mathematics and Information Education,
National Taipei University of Education

Email:{khyang@tea.ntue.edu.tw}
2 Institute of Information Science, Academia Sinica,Taipei, Taiwan

Email:{hoho@iis.sinica.edu.tw}

ABSTRACT
Researchers usually present their publication records (we call
citation records in this paper) on publication lists on the Web,
which could be an important data source for many applications to
collect more publication records than from some digital libraries,
such as DBLP. However, it is still not easy to design an algorithm
to extract citation records from publication lists because of the
diversity of page layouts and citation formats. In this paper, we
propose an automatic approach to extract citation records from
publication list pages by utilizing two properties. First, citation
records are usually represented as nodes at the same level in the
DOM tree. Second, citation records in the same page are presented
by similar HTML tags. Extensive experiments are conducted to
measure the effects of all parameters and system performance.
Experiment results show that our approach performs stable and
well (with 86.2% of F-measure on average).

Keywords
Web mining, citation extraction, data extraction.

1. INTRODUCTION
Citation records are essential to many applications such as the
topic search, academic network analysis, venue ranking, citation
analysis etc., so how to collect more citation records is
definitively a critical issue. Today, the scientific publications on
the Web have become an important resource for collecting citation
records. Many researchers usually create their own publication
lists on the Web for many reasons, such as describing their
researches and contributions, or announcing their new papers
before they are formally published on journals or conferences.

Parsing publication list pages can retrieve many up-to-date
research results without any human intervention. To design an
approach for this goal, finding and keeping track of researchers’
publication list pages is the first step. In our previous work [12],
we had proposed a system called “Publication List Web Page
Finder” (PLF). With the help of PLF, we can easily collect many
researchers’ publication list pages. However most pages are
crafted manually by researchers themselves and page layouts and
citation formats are quite different. Some researchers like to add
images or descriptions to show the importance of each record.

In this paper, we propose an approach to extract citation records
from publication list pages based on the following properties. First,
most citation records are represented as nodes at the same level in
the DOM tree of pages. Second, most citation records in the same

page are presented by similar formats, such as similar punctuation
sequences, which are used in our approach to identify citation
records. By using these two properties, our approach first analyzes
the DOM tree and find out a tree level where nodes are most
likely to represent citation records. To estimate whether a node is
represented as a citation record, our previous work “BibPro” [13]
is applied to calculate the probability, which was designed for
parsing a citation record into several fields (e.g., author, title,
venue, etc.). When a string of a node is given, BibPro can output
the probability that the given string is a citation string, hence we
can find out one tree level in the DOM tree where citation records
exist.
Experiment results show that the system performance dependents
on the structure and our approach can provide better results than
the MDR system and performs stable (84.5% of F-measure on
average), and a majority (around 90%) of publication list pages in
our dataset can be correctly extracted with acceptable F-measure
(from 75% to 90%).

2. RELATED WORK
This work is highly related to the information extraction (IE)
systems that try to provide robust and flexible ways to assist in
extracting interesting data from Web with less labor costs. Much
research has been con-ducted to extract regular patterns from
semi-structured web pages. Most of this research is related to
wrapper generation. A wrapper is a program that extracts records
from Web pages automatically, and basically there are two
principal methods to generate wrappers: Such an approach is not
scalable since it requires human labor and is thus time-consuming.
Furthermore, the extraction rules must be modified once the
format of the Web page changes. Systems proposed by Chawathe
et al. [1] and Chidlovskii et al. [2] are based on such hand-coded
extractors. The second approach is wrapper induction, which is
based on machine learning techniques. This approach requires a
set of manually labeled positive and negative examples to learn
extraction rules, and the labeling process is also labor intensive.
Proposed systems based on this approach include Stalker [3],
Softmealy [5], WL [4] and WIEN [6]. Because of the intensive
labor work of previous two approaches, some automatic extraction
approaches are therefore proposed. Chang et al. proposed IEPAD
(Information Extraction based on Pattern Discovery) [9] which
encodes HTML tags as a binary string and applies the PAT tree
and a sequence alignment tool to find maximal repeated patterns
in the Web page. In [7], Liu et al. proposed MDR that takes
advantage of the DOM tree structure to segment a Web page into
several data regions composed of similar tag sequences and use

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.206

444

heuristics to extract data records. They further proposed an
improved system DEPTA (Data Extraction based on Partial Tree
Alignment) [8] which is based on partial tree alignment. NET [10]
improves DEPTA so that it can handle nested tables. The systems
proposed by Liu et al. mainly focus on mining data record formed
by table and related tags such as <tr> or <td>. However, in our
problem, there are a large amount of publications that are not
presented by using table related tags, so their systems are not
suitable for solving our problem. ViPER [11] is an enhanced
version of MDR and DEPTA with the following improvement.
First, they rank potential repetitive patterns with user’s visual
perception. Second, data records are aligned through multiple
sequence alignment technique.

3. Method
Figure 1 shows the architecture of our proposed system. Our
system can be divided into two components: (1) Citation Record
Candidate Finder and (2) Citation Record Filter. The goal of the
Citation Record Candidate Finder is to generate a DOM tree for a
given publication list page and apply the citation parser, “BibPro”,
that we proposed to assign each node a probability score that the
node represents a citation record. By calculating the probability
scores, our approach can determine one level in the DOM tree
where citation records exist.
Since not all nodes at the found level are citation records, the
second component, Citation Record Filter, applies two filters to
filter out irreverent nodes. In the following sections we will
provide much more details of each component.

Figure 1. System architecture

3.1 BibPro
Bibro [13] is a template-based citation parser, and the key idea of
BibPro is using the order of punctuation marks and reserved
words in a citation string to represent its citation style. For a given

citation string, BibPro encodes it as a protein sequence, which
preserves citation style information. We collected many different
styles of citation records from the Web and generated more than
4000 different citation styles in BibPro. When parsing a given
citation string, BibPro will generate its sequence and then match it
with all sequences of citation styles by using BLAST, which is a
popular protein sequence alignment tool. Then BibPro assigns a
score as the probability that the given string is a valid citation
string.

3.2 Citation Record Candidate Finder
The goal of Citation Record Candidates Finder is to find out a tree
level in the DOM tree as the citation candidates. BibPro is first
applied to assign a score to each node of the DOM tree. Then for
each level i, a score is calculated by the following formula:

�
�

��
N

j
jj NODEPRIORITYNODESCOREiSCORELEVEL

1
)()()(_

N is the total number of nodes at level i, SCORE(NODEi) is the
score of each node and PRIORITY(NODEi) is a weight to show
whether the node has similar styles as sibling nodes, where the
weight is 2 if the node has a sibling node with similar sequence.
Otherwise, its default value is 1.
By comparing the level scores, the level in the DOM tree that has
highest score is chosen and all nodes at the level are regarded as
citation record candidates.

3.3 Citation Record Filter
After finding citation record candidates, two filters are then
applied to filter out nodes at the chosen level that are not citation
records. The first filter is based on the scores assigned by BibPro,
where we define a threshold to filter out citation record candidates
whose scores are lower than the threshold.
The second filter is based on the Hierarchical Ascendant
Classification (HAC) algorithm. The idea is that the nodes
representing true citation records should have similar punctuation
sequences and are supposed to form an independent cluster, while
irreverent noises will be excluded. For given two nodes r and s,
their similarity value is defined as the matching ratio between
protein sequences of node r and node s. The pair-wise similarity
between two nodes is defined as:

,),(S ,

sr

sr

LL
S

srimilarity
�

�

Where Sr,s is the similarity score between node r and s, which is
computed by global alignment of sequences in BibPro. Lr and Ls
are the lengths of sequences of node r and s, respectively. To
define the similarity between two clusters, we adopt the average
linkage clustering, which means similarity between two clusters is
defined as the average similarity value between all pairs of nodes
in two clusters. We also define a similarity threshold to determine
which nodes should be clustered together. After clustering all
nodes, we choose the biggest group as the output citation records.

4. EXPERIMENTS
In our experiments, we created two datasets by developing
programs to collect researchers’ publication list pages from the
Web. Dataset(I) consists of 60 publication list pages collected
randomly from the computer science faculties of Pennsylvania,
Berkley and Stanford universities, and which is used as the

445

training dataset for tuning the similarity thresholds in our
approach. For dataset(II), we first collected the computer science
faculties of top 12 universities in America based on Computer
Science Ranking, and then randomly selected 240 researchers
from those collected faculties. After manually checking, only 187
of them have publication list pages. Some publication lists with
the PDF formats are ignored since our algorithm is involved with
the HTML processing. We manually label the answer sets for
dataset(I) and dataset(II), while dataset(II) is used for our
experiment evaluation, and there are no overlapped pages between
dataset(I) and dataset(II).
To measure the system performance, we define the evaluation
metric as follows. For each publication list page i, assume |C| is
the number of correct citation records, |E| is the number of
extracted citation records and |CE| is the number of correctly
extracted citation records. The precision (Pi) and recall (Ri) values
for page i are expressed as follows:

|E|
|CE|Pi � and ,

|C|
|CE|

�iR

The overall precision P and recall R are averages of all Pi and Ri
of publication list pages:

�
�

�
n

i
iP

n
P

1

1 , �
�

�
n

i
iR

n
R

1

1

The F-measure, as a combination of precision P and recall R, is
measured with the following formula:

RP
RPmeasureF

�
��

��
2

4.1 Dataset preprocessing
The first step that we have to do is to verify and fix some error
tags within Web pages, which might result in generating wrong
DOM tree and low system performance. We apply an open source
program, JTidy, to clean malformed HTML tags, and evaluate
system performance. Table 1 shows that JTidy increases the F-
measure performance on dataset(I). Hence we used the JTidy-
processed dataset in our following experiments.

Table 1: Performance on raw and processed dataset(I)
(without merging procedure and filtering)

 Average
Precision

Average
Recall

F-Measure

Raw Data 80.7% 86.08% 83.30%

JTidy-
processed

82.53% 89.46% 85.85%

4.2 Tuning threshold for filtering
The goal of this experiment is to study the effect of the filtering
threshold on system performance. The filtering threshold is set
from 0 to 30 with an increment of 5. Figure 22 shows the
performance results, which includes the precision, recall, and F-
measure. It is obvious that using threshold 0 provides the highest

recall value (90.32%), while using threshold 20 reaches the
highest precision (88.3%). However, threshold 15 produces the
best F-measure (87.05%). We set the filtering threshold to 15 in
the following experiments.

4.3 Tuning threshold for HAC
In this section, we study the effect of HAC thresholds. We set the
clustering thresholds from 0.4 to 1.3 with an increment of 0.1 in
the HAC process, and the performance results are shown in Figure
3.

Figure 2. Performance for different thresholds

Figure 3. Performance for different thresholds in HAC

In Figure 3, we can easy to see that the recall value decreases
when threshold increases. Highest recall value reaches 89.45% at
threshold 0.4, while highest precision reaches 88.24% when
threshold falls upon 0.9. Threshold 0.6 produces both highest
recall and F-measure (87.4%), so it is chosen as our setting for
HAC threshold.

4.4 Comparison with other approaches
In this section we show the system performance of combining
both filtering and HAC. Meanwhile, we compared our system
with the MDR (proposed by Liu et al. [7]), which is an
information extraction system designed to extract repeated
patterns from Web documents. For our approach, the best
thresholds of filtering and HAC tuned by using dataset(I). In MDR,
a threshold is required to measure the edit distance similarity, so

446

we tune the threshold by using dataset(I) as shown in Figure 4,
and choose the best one as the threshold for MDR.

Threshold

F-
M

ea
su

re

MDR

Figure 4. Tuning threshold of MDR using dataset(I)
Table 2. System performance comparison on dataset(II)

 Average
Precision

Average
Recall

F-Measure

F+H 83.33% 85.69% 84.5 %

MDR 25.29% 17.19% 20.46%

Table 2 shows the system performance of our approach and the
MDR system. (F and H stands for filtering and HAC respectively).
From Table 2, we can easily see that our approach can provide
84.5% F-measure performance, while the MDR system does not
perform well on this experiment. The main reason is that the MDR
system is designed for extracting general web records which are
organized with tables, while most citation records are not
organized with tables. From this comparison we can realize that
extracting citation records from web pages is not a trivial problem.

5. Conclusion
Our motivation is to develop an automatic approach to extract all
citation records from researchers’ publication list pages. This task
is interesting and still challenging, because many publication list
pages are crafted manually by researchers themselves, and the
page layouts and the citation formats are quite different depending
on the different researchers’ affinities. In this paper, we propose
an approach that is based on two properties of citation records.
First, most citation records are represented by nodes at the same
level in the DOM tree of pages, and second, most citation records
in the same publication list page are presented with similar
formats, such as similar punctuation sequences. Moreover,
experiment results reveal that system performance depends on the
structure of the publication list pages, and our approach can
provide better results than MDR system, and performs stable
(84.5% of F-measure on average), and a majority (around 90%) of
publication list pages in our dataset can be correctly extracted
with acceptable F-measure (from 75% to 90%). We believe that
more effort in this research area would be worthwhile.

6. Acknowledgements
This work was supported in part by the National Science
Council of Taiwan under grants NSC 98-2221-E-001-010-
MY3.

7. REFERENCES
[1] S. Chawathe, H. Garcia-Molina and J. Hammer “The

TSIMMIS project: integration of heterogeneous information
sources”, Journal of Intelligent Information Systems,
8(2):117-132, 1997.

[2] B. Chidlovskii, U. Borghoff, and P. Chevalier “Towards
sophisticated wrapping of Web-based information
repositories”, the 5th International RIAO Conference,
Montreal, Quebec, Canada, pp. 123-135, 1997.

[3] I. Muslea, S. Minton and C. Knoblock “A hierarchical
approach to wrapper induction”, the third annual conference
on Autonomous Agents (Agents-99), pp. 190-197, 1999.

[4] W. Cohen, M. Hurst and L. Jensen “A flexible learning
system for wrapping tables and lists in HTML documents”,
the 11th International World Wide Web conference, 2002.

[5] C.-N. Hsu and M.-T. Dung “Generating finite-state
transducers for semi-structured data extraction from the
Web”, Information Systems. 23(8), pp. 521-538, 1998.

[6] N. Kushmerick “Wrapper induction: efficiency and
expressiveness Artificial Intelligence”, Artificial Intelligence,
118(1-2):15-68, 2000.

[7] B. Liu, R. Grossman, and Y. Zhai “Mining data records in
Web pages”, the ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD-2003), pp. 601-
606, 2003.

[8] Y. Zhai and B. Liu “Web Data extraction based on partial
tree alignment”, the 14th International Conference on World
Wide Web (WWW), pp. 76-85, Japan, 2005.

[9] C.-H Chang and S.-C Lui “IEPAD: information extraction
based on pattern discovery”, the 10th International
Conference on World Wide Web (WWW), pp. 223-231, Hong-
Kong, 2001.

[10] Y. Zhai and B. Liu “NET - A system for extracting Web data
from flat and nested data records”, 6th International
Conference on Web Information Systems Engineering (WISE-
05), 2005.

[11] K. Simon, and G. Lausen “ViPER: augmenting automatic
information extraction with visual perceptions”, the 14th
ACM international conference on Information and
knowledge management, pp. 381-388, 2005.

[12] K.-H. Yang, J.-M. Chung and J.-M. Ho, "PLF: A Publication
list Web page finder for researchers", the 2007
IEEE/WIC/ACM International Conference on Web
Intelligence (WI 2007), Nov. 2007.

[13] C.-C. Chen, K.-H. Yang and J.-M. Ho, "BibPro: A Citation
parser based on sequence alignment techniques," the IEEE
22nd International Conference on Advanced Information
Networking and Applications (AINA-08), March 25-28 2008.

447

