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Abstract

We initiate the study of cryptography for parallel RAM (PRAM) programs. The PRAM
model captures modern multi-core architectures and cluster computing models, where several
processors execute in parallel and make accesses to shared memory, and provides the “best of
both” circuit and RAM models, supporting both cheap random access and parallelism.

We propose and attain the notion of Oblivious PRAM. We present a compiler taking any
PRAM into one whose distribution of memory accesses is statistically independent of the data
(with negligible error), while only incurring a polylogarithmic slowdown (in both total and
parallel complexity). We discuss applications of such a compiler, building upon recent advances
relying on Oblivious (sequential) RAM (Goldreich Ostrovsky JACM’12). In particular, we
demonstrate the construction of a garbled PRAM compiler based on an OPRAM compiler and
secure identity-based encryption.
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1 Introduction

Completeness results in cryptography provide general transformations from arbitrary functionalities
described in a particular computational model, to solutions for executing the functionality securely
within a desired adversarial model. Classic results, stemming from [Yao82, GMW87], modeled
computation as boolean circuits, and showed how to emulate the circuit securely gate by gate.

As the complexity of modern computing tasks scales at tremendous rates, it has become clear
that the circuit model is not appropriate: Converting “lightweight,” optimized programs first into
a circuit in order to obtain security is not a viable option. Large effort has recently been fo-
cused on enabling direct support of functionalities modeled as Turing machines or random-access
machines (RAM) (e.g., [OS97, GKK+12, LO13a, GKP+13, GHRW14, GHL+14, GLOS15, CHJV15,
BGL+15,KLW15]). This approach avoids several sources of expensive overhead in converting mod-
ern programs into circuit representations. However, it actually introduces a different dimension of
inefficiency. RAM (and single-tape Turing) machines do not support parallelism: thus, even if an
insecure program can be heavily parallelized, its secure version will be inherently sequential.

Modern computing architectures are better captured by the notion of a Parallel RAM (PRAM).
In the PRAM model of computation, several (polynomially many) CPUs are simultaneously run-
ning, accessing the same shared “external” memory. Note that PRAM CPUs can model physical
processors within a single multicore system, as well as distinct computing entities within a dis-
tributed computing environment. We consider an expressive model where the number of active
CPUs may vary over time (as long as the pattern of activation is fixed a priori). In this sense,
PRAMs capture the “best of both” RAM and the circuit models: A RAM program handles ran-
dom access but is entirely sequential, circuits handle parallelism with variable number of parallel
resources (i.e., the circuit width), but not random access; variable CPU PRAMs capture both
random access and variable parallel resources. We thus put forth the challenge of designing cryp-
tographic primitives that directly support PRAM computations, while preserving computational
resources (total computational complexity and parallel time) up to poly logarithmic, while using
the same number of parallel processors.

Oblivious Parallel RAM (OPRAM). A core step toward this goal is to ensure that secret
information is not leaked via the memory access patterns of the resulting program execution.

A machine is said to be memory oblivious, or simply oblivious, if the sequences of memory
accesses made by the machine on two inputs with the same running time are identically (or close to
identically) distributed. In the late 1970s, Pippenger and Fischer [PF79] showed that any Turing
Machine Π can be compiled into an oblivious one Π′ (where “memory accesses” correspond to the
movement of the head on the tape) with only a logarithmic slowdown in running-time. Roughly
ten years later, Goldreich and Ostrovsky [Gol87, GO96] proposed the notion of Oblivious RAM
(ORAM), and showed a similar transformation result with polylogarithmic slowdown. In recent
years, ORAM compilers have become a central tool in developing cryptography for RAM programs,
and a great deal of research has gone toward improving both the asymptotic and concrete efficiency
of ORAM compilers (e.g., [Ajt10, DMN11, GMOT11, KLO12, CP13, CLP14, GGH+13, SvDS+13,
CLP14, WHC+14, RFK+14, WCS14]). However, for all such compilers, the resulting program is
inherently sequential.

In this work, we propose the notion of Oblivious Parallel RAM (OPRAM). We present the
first OPRAM compiler, converting any PRAM into an oblivious PRAM, while only inducing a
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polylogarithmic slowdown to both the total and parallel complexities of the program.

Theorem 1.1 (OPRAM – Informally stated). There exists an OPRAM compiler with O(log(m) log3(n))
worst-case overhead in total and parallel computation, and f(n) memory overhead for any f ∈ ω(1),
where n is the memory size and m is an upper-bound on the number of CPUs in the PRAM.

We emphasize that applying even the most highly optimized ORAM compiler to an m-processor
PRAM program inherently inflicts Ω(m log(n)) overhead in the parallel runtime, in comparison to
our O(log(m)polylog(n)). When restricted to single-CPU programs, our construction incurs slightly
greater logarithmic overhead than the best optimized ORAM compilers (achieving O(log n) over-
head for optimal block sizes); we leave as an interesting open question how to optimize parameters.
(As we will elaborate on shortly, some very interesting results towards addressing this has been
obtained in the follow-up work of [CLT15].)

1.1 Applications of OPRAM

ORAM lies at the base of a wide range of applications. In many cases, we can directly replace
the underlying ORAM with an OPRAM to enable parallelism within the corresponding secure
application. For others, simply replacing ORAM with OPRAM does not suffice; nevertheless,
in this paper, we demontrate one application (garbling of PRAM programs) where they can be
overcome; follow-up works show further applications (secure computation and obfuscation).

Direct Applications of OPRAM We briefly describe some direct applications of OPRAM.

Improved/Parallelized Outsourced Data. Standard ORAM has been shown to yield effective, prac-
tical solutions for securely outsourcing data storage to an untrusted server (e.g., the Oblivi-
Store system of [SS13]). Efficient OPRAM compilers will enable these systems to support
secure efficient parallel accesses to outsourced data. For example, OPRAM procedures se-
curely aggregate parallel data requests and resolve conflicts client-side, minimizing expensive
client-server communications (as was explored in [WST12], at a smaller scale). As network
latency is a major bottleneck in ORAM implementations, such parallelization may yield sig-
nificant improvements in efficiency.

Multi-Client Outsourced Data. In a similar vein, use of OPRAM further enables secure access
and manipulation of outsourced shared data by multiple (mutually trusting) clients. Here,
each client can simply act as an independent CPU, and will execute the OPRAM-compiled
program corresponding to the parallel concatenation of their independent tasks.

Secure Multi-Processor Architecture. Much recent work has gone toward implementing secure
hardware architectures by using ORAM to prevent information leakage via access patterns of
the secure processor to the potentially insecure memory (e.g., the Ascend project of [FDD12]).
Relying instead on OPRAM opens the door to achieving secure hardware in the multi-processor
setting.

Garbled PRAM (GPRAM) Garbled circuits [Yao82] allow a user to convert a circuit C and
input x into garbled versions C̃ and x̃, in such a way that C̃ can be evaluated on x̃ to reveal the
output C(x), but without revealing further information on C or x. Garbling schemes have found
countless applications in cryptography, ranging from delegation of computation to secure multi-
party protocols (see below). It was recently shown (using ORAM) how to directly garble RAM
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programs [GHL+14, GLOS15], where the cost of evaluating a garbled program P̃ scales with its
RAM (and not circuit) complexity.

In this paper, we show how to employ any OPRAM compiler to attain a garbled PRAM
(GPRAM), where the time to generate and evaluate the garbled PRAM program P̃ scales with the
parallel time complexity of P . Our construction is based on one of the construction of [GHL+14]
and extends it using some of the techniques developed for our OPRAM. Plugging in our (uncondi-
tional) OPRAM construction, we obtain:

Theorem 1.2 (Garbled PRAM – Informally stated). Assuming identity-based encryption, there
exists a secure garbled PRAM scheme with total and parallel overhead poly(κ) · polylog(n), where κ
is the security parameter of the IBE and n is the size of the garbled data.

Secure Two-Party and Multi-Party Computation of PRAMs. Secure multi-party com-
putation (MPC) enables mutually distrusting parties to jointly evaluate functions on their secret
inputs, without revealing information on the inputs beyond the desired function output. ORAM
has become a central tool in achieving efficient MPC protocols for securely evaluating RAM pro-
grams. By instead relying on OPRAM, these protocols can leverage parallelizability of the evaluated
programs.

Our garbled PRAM construction mentioned above yields constant-round secure protocols where
the time to execute the protocol scales with the parallel time of the program being evaluated.
In a companion paper [BCP15], we further demonstrates how to use OPRAM to obtain efficient
protocols for securely evaluating PRAMs in the multi-party setting; see [BCP15] for further details.

Obfuscation for PRAMs. In a follow-up work, Chung et al [CCC+15] rely on our specific
OPRAM construction (and show that it satisfies an additional “puncturability” property) to achieve
obfuscation for PRAMs.

1.2 Technical Overview

Begin by considering the simplest idea toward memory obliviousness: Suppose data is stored in
random(-looking) shuffled order, and for each data query i, the lookup is performed to its permuted
location, σ(i). One can see this provides some level of hiding, but clearly does not suffice for general
programs. The problem with the simple solution is in correlated lookups over time—as soon as item
i is queried again, this collision will be directly revealed. Indeed, hiding correlated lookups while
maintaining efficiency is perhaps the core challenge in building oblivious RAMs. In order to bypass
this problem, ORAM compilers heavily depend on the ability of the CPU to move data around,
and to update its secret state after each memory access.

However, in the parallel setting, we find ourselves back at square one. Suppose in some time step,
a group of processors all wish to access data item i. Having all processors attempt to perform the
lookup directly within a standard ORAM construction corresponds to running the ORAM several
times without moving data or updating state. This immediately breaks security in all existing
ORAM compiler constructions. On the other hand, we cannot afford for the CPUs to “take turns,”
accessing and updating the data sequentially.

In this overview, we discuss our techniques for overcoming this and further challenges. We
describe our solution somewhat abstractly, building on a sequential ORAM compiler with a tree-
based structure as introduced by Shi et al. [SCSL11]. In our formal construction and analysis, we
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rely on the specific tree-based ORAM compiler of Chung and Pass [CP13] that enjoys a particularly
clean description and analysis.

Tree-Based ORAM Compilers. We begin by roughly describing the structure of tree-based
ORAMs, originating in the work of [SCSL11]. At a high level, data is stored in the structure of a
binary tree, where each node of the tree corresponds to a fixed-size bucket that may hold a collection
of data items. Each memory cell addr in the original database is associated with a random path
(equivalently, leaf) within a binary tree, as specified by a position map pathaddr = Pos(addr).

The schemes maintain three invariants: (1) The content of memory cell addr will be found
in one of the buckets along the path pathaddr. (2) Given the view of the adversary (i.e., memory
accesses) up to any point in time, the current mapping Pos appears uniformly random. And, (3)
with overwhelming probability, no node in the binary tree will ever “overflow,” in the sense that
its corresponding memory bucket is instructed to store more items than its fixed capacity.

These invariants are maintained by the following general steps:

1. Lookup: To access a memory item addr, the CPU accesses all buckets down the path pathaddr,
and removes it where found.

2. Data “put-back”: At the conclusion of the access, the memory item addr is assigned a freshly
random path Pos(addr)← path′addr, and is returned to the root node of the tree.

3. Data flush: To ensure the root (and any other bucket) does not overflow, data is “flushed”
down the tree via some procedure. For example, in [SCSL11], the flush takes place by selecting
and emptying two random buckets from each level into their appropriate children; in [CP13],
it takes place by choosing an independent path in the tree and pushing data items down this
path as far as they will go (see Figure 1 in Section 2.2).

Extending to Parallel RAMs. We must address the following problems with attempting to
access a tree-based ORAM in parallel.

• Parallel memory lookups: As discussed, a core challenge is in hiding correlations in parallel
CPU accesses. In tree-based ORAMs, if CPUs access different data items in a time step, they
will access different paths in the tree, whereas if they attempt to simultaneously access the
same data item, they will each access the same path in the tree, blatantly revealing a collision.

To solve this problem, before each lookup we insert a CPU-coordination phase. We observe
that in tree-based ORAM schemes, this problem only manifests when CPUs access exactly
the same item, otherwise items are associated with independent leaf nodes, and there are no
bad correlations. We thus resolve this issue by letting the CPUs check—through an oblivious
aggregation operation—whether two (or more) of them wish to access the same data item; if
so, a representative is selected (the CPU with the smallest id) to actually perform the memory
access, and all the others merely perform “dummy” lookups. Finally, the representative CPU
needs to communicate the read value back to all the other CPUs that wanted to access the
same data item; this is done using an oblivious multi-cast operation.

The challenge is in doing so without introducing too much overhead—namely, allowing only
(per-CPU) memory, computation, and parallel time polylogarithmic in both the database size
and the number of CPUs—and that itself retains memory obliviousness.

• Parallel “put-backs”: After a memory cell is accessed, the (possibly updated) data is
assigned a fresh random path and is reinserted to the tree structure. To maintain the required
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invariants, the item must be inserted somewhere along its new path, without revealing any
information about the path. In tree-based ORAMs, this is done by reinserting at the root
node of the tree. However, this single node can hold only a small bounded number of elements
(corresponding to the fixed bucket size), whereas the number of processors m—each with an
item to reinsert—may be significantly larger.

To overcome this problem, instead of returning data items to the root, we directly insert them
into level logm of the tree, while ensuring that they are placed into the correct bucket along
their assigned path. Note that level logm contains m buckets, and since the m items are each
assigned to random leaves, each bucket will in expectation be assigned exactly 1 item.

The challenge in this step is specifying how the m CPUs can insert elements into the tree
while maintaining memory obliviousness. For example, if each CPU simply inserts their own
item into its assigned node, we immediately leak information about its destination leaf node.
To resolve this issue, we have the CPUs obliviously route items between each other, so that
eventually the ith CPU holds the items to be insert to the ith node, and all CPUs finally
perform either a real or a dummy write to their corresponding node.

• Preventing overflows: To ensure that no new overflows are introduced after inserting m
items, we now flush m times instead of once, and all these m flushes are done in parallel:
each CPU simply performs an independent flush. These parallel flushes may lead to conflicts
in nodes accessed (e.g., each flush operation will likely access the root node). As before, we
resolve this issue by having the CPUs elect some representative to perform the appropriate
operations for each accessed node; note, however, that this step is required only for correctness,
and not for security.

Our construction takes a modular approach. We first specify and analyze our compiler within
a simplified setting, where oblivious communication between CPUs is “for free.” We then show
how to efficiently instantiate the required CPU communication procedures oblivious routing, oblivious
aggregation, and oblivious multi-cast, and describe the final compiler making use of these procedures.
In this extended abstract, we defer the first step to Appendix 3.1, and focus on the remaining steps.

1.3 Related Work

Restricted cases of parallelism in Oblivious RAM have appeared in a handful of prior works. It was
observed by Williams, Sion, and Tomescu [WST12] in their PrivateFS work that existing ORAM
compilers can support parallelization across data accesses up to the “size of the top level,”1 (in
particular, at most log n), when coordinated through a central trusted entity. We remark that
central coordination is not available in the PRAM model. Goodrich and Mitzenmacher [GM11]
showed that parallel programs in MapReduce format can be made oblivious by simply replacing
the “shuffle” phase (in which data items with a given key are routed to the corresponding CPU)
with a fixed-topology sorting network. The goal of improving the parallel overhead of ORAM
was studied by Lorch et al. [LPM+13], but does not support compilation of PRAMs without first
sequentializing.

Follow-up work. As mentioned above, our OPRAM compiler has been used in the recent works
of Boyle, Chung, and Pass [BCP15] and Chen et al. [CCC+15] to obtain secure multi-party computa-
tion for PRAM, and indistinguishability obfuscation for PRAM, respectively. A different follow-up

1E.g., for tree-based ORAMs, the size of the root bucket.

5



work by Nayak et al. [NWI+15] provides targeted optimizations and an implementation for secure
computation of specific parallel tasks.

Very recently, an exciting follow-up work of Chen, Lin, and Tessaro [CLT15] builds upon our
techniques to obtain two new construction: an OPRAM compiler whose overhead in expectation
matches that of the best current sequential ORAM [SvDS+13]; and, a general transformation taking
any generic ORAM compiler to an OPRAM compiler with log n overhead in expectation. Their
OPRAM constructions, however, only apply to the special case of PRAM with a fixed number of
processors being activated at every step (whereas our notion of a PRAM requires handling also
a variable number of processors2); for the case of variable CPU PRAMs, the results of [CLT15]
incurr an additional multlicative overhead of m in terms of computational complexity, and thus the
bounds obtained are incomparable.

2 Preliminaries

2.1 Parallel RAM (PRAM) Programs

We consider the most general case of Concurrent Read Concurrent Write (CRCW) PRAMs. An
m-processor CRCW parallel random-access machine (PRAM) with memory size n consists of num-
bered processors CPU1, . . . , CPUm, each with local memory registers of size log n, which operate
synchronously in parallel and can make access to shared “external” memory of size n.

A PRAM program Π (given m,n, and some input x stored in shared memory) provides CPU-
specific execution instructions, which can access the shared data via commands Access(r, v), where
r ∈ [n] is an index to a memory location, and v is a word (of size log n) or ⊥. Each Access(r, v)
instruction is executed as:

1. Read from shared memory cell address r; denote value by vold.
2. Write value v 6= ⊥ to address r (if v = ⊥, then take no action).
3. Return vold.

In the case that two or more processors simultaneously initiate Access(r, vi) with the same address
r, then all requesting processors receive the previously existing memory value vold, and the memory
is rewritten with the value vi corresponding to the lowest-numbered CPU i for which vi 6= ⊥.

We more generally support PRAM programs with a dynamic number of processors (i.e., mi

processors required for each time step i of the computation), as long as this sequence of processor
numbers m1,m2, . . . is public information. The complexity of our OPRAM solution will scale with
the number of required processors in each round, instead of the maximum number of required
processors.

The (parallel) time complexity of a PRAM program Π is the maximum number of time steps
taken by any processor to evaluate Π, where each Access execution is charged as a single step. The
PRAM complexity of a function f is defined as the minimal parallel time complexity of any PRAM
program which evaluates f . We remark that the PRAM complexity of any function f is bounded
above by its circuit depth complexity.

Remark 2.1 (CPU-to-CPU Communication). It will be sometimes convenient notationally to as-
sume that CPUs may communicate directly amongst themselves. When the identities of sending

2As previously mentioned, dealing with a variable number of processors is needed to capture standard circuit
models of computation, where the circuit topology may be of varying width.
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and receiving CPUs is known a priori (which will always be the case in our constructions), such
communication can be emulated in the standard PRAM model with constant overhead by commu-
nicating through memory. That is, each action “CPU1 sends message m to CPU2” is implemented
in two time steps: First, CPU1 writes m into a special designated memory location addrCPU1; in
the following time step, CPU2 performs a read access to addrCPU1 to learn the value m.

2.2 Tree-Based ORAM

Concretely, our solution relies on the ORAM due to Chung and Pass [CP13], which in turn closely
follows the tree-based ORAM construction of Shi et al. [SCSL11]. We now recall the [CP13]
construction in greater detail, in order to introduce notation for the remainder of the paper.

The [CP13] construction (as with [SCSL11]) proceeds by first presenting an intermediate so-
lution achieving obliviousness, but in which the CPU must maintain a large number of registers
(specifically, providing a means for securely storing n data items requiring CPU state size Θ̃(n/α),
where α > 1 is any constant). Then, this solution is recursively applied logα n times to store the
resulting CPU state, until finally reaching a CPU state size polylog(n), while only blowing up the
computational overhead by a factor logα n. The overall compiler is fully specified by describing one
level of this recursion.

Step 1: Basic ORAM with O(n) registers. The compiler ORAM on input n ∈ N and a
program Π with memory size n outputs a program Π′ that is identical to Π but each Read(r)
or Write(r, val) is replaced by corresponding commands ORead(r), OWrite(r, val) to be specified
shortly. Π′ has the same registers as Π and additionally has n/α registers used to store a position
map Pos plus a polylogarithmic number of additional work registers used by ORead and OWrite.
In its external memory, Π′ will maintain a complete binary tree Γ of depth ` = log(n/α); we index
nodes in the tree by a binary string of length at most `, where the root is indexed by the empty
string λ, and each node indexed by γ has left and right children indexed γ0 and γ1, respectively.
Each memory cell r will be associated with a random leaf pos in the tree, specified by the position
map Pos; as we shall see shortly, the memory cell r will be stored at one of the nodes on the path
from the root λ to the leaf pos. To ensure that the position map is smaller than the memory size,
we assign a block of α consecutive memory cells to the same leaf; thus memory cell r corresponding
to block b = br/αc will be associated with leaf pos = Pos(b).

Each node in the tree is associated with a bucket which stores (at most) K tuples (b, pos, v),
where v is the content of block b and pos is the leaf associated with the block b, and K ∈ ω(log n)∩
polylog(n) is a parameter that will determine the security of the ORAM (thus each bucket stores
K(α + 2) words). We assume that all registers and memory cells are initialized with a special
symbol ⊥.

The following is a specification of the ORead(r) procedure:

Fetch: Let b = br/αc be the block containing memory cell r (in the original database), and let
i = r mod α be r’s component within the block b. We first look up the position of the block
b using the position map: pos = Pos(b); if Pos(b) =⊥, set pos ← [n/α] to be a uniformly
random leaf.

Next, traverse the data tree from the root to the leaf pos, making exactly one read and one
write operation for the memory bucket associated with each of the nodes along the path.
More precisely, we read the content once, and then we either write it back (unchanged), or we
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· · ·
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011

Position Map Pos

ORAM Tree Γ

position of memory cell r is found here

Figure 1: Illustration of the basic [CP13] ORAM construction.

simply “erase it” (writing ⊥) so as to implement the following task: search for a tuple of the
form (b, pos, v) for the desired b, pos in any of the nodes during the traversal; if such a tuple
is found, remove it from its place in the tree and set v to the found value, and otherwise take
v =⊥. Finally, return the ith component of v as the output of the ORead(r) operation.

Update Position Map: Pick a uniformly random leak pos′ ← [n/α] and let Pos(b) = pos′.

Put Back: Add the tuple (b, pos′, v) to the root λ of the tree. If there is not enough space left in
the bucket, abort outputting overflow.

Flush: Pick a uniformly random leaf pos∗ ← [n/α] and traverse the tree from the roof to the
leaf pos∗, making exactly one read and one write operation for every memory cell associated
with the nodes along the path so as to implement the following task: “push down” each
tuple (b′′, pos′′, v′′) read in the nodes traversed so far as possible along the path to pos∗ while
ensuring that the tuple is still on the path to its associated leaf pos′′ (that is, the tuple ends
up in the node γ = longest common prefix of pos′′ and pos∗.) Note that this operation can be
performed trivially as long as the CPU has sufficiently many work registers to load two whole
buckets into memory; since the bucket size is polylogarithmic, this is possible. If at any point
some bucket is about to overflow, abort outputting overflow.

OWrite(r, v) proceeds identically in the same steps as ORead(r), except that in the “Put Back”
steps, we add the tuple (b, pos′, v′), where v′ is the string v but the ith component is set to v (instead
of adding the tuple (b, pos′, v) as in ORead). (Note that, just as ORead, OWrite also outputs the
ordinal memory content of the memory cell r; this feature will be useful in the “full-fledged”
construction.)

The full-fledged construction: ORAM with polylog registers. The full-fledged construc-
tion of the CP ORAM proceeds as above, except that instead of storing the position map in registers
in the CPU, we now recursively store them in another ORAM (which only needs to operate on n/α
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memory cells, but still using buckets that store K tuples). Recall that each invocation of ORead
and OWrite requires reading one position in the position map and updating its value to a random
leaf; that is, we need to perform a single recursive OWrite call (recall that OWrite updates the value
in a memory cell, and returns the old value) to emulate the position map.

At the base of the recursion, when the position map is of constant size, we use the trivial ORAM
construction which simply stores the position map in the CPU registers.

Theorem 2.2 ( [CP13]). The compiler ORAM described above is a secure Oblivious RAM compiler
with polylog(n) worst-case computation overhead and ω(log n) memory overhead, where n is the
database memory size.

2.3 Sorting Networks

Our protocol will employ an n-wire sorting network, which can be used to sort values on n wires
via a fixed topology of comparisons. A sorting network consists of a sequence of layers, each layer
in turn consisting of one or more comparator gates, which take two wires as input, and swap the
values when in unsorted order. Formally, given input values ~x = (x1, . . . , xn) (which we assume
to be integers wlog), a comparator operation compare(i, j, ~x) for i < j returns ~x′ where ~x = ~x′ if
xi ≤ xj , and otherwise, swaps these values as x′i = xj and x′j = xi (whereas x′k = xk for all k 6= i, j).
Formally, a layer in the sorting network is a set L = {(i1, j1), . . . , (ik, jk)} of pairwise-disjoint pairs
of distinct indices of [n]. A d-depth sorting network is a list SN = (L1, . . . , Ld) of layers, with the
property that for any input vector ~x, the final output will be in sorted order xi ≤ xi+1 ∀i < n.

Ajtai, Komlós, and Szemerédi demonstrated a sorting network with depth logarithmic in n.

Theorem 2.3 ( [AKS83]). There exists an n-wire sorting network of depth O(log n) and size
O(n log n).

While the AKS sorting network is asymptotically optimal, in practical scenarios one may wish to
use the simpler alternative construction due to Batcher [Bat68] which achieves significantly smaller
linear constants.

3 Oblivious PRAM

The definition of an Oblivious PRAM (OPRAM) compiler mirrors that of standard ORAM, with
the exception that the compiler takes as input and produces as output a parallel RAM program.
Namely, denote the sequence of shared memory cell accesses made during an execution of a PRAM
program Π on input (m,n, x) as Π̃(m,n, x). And, denote by ActivationPatterns(Π,m, n., x) the
(public) CPU activation patterns (i.e., number of active CPUs per timestep) of program Π on
input (m,n, x). We present a definition of an OPRAM compiler following Chung and Pass [CP13],
which in turn follows Goldreich [Gol87].

Definition 3.1 (Oblivious Parallel RAM). A polynomial-time algorithm O is an Oblivious Parallel
RAM (OPRAM) compiler with computational overhead comp(·, ·) and memory overhead mem(·, ·),
if O given m,n ∈ N and a deterministic m-processor PRAM program Π with memory size n,
outputs an m-processor program Π′ with memory size mem(m,n) ·n such that for any input x, the
parallel running time of Π′(m,n, x) is bounded by comp(m,n) · T , where T is the parallel runtime
of Π(m,n, x), and there exists a negligible function µ such that the following properties hold:
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• Correctness: For any m,n ∈ N and any string x ∈ {0, 1}∗, with probability at least 1−µ(n),
it holds that Π(m,n, x) = Π′(m,n, x).

• Obliviousness: For any two PRAM programs Π1,Π2, any m,n ∈ N, and any two inputs
x1, x2 ∈ {0, 1}∗, if |Π1(m,n, x1)| = |Π2(m,n, x2)| and ActivationPatterns(Π1,m, n, x1)) =
ActivationPatterns(Π2,m, n, x2), then Π̃′1(m,n, x1) is µ-close to Π̃′2(m,n, x2) in statistical dis-
tance, where Π′i ← O(m,n,Πi) for i ∈ {1, 2}.

We remark that not all m processors may be active in every time step of a PRAM program Π,
and thus its total computation cost may be significantly less than m · T . We wish to consider
OPRAM compilers that also preserve the processor activation structure (and thus total computation
complexity) of the original program up to polylogarithmic overhead. Of course, we cannot hope to
do so if the processor activation patterns themselves reveal information about the secret data. We
thus consider PRAMs Π whose activation schedules (m1, . . . ,mT ) are a-priori fixed and public.

Definition 3.2 (Activation-Preserving). An OPRAM compiler O with computation overhead
comp(·, ·) is said to be activation preserving if given m,n ∈ N and a deterministic PRAM program
Π with memory size n and fixed (public) activation schedule (m1, . . . ,mT ) for mi ≤ m, the program
Π′ output by O has activation schedule

(
(m1)ti=1, (m2)ti=1, . . . , (mT )ti=1

)
, where t = comp(m,n).

It will additionally be useful in applications (e.g., our construction of garbled PRAMs in Sec-
tion 4, and the MPC for PRAMs of [BCP15]) that the resulting oblivious PRAM is collision free.

Definition 3.3 (Collision-Free). An OPRAM compiler O is said to be collision free if given m,n ∈
N and a deterministic PRAM program Π with memory size n, the program Π′ output by O has
the property that no two processors ever access the same data address in the same timestep.

We now present our main result, which we construct and prove in the following subsections.

Theorem 3.4 (Main Theorem: OPRAM). There exists an activation-preserving, collision-free
OPRAM compiler with O(log(m) log3(n)) worst-case computational overhead and f(n) memory
overhead, for any f ∈ ω(1), where n is the memory size and m is the number of CPUs.

3.1 Rudimentary Solution: Requiring Large Bandwidth

We first provide a solution for a simplified case, where we are not concerned with minimizing
communication between CPUs or the size of required CPU local memory. In such setting, commu-
nicating and aggregating information between all CPUs is “for free.”

Our compiler Heavy-O, on input m,n ∈ N, fixed integer constant α > 1, and m-processor
PRAM program Π with memory size n, outputs a program Π′ identical to Π, but with each
Access(r, v) operation replaced by the modified procedure Heavy-OPAccess as defined in Figure 2.
(Here, “broadcast” means to send the specified message to all other processors).

Note that Heavy-OPAccess operates recursively for t = 0, . . . , dlogα ne. This corresponds analo-
gously to the recursion in the [SCSL11, CP13] ORAM, where in each step the size of the required
“secure database memory” drops by a constant factor α. We additionally utilize a space optimiza-
tion due to Gentry et al. [GGH+13] that applies to [CP13], where the ORAM tree used for storing
data of size n′ has depth log n′/K (and thus n′/K leaves instead of n′), where K is the bucket size.
This enables the overall memory overhead to drop from ω(log n) (i.e., K) to ω(1) with minimal
changes to the analysis.
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Heavy-OPAccess(t, (ri, vi)): The Large Bandwidth Case
To be executed by CPU1, . . . , CPUm w.r.t. (recursive) database size nt := n/(αt), bucket size K.

Input: Each CPUi holds: recursion level t, instruction pair (ri, vi) with ri ∈ [nt], global parameter α.

Each CPUi performs the following steps, in parallel

0. Exit Case: If t ≥ logα n, return 0.
This corresponds to requesting the (trivial) position map for a block within a single-leaf tree.

1. Conflict Resolution

(a) Broadcast the instruction pair (ri, vi) to all CPUs.

(b) Let bi = bri/αc. Locally aggregate incoming instructions to block bi as v̄i = v̄i[1] · · · v̄i[α],
resolving write conflicts (i.e., ∀s ∈ [α], take v̄i[s]← vj for minimal j such that rj = biα+s).
Denote by rep(bi) := min{j : brj/αc = bi} the smallest index j of any CPU whose rj is in
this block bi. (CPU rep(bi) will actually access bi, while others perform dummy accesses).

2. Recursive Access to Position Map (Define Lt := 2nt/K, number of leaves in t’th tree).

If i = rep(bi): Sample fresh leaf id `′i ← [Lt]. Recurse as `i ← Heavy-OPAccess(t + 1, (bi, `
′
i))

to read the current value `i of Pos(bi) and rewrite it with `′i.

Else: Recursively initiate dummy access x← Heavy-OPAccess(t+1, (1,⊥)) at arbitrary address
(say 1); ignore the read value x. Sample fresh random leaf id `i ← [Lt] for a dummy lookup.

3. Look Up Current Memory Values

Read the memory contents of all buckets down the path to leaf node `i defined in the previous
step, copying all buckets into local memory.

If i = rep(bi): locate and store target block triple (bi, v
old
i , `i). Update v̄ from Step 1 with

existing data: ∀s ∈ [α], replace any non-written cell values v̄i[s] = ∅ with v̄i[s] ← voldi [s]. v̄i
now stores the entire data block to be rewritten for block bi.

4. Remove Old Data from ORAM Database

(a) If i = rep(bi): Broadcast (bi, `i) to all CPUs. Otherwise: broadcast (⊥, `i).
(b) Initiate UpdateBuckets

(
nt, (remove-bi, `i), {(remove-bj , `j)}j∈[m]\{i}

)
, as in Figure 3.

5. Insert New Data into Database in Parallel

(a) If i = rep(bi): Broadcast (bi, v̄i, `
′
i), with updated value v̄i and target leaf `′i.

(b) Let lev∗ := blog(min{m,Lt})c be the ORAM tree level with number of buckets equal to
number of CPUs (the level where data will be inserted). Locally aggregate all incoming
instructions whose path `′j has lev∗-bit prefix i: Inserti := {(bj , v̄j , `′j) : (`′j)

(lev∗) = i}.
(c) Access memory bucket i (at level lev∗) and rewrite contents, inserting data items Inserti.

If bucket i exceeds its capacity, abort with overflow.

6. Flush the ORAM Database

(a) Sample a random leaf node `flush
i ← [Lt] along which to flush. Broadcast `flush

i .

(b) If i ≤ Lt: Initiate UpdateBuckets
(
nt, (flush, `flush

i ), {(flush, `flush
j )}j∈[m]\{i}

)
, in Figure 3.

Recall that flush means to “push” each encountered triple (b, `, v) down to the lowest point
at which his chosen flush path and ` agree.

7. Update CPUs

If i = rep(bi): broadcast the old value voldi of block bi to all CPUs.

Figure 2: Pseudocode for oblivious parallel data access procedure Heavy-OPAccess (where we are
temporarily not concerned with per-round bandwidth/memory).
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UpdateBuckets
(
nt, (mycommand,mypath), {(commandj , pathj)}j∈[m]\{i}

)
Let path(0), . . . , path(logLt) denote the bit prefixes of length 0 (i.e., ∅) to log(Lt) of path.
For each tree level lev = 0 to logLt, each CPU i does the following at bucket mypath(lev):

1. Define CPUs(mypath(lev)) := {i}∪{j : path
(lev)
j = mypath(lev)} to be the set of CPUs requesting

changes to bucket mypath(lev). Let bucket-rep(mypath(lev)) denote the minimal index in the set.

2. If i 6= bucket-rep(mypath(lev)), do nothing. Otherwise:

Case 1: mycommand = remove-bi.
Interpret each commandj = remove-bj as a target block id bj to be removed. Access

memory bucket mypath(lev) and rewrite contents, removing any block bj for which j ∈
CPUs(mypath(lev)).

Case 2: mycommand = flush.

Define Flush ⊂ {L,R} as {v : ∃ pathj s.t. path
(lev+1)
j = mypath(lev)||v}, associating L ≡

0, R ≡ 1. This determines whether data will be flushed left and/or right from this bucket.
Access memory bucket mypath(lev); denote its collection of stored data blocks b by
ThisBucket. Partition ThisBucket = ThisBucket-L ∪ ThisBucket-R into those blocks whose
associated leaves continue to the left or right (i.e., ThisBucket-L := {bj ∈ ThisBucket :
¯̀(lev+1)
j = mypath(lev)||0}, and similar for 1).

• If L ∈ Flush, then set ThisBucket← ThisBucket \ThisBucket-L, access memory bucket
mypath(lev)||0, and insert data items ThisBucket-L into it.

• If R ∈ Flush, then set ThisBucket← ThisBucket\ThisBucket-R, access memory bucket
mypath(lev)||1, and insert data items ThisBucket-R into it.

Rewrite the contents of bucket mypath(lev) with updated value of ThisBucket. If any bucket
exceeds its capacity, abort with overflow.

Figure 3: Procedure for combining CPUs’ instructions for buckets and implementing them by a
single representative CPU. (Used for correctness, not security). See Figure 4 for a sample illustra-
tion.

Lemma 3.5. For any n,m ∈ N, The compiler Heavy-O is a secure Oblivious PRAM compiler with
parallel time overhead O(log3 n) and memory overhead ω(1), assuming each CPU has Ω̃(m) local
memory.

We will address the desired claims of correctness, security, and complexity of the Heavy-O
compiler by induction on the number of levels of recursion. Namely, for t∗ ∈ [logα n], denote by
Heavy-Ot∗ the compiler that acts on memory size n/(αt

∗
) by executing Heavy-O only on recursion

levels t = t∗, (t∗ + 1), . . . , dlogα ne. For each such t∗, we define the following property.

Level-t∗ Heavy OPRAM: We say that Heavy-Ot∗ is a valid level-t∗ heavy OPRAM if the partial-
recursion compiler Heavy-Ot∗ is a secure Oblivious PRAM compiler for memory size n/(αt

∗
)

with parallel time overhead O(log2 n · log(n/αt
∗
)) and memory overhead ω(1), assuming each

CPU has Ω̃(m) local memory.

Then Lemma 3.5 follows directly from the following two claims.

Claim 3.6. Heavy-Ologα n is valid level-(logα n) heavy OPRAM.
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Figure 4: UpdateBuckets sample illustration. Here, CPUs 1-3 each wish to modify nodes along
their paths as drawn; for each overlapping node, the CPU with lowest id receives and implements
the aggregated commands for the node.

Proof. Note that Heavy-Ologα n, acting on trivial size-1 memory, corresponds directly to the exit case
(Step 0) of Heavy-OPAccess in Figure 2. Namely, correctness, security, and the required efficiency
trivially hold, since there is a single data item in a fixed location to access.

Claim 3.7. Suppose Heavy-Ot is a valid level-t heavy OPRAM for t > 0. Then Heavy-Ot−1 is a
valid level-(t− 1) heavy OPRAM.

Proof. We first analyze the correctness, security, and complexity overhead of Heavy-Ot−1 condi-
tioned on never reaching the event overflow (which may occur in Step 5(c), or within the call to
UpdateBuckets). Then, we prove that the probability of overflow is negligible in n.

Correctness (w/o overflow). Consider the state of the memory (of the CPUs and server) in
each step of Heavy-OPAccess, assuming no overflow. In Step 1, each CPU learns the instruction
pairs of all other CPUs; thus all CPUs agree on single representative rep(bi) for each requested
block bi, and a correct aggregation of all instructions to be performed on this block. Step 2 is a
recursive execution of Heavy-OPAccess. By the inductive hypothesis, this access successfully returns
the correct value `i of Pos(bi) for each bi queried, and rewrites it with the freshly sampled value
`′i when specified (i.e., for each rep(bi) access; the dummy accesses are read-only). We are thus
guaranteed that each rep(bi) will find the desired block bi in Step 3 when accessing the memory
buckets in the path down the tree to leaf `i (as we assume no overflow was encountered), and so
will learn the current stored data value vold.

In Step 4, each CPU learns the target block bi and associated leaf `i of every representative
CPU rep(bi). By construction, each requested block bi appears in some bucket B in the tree along
his path, and there there will necessarily be some CPU assigned as bucket-rep(B) in UpdateBuckets,
who will then successfully remove the block bi from B. At this point, none of the requested blocks
bi appear in the tree.

In Step 5, the CPUs insert each block bi (with updated data value vi) into the ORAM data tree
at level min{logα n/α

t, blog2(m)c} along the path to its (new) leaf `′i.
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Finally, the flushing procedure in Step 6 maintains the necessary property that each block bi
appears along the path to Pos(bi), and in Step 7 all CPUs learn the collection of all queried values
vold (in particular, including the value they initially requested).

Thus, assuming no overflow, correctness holds.

Obliviousness (w/o overflow). Consider the access patterns to server-side memory in each step
of Heavy-OPAccess, assuming no overflow. Step 1 is performed locally without communication to
the server. Step 2 is a recursive execution of Heavy-OPAccess, which thus yields access patterns
independent of the vector of queried data locations (up to statistical distance negligible in n), by
the induction hypothesis. In Step 3, each CPU accesses the buckets along a single path down the
tree, where representative CPUs rep(bi) access along the path given by Pos(bi) (for distinct bi), and
non-representative CPUs each access down an independent, random path. Since the adversarial
view so far has been independent of the values of Pos(bi), conditioned on this view all CPU’s paths
are independent and random.

In Step 4, all data access patterns are publicly determinable based on the accesses in the previous
step (that is, the complication in Step 4 is to ensure correctness without access collisions, but is
not needed for security). In Step 5, each CPU i accesses his corresponding bucket i in the tree. In
the flushing procedure of Step 6, each CPU selects an independent, random path down the tree,
and the communication patterns to the server reveal no information beyond the identities of these
paths. Finally, Step 7 is performed locally without communication to the server.

Thus, assuming no overflow, obliviousness holds.

Protocol Complexity (w/o overflow). First note that the server-side memory storage require-
ment is simply that of the [CP13] ORAM construction, together with the log(2nt/K) tree-depth
memory optimization of [GHL+14]; namely, f(n) memory overhead suffices for any f ∈ ω(1).

Consider the local memory required per CPU. Each CPU must be able to store: O(log n)-size
requests from each CPU (due to the broadcasts in Steps 1(a), 4(a), 5(a), and 7); and the data
contents of at most 3 memory buckets (due to the flushing procedure in UpdateBuckets). Overall,
this yields a per-CPU local memory requirement of Ω̃(m) (where Ω̃ notation hides log n factors).

Consider the parallel complexity of the OPRAM-compiled program Π′ ← Heavy-O(m,n,Π). For
each parallel memory access in the underlying program Π, the processors perform: Conflict resolu-
tion (1 local communication round), Read/writing the position map (which has parallel complexity
O(log2 n · log(n/αt)) by the inductive hypothesis), Looking up current memory values (sequential
steps = depth of level-(t− 1) ORAM tree ∈ O(log(n/αt−1))), Removing old data from the ORAM
tree (1 local communication round, plus depth of the ORAM tree ∈ O(log(n/αt−1)) sequential
steps), Inserting the new data in parallel (1 local communication round, plus 1 communication
round to the server), Flushing the ORAM database (1 local communication round, and 2× the
depth of the ORAM tree rounds of communication with the server, since each bucket along a flush
path is accessed once to receive new data items and once to flush its own data items down), and Up-
dating CPUs with the read values (1 local communication round). Altogether, this yields parallel
complexity overhead O(log2 n · log(n/αt−1)).

It remains to address the probability of encountering overflow.

Claim 3.8. There exists a negligible function µ such that for any deterministic m-processor PRAM
program Π, any database size n, and any input x, the probability that the Heavy-O-compiled program
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Π′(m,n, x) outputs overflow is bounded by µ(n).

Proof. We consider separately the probability of overflow in each of the level-t recursive ORAM
trees. Since there are dlog ne of them, the claim follows by a straightforward union bound.

Taking inspiration from [CP13], we analyze the ORAM-compiled execution via an abstract dart
game. The game consists of black and white darts. In each round of the game, m black darts are
thrown, followed by m white darts. Each dart independently hits the bullseye with probability
p = 1/m. The game continues until exactly K darts have hit the bullseye (recall K ∈ ω(log n) is
the bucket size), or after the end of the T th round for some fixed polynomial bound T = T (n),
whichever comes first. The game is “won” (which will correspond to overflow in a particular bucket)
if K darts hit the bullseye, and all of them are black.

Let us analyze the probability of winning in the above dart game.
Subclaim 1: With overwhelming probability in n, no more than K/2 darts hit the bullseye in

any round. In any single round, associate with each of the 2 ·m darts thrown an indicator variable
Xi for whether the dart strikes the target. The Xi are independent random variables each equal to
1 with probability p = 1/m. Thus, the probability that more than K/2 of the darts hit the target
is bounded (via a Chernoff tail bound3) by

Pr

[
2m∑
i=1

Xi > K/2

]
≤ e

2(K/4−1)2

2+(K/4−1) ≤ e−Ω(K) ≤ e−ω(logn).

Since there are at most T = poly(n) distinct rounds of the game, the subclaim follows by a union
bound.

Subclaim 2: Conditioned on no round having more than K/2 bullseyes, the probability of winning
the game is negligible in d. Fix an arbitrary such winning sequence s, which terminates sometime
during some round r of the game. By assumption, the final partial round r contains no more than
K/2 bullseyes. For the remaining K/2 bullseyes in rounds 1 through r − 1, we are in a situation
mirroring that of [CP13]: for each such winning sequence s, there exist 2K/2 − 1 distinct other
“losing” sequences s′ that each occur with the same probability, where any non-empty subset of
black darts hitting the bullseye are replaced with their corresponding white darts. Further, every
two distinct winning sequences s1, s2 yield disjoint sets of losing sequences, and all such constructed
sequences have the property that no round has more than K/2 bullseyes (since this number of total
bullseyes per round is preserved). Thus, conditioned on having no round with more than K/2
bullseyes, the probability of winning the game is bounded above by 2−K/2 ∈ e−ω(logn).

We now relate the dart game to the analysis of our OPRAM compiler.
We analyze the memory buckets at the nodes in the t-th recursive ORAM tree, via three sub-

cases.
Case 1: Nodes in level lev < logm. Since data items are inserted to the tree in parallel directly

at level logm, these nodes do not receive data, and thus will not overflow.
Case 2: Consider any internal node (i.e., a node that is not a leaf) γ in the tree at level

logm ≤ lev < log(Lt). (Recall Lt := 2nt/K is the number of leaves in the t’th tree when applying
the [GHL+14] optimization). Note that when m > Lt, this case is vacuous. For purposes of analysis,
consider the contents of γ as split into two parts: γL containing the data blocks whose leaf path

3Explicit Chernoff bound used: for X = X1 + · · ·X2m (Xi independent) and mean µ, then for any δ > 0, it holds

that Pr[X > (1 + δ)µ] ≤ e−δ
2µ/(2+δ).
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continues to the left from γ (i.e., leaf γ||0||·), and γR containing the data blocks whose leaf path
continues right (i.e., γ||1||·). For the bucket of node γ to overflow, there must be K tuples in it. In
particular, either γL or γR must have K/2 tuples.

For each parallel memory access in Π(m,n, x), in the t-th recursive ORAM tree for which
nt ≥ m/K, (at most) m data items are inserted, and then m independent paths in the tree are
flushed. By definition, an inserted data item will enter our bucket γL (respectively, γR) only if
its associated leaf has the prefix γ||0 (resp., γ||1); we will assume the worst case in which all such
data items arrive directly to the bucket. On the other hand, the bucket γL (resp., γR) will be
completely emptied after any flush whose path contains this same prefix γ||0 (resp., γ||1). Since all
leaves for inserted data items and data flushes are chosen randomly and independently, these events
correspond directly to the black and white darts in the game above. Namely, the probability that a
randomly chosen path will have the specific prefix γ||0 of length lev is 2−lev ≤ 1/m (since we consider
lev ≥ logm); this corresponds to the probability of a dart hitting the bullseye. The bucket can only
overflow if K/2 “black darts” (inserts) hit the bullseye without any “white dart” (flush) hitting
the bullseye in between. By the analysis above, we proved that for any sequence of K/2 bullseye
hits, the probability that all K/2 of them are black is bounded above by 2−K/4, which is negligible
in n. However, since there is a fixed polynomial number T = poly(n) of parallel memory accesses
in the execution of Π(m,n, x) (corresponding to the number of “rounds” in the dart game), and
in particular, T (2m) ∈ poly(n) total darts thrown, the probability that the sequence of bullseyes
contains K/2 sequential blacks anywhere in the sequence is bounded via a direct union bound by
(T2m)2−K/4 ∈ e−ω(logn), as desired.

Case 3: Consider any leaf node γ. This analysis follows the same argument as in [CP13]
(with slightly tweaked parameters from the [GHL+14] tree-depth optimization). For there to be an
overflow in γ at time t, there must be K + 1 out of nt/α elements in the position map that map
to the leaf γ. Since all positions are sampled uniformly and independently among the Lt := 2nt/K
different leaves, the expected number of elements mapping to γ is µ = K/2α, and by a standard
multiplicative Chernoff bound,4 the probability that K + 1 elements are mapped to γ is upper
bounded by (

e1

(1 + 1)(1+1)

)µ
≤ (21/3)−K/2α ∈ 2−ω(logn).

Thus, the total probability of overflow is negligible in n, and the theorem follows.

3.2 Oblivious Distributed Insertion, Aggregation, and Multi-Cast

3.2.1 Oblivious Parallel Insertion (Oblivious Routing)

Recall during the memory “put-back” phase, each CPU must insert its data item into the bucket
at level logm of the tree lying along a freshly sampled random path, while hiding the path.

We solve this problem by delivering data items to their target locations via a fixed-topology
routing network. Namely, the m processors CPU1, . . . , CPUm will first write the relevant m data
items msgi (and their corresponding destination addresses addri) to memory in fixed order, and

4We use the following version of the Chernoff bound: Let X1, . . . , Ln be independent [0, 1]-valued random variables.

Let X =
∑
iXi and µ = E[X]. For every δ > 0, Pr[X ≥ (1 + δ)µ] ≤

(
eδ

(1+δ)(1+δ)

)µ
.
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Parallel Insertion Routing Protocol Route(m, (msgi, addri))
Input: CPUi holds: message msgi with target destination addri, and global threshold K.
Output: CPUi holds {msgj : addrj = i}.
Let lev∗ = logm (assumed ∈ N for simplicity). Each CPUi performs the following.

Initialize Mi,0 ← msgi. For t = 1, . . . , lev∗:

1. Perform the following symmetric message exchange with CPUi⊕2t :

Mi,t+1 ← {msgj ∈Mi,t ∪Mi⊕2t,t : (addrj)t = (i)t}.
2. If |Mi,t+1| > K (i.e., memory overflow), then CPUi aborts.

Figure 5: Fixed-topology routing network for delivering m messages originally held by m proces-
sors to their corresponding destination addresses within [m].

then rearrange them in logm sequential rounds to the proper locations via the routing network. At
the conclusion of the routing procedure, each node j will hold all messages msgi for which addri = j.

For simplicity, assume m = 2` for some ` ∈ N. The routing network has depth `; in each
level t = 1, . . . , `, each node communicates with the corresponding node whose id agrees in all bit
locations except for the tth (corresponding to his tth neighbor in the logm-dimensional boolean
hypercube). These nodes exchange messages according to the tth bit of their destination addresses
addri. This is formally described in Figure 5. After the tth round, each message msgi is held by a
party whose id agrees with the destination address addri in the first t bits. Thus, at the conclusion
of ` rounds, all messages are properly delivered.

We demonstrate the case m = 8 = 23 below: first, CPUs exchange information along the
depicted communication network in 3 sequential rounds (left); then, each CPU i inserts his resulting
collection of items directly into node i of level 3 of the data tree (right).

CPUs
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

We show that if the destination addresses addri are uniformly sampled, then with overwhelming
probability no node will ever need to hold too many (the threshold K will be set to ω(log n))
messages at any point during the routing network execution:

Lemma 3.9 (Routing Network). If L messages begin with target destination addresses addri dis-
tributed independently and uniformly over [L] in the L-to-L node routing network in Figure 5, then
with probability bounded by 1 − (L logL)2−K , no intermediate node will ever hold greater than K
messages at any point during the course of the protocol execution.

Proof. Consider an arbitrary node a ∈ {0, 1}`, at some level t of execution of the protocol. There
are precisely 2t possible messages mi that could be held by node a at this step, corresponding to
those originating in locations b ∈ {0, 1}` whose final ` − t bits agree with those of a. Node a will
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hold message mb at the conclusion of round t precisely if the first t bits of addrb agree with those
of a. For each such message mb, the associated destination address addrb is a random element of
[L], which agrees with a on the first t bits with probability 2t.

For each b ∈ {0, 1}` agreeing with a on the final `− t bits, define Xb to be the indicator variable
that is equal to 1 if addrb agrees with a on the first t bits. Then the collection of 2t random variables
{Xb : bi = ai ∀i = t + 1, . . . , `} are independent, and X =

∑
Xb has mean µ = 2t · 2−t = 1. Note

that X corresponds to the number of messages held by node a at level t. By a Chernoff bound,5 it
holds that

Pr[X ≥ K] = Pr[X ≥ (1 + (K − 1))µ] <

(
eK−1

KK

)
< 2−K .

Then, taking a union bound over the total number of nodes L and levels ` = logL, we have that
the probability of any node experiencing an overflow at any round is bounded by (L logL)2−K .

3.2.2 Oblivious Aggregation

To perform the “CPU-coordination” phase, the CPUs efficiently identify a single representative and
aggregate relevant CPU instructions; then, at the conclusion, the representative CPU must be able
to multi-cast the resulting information to all relevant requesting CPUs. Most importantly, these
procedures must be done in an oblivious fashion. In this section, we address oblivious aggregation;
we treat the dual multi-cast problem in Section 3.2.3.

Formally, we want to achieve the following aggregation goal, with communication patterns
independent of the inputs, using only O(log(m)polylog(n)) local memory and communication per
CPU, in only O(log(m)) sequential time steps. An illustrative example to keep in mind is where
keyi = bi, datai = vi, and Agg is the process that combines instructions to data items within the
same data block, resolving conflicts as necessary.

Oblivious aggregation:

Input: Each CPU i ∈ [m] holds (keyi, datai). Let K =
⋃{keyi} denote the set of distinct keys.

We assume that any (subset of) data associated with the same key can be aggregated by an
aggregation function Agg to a short digest of size at most poly(`, logm), where ` = |datai|.

Goal: Each CPU i outputs outi such that the following holds.

– For every key ∈ K, there exists unique agent i with keyi = key s.t. outi = (rep, key, aggkey),
where aggkey = Agg({dataj : keyj = key}).
– For every remaining agent i, outi = (dummy,⊥,⊥).

At a high level, we achieve this via the following steps. (1) First, the CPUs sort their data
list with respect to the corresponding key values. This can be achieved via an implementation of
a log(m)-depth sorting network, and provides the useful guarantee that all data pertaining to the
same key are necessarily held by an block of adjacent CPUs. (2) Second, we pass data among CPUs
in a sequence of log(m) steps such that at the conclusion the “left-most” (i.e., lowest indexed) CPU
in each key-block will learn the aggregation of all data pertaining to this key. Explicitly, in each
step i, each CPU sends all held information to the CPU 2i to the “left” of him, and simultaneously
accepts any received information pertaining to his key. (3) Third, each CPU will learn whether
he is the “left-most” representative in each key-block, by simply checking whether his left-hand

5Exact Chernoff bound used: Pr[X > (1 + δ)µ] <
(

eδ

(1+δ)1+δ

)µ
for any δ > 0.
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neighbor holds the same key. From here, the CPUs have succeeded in aggregating information for
each key at a single representative CPU; (4) in the fourth step, they now reverse the original sorting
procedure to return this aggregated information to one of the CPUs who originally requested it.

Lemma 3.10 (Space-Efficient Oblivious Aggregation). Suppose m processors initiate protocol
OblivAgg w.r.t. aggregator Agg, on respective inputs {(keyi, datai)}i∈[m], each of size `. Then at
the conclusion of execution, each processor i ∈ [m] outputs a triple (rep′i, key′i, data′i) such that the
following properties hold (where asymptotics are w.r.t. m):

1. The protocol terminates in O(logm) rounds.

2. The local memory and computation required per processor is O(logm+ `).

3. (Correctness). For every key key ∈ ⋃{keyi}, there exists a unique processor i with output
key′i = key. For each such processor, it further holds that key′i = keyi, rep′i = “rep”, and data′i =
Agg({dataj : keyj = keyi}). For every remaining processor, the output tuple is (dummy,⊥,⊥).

4. (Obliviousness). The inter-CPU communication patterns are independent of the inputs (keyi, datai).

A full description of our Oblivious Aggregation procedure OblivAgg is given in Figure 6.

Proof of Lemma 3.10. Property (1): Steps 1 and 4 of OblivAgg each execute a sorting network, and
require communication rounds equal to the depth d ∈ O(logm) of the sorting network implemented.
Step 2 takes place in logm sequential steps. Step 3 requires a single round. And Step 5 (output)
takes place locally. Thus, the combined round complexity of OblivAgg is O(logm).

Property (2): We first address the size the individual items stored, and then ensure the number
of stored items is never too large.

• Keys (e.g., keyi, tempkeyi): Each key is bounded in size by the initial input size `.

• Data (e.g., datai, datatempi, aggdatai): Similarly, by the property of the aggregation function
Agg, we are guaranteed that each data item is bounded in size by the original data size, which
is in turn bounded by size `.

• CPU identifiers (e.g., sourceidi, idtempi): Each processor can be identified by bit string of
length logm.

• Representative flag (repi): The rep/dummy flag can be stored as a single bit.

Each processor begins with input size `. In each round of executing the first sorting network (Step
1 of OblivAgg), a processor must hold two sets of data (sourceid, keytemp, datatemp), correspond-
ing to at most 2(logm + 2`) storage. Note that no more than 2 tuples are required to be held
at any time within this step, as the processors exchange tuples but need not maintain both val-
ues. In each round of the Aggregation phase (Step 2), processors may need to store two pairs
(keytemp, datatemp) in addition to the information held from the conclusion of the previous step
(namely, a single value sourceidi), which totals to logm+2(2`) memory. Note that by the properties
of the aggregation scheme Agg, the size of the aggregated data does not grow beyond ` (and recall
that parties do not maintain data associated with any different key). In the Representative Iden-
tification phase (Step 3), each processor receives one additional key value keyi−1, which requires
memory logm, and is then translated to a single-bit flag repi and then deleted. In the Reverse Sort
phase (Step 4), processors within each round must again store two tuples, this time of the form
(idtemp, rep, keytemp, datatemp), which corresponds to 2(logm+ 1 + `+ `) memory. Thus, the total
local memory requirement per processor is bounded by O(logm+ `).
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Oblivious Aggregation Procedure OblivAgg (w.r.t. Agg)
Input: Each CPU i ∈ [m] holds a pair (keyi, datai).
Output: Each CPU i ∈ [m] outputs a triple (repi, keyi, aggdatai) corresponding to either
(dummy,⊥,⊥) or with aggdatai = Agg({dataj : keyj = keyi}), as further specified in Section 3.2.

1. Sort on keyi. Each CPUi initializes a triple (sourceidi, keytempi, datatempi)← (i, keyi, datai).

For each layer L1, . . . , Ld in the sorting network:

• Let L` = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer `.

• In parallel, for each t ∈ [m/2], the corresponding pair of CPUs (CPUit , CPUjt) perform
the following pairwise sort w.r.t. key:

If keytempjt < keytempit , then
swap (sourceidit , keytempit , datatempit)↔ (sourceidjt , keytempjt , datatempjt).

2. Aggregate to left. For t = 0, 1, . . . , logm:

• (Pass to left). Each CPUi for i > 2t sends his current pair (keytempi, datatempi) to
CPUi−2t .

• (Aggregate). Each CPUi for i < m − 2t receiving a pair (keytempj , datatempj) will
aggregate it into own pair if the keys match. That is, if keytempi = keytempj , then set
datatempi ← Agg(datatempi, datatempj). In both cases, the received pair is then erased.

The left-most CPUi with keytempi = key now has Agg({datatempj : keytempj = key})).
3. Identify representatives. For each value keyj , the left-most CPU i currently holding

keytempi = keyj will identify himself as (temporary) representative.

• Each CPUi for i < m: send keytempi to right-hand neighbor, CPUi+1.

• Each CPUi for i > 1: If the received value keytempi−1 matches his own keytempi, then
set repi ← “dummy” and zero out keytempi ← ⊥, datatempi ← ⊥. Otherwise, set repi ←
“rep”. (CPU1 always sets rep1 ← “rep”).

4. Reverse sort (i.e., sort on sourceidi). Return aggregated data to a requesting CPU.

For each layer L1, . . . , Ld in the sorting network:

• Let L` = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer `.

• Each CPUi initializes idtemp← sourceidi. In parallel, for each t ∈ [m/2], the correspond-
ing pair of CPUs (CPUit , CPUjt) perform the following pairwise sort w.r.t. sourceid:

If idtempjt < idtempit , then
swap (idtempit , repit , keytempit , datatempit)↔ (idtempjt , repjt , keytempjt , datatempjt).

At the conclusion, each CPUi holds a tuple (idtempi, repi, keytempi, datatempi) with idtempi =
i and keytempi = keyi.

5. Output. Each CPUi outputs the triple (repi, keyi, datatempi).

Figure 6: Space-efficient oblivious data aggregation procedure.
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Property (3): We now prove that the protocol results in the desired output. Consider the values
stored by each processor at the conclusion of each phase of the protocol.

After the completion of Step 1, by the correctness of the utilized sorting network, it holds that
each CPUi holds a tuple (sourceidi, keytempi, datatempi) such that the list (sourceid1, . . . , sourceidm)
is some permutation of [m], and keytempi ≤ keytempj for every i < j. Note that for each i it always
the case that the pair (keytempi, datatempi) currently held by CPUi is precisely the original input
pair of CPUj for j = sourceidi.

For the Aggregation phase in Step 2, we make the following claim.

Claim 3.11. At the conclusion of Aggregate Left (Step 2), the CPU of lowest index i for which
keytempi = key holds datatempi = Agg({dataj : keyj = key}) (for each value key).

Proof. Fix an arbitrary value key, and let Skey ⊂ [m] denote the subset of processors for which
keytempi = key. From the previous sorting step, we are guaranteed that Skey consists of an interval
of consecutive processors istart, . . . , istop. Now, consider any j ∈ Skey (whose data CPU istart wishes
to learn).

For any pair of indices i < j ∈ Skey, denote by ti,j := max{t ∈ [logm] : (j ⊕ istart)t = 1} ∈
{0, 1, . . . , logm− 1} the highest index in which the bit representations of j and istart disagree. We
now prove that for each such pair i, j, CPUi will learn CPUj ’s data after round ti,j ≤ logm. The
claim will follow, by applying this statement to each pair (istart, j) with j ∈ Skey.

Induct on ti,j . Base case ti,j = 0: follows immediately from the protocol construction; namely,
in the 0-th round, each CPU j sends his data to CPU (j − 1), which in this case is precisely CPU
i. Now, suppose the inductive hypothesis holds for all i < j with ti,j = t, and consider a pair i < j
with ti,j = t+ 1. In round t+ 1 of the protocol, processor i receives from processor (i+ 2t+1) the
collection of all information it has aggregated up to round t. By the definition of ti,j , we know
that i < (i + 2t+1) ≤ j, and that t(i+2t+1),j ≤ t. Indeed, we know that i and j differ in bit index
(t + 1), and no higher; thus, (i + 2t) must agree with j in index (t + 1) in addition to all higher
indices. But, this means by the inductive hypothesis that CPU (i+ 2t) has learned CPU j’s data
in a previous round. Thus, CPU i will learn CPU j’s data in round t+ 1, as desired.

In Step 3, each processor learns whether his left-hand neighbor holds the same temporary key
as he does; that is, he learns whether or not he is the left-most CPU holding tempkeyi (and, in
turn, holds the complete aggregation of all data relating to this key). Each processor for whom
this is not the case sets his tuple to (dummy,⊥,⊥).

At this point in the protocol, the processors have successfully reached the state where a single
self-identified representative for each queried key holds the desired data aggregation. The final
step is to return these information tuples to some CPU who originally requested this key. This is
achieved in the final reverse sort (Step 4). Namely, by the correctness of the implemented sorting
network, at the conclusion of Step 4 each CPUi holds a tuple (idtempi, repi, keytempi, datatempi)
such that the ordered list (idtemp1, . . . , idtempm) is precisely the ordered list 1, . . . ,m. Since the
tuples (idtempi, repi, keytempi, datatempi) are never modified (only swapped between processors), it
remains to show that each non-dummy (repi, keytempi, datatempi) tuple is received by an appropri-
ate requesting CPU. But, that is precisely the information held by idtempi: the identity of the CPU
who made the original request with respect to key keytempi. Thus, the reverse sort successfully
routes the aggregated tuples back to a CPU making the correct key request.
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Property (4): Since we utilize a sorting network with fixed topology, and the aggregate-to-
left functionality has fixed communication topology, the inter-CPU communication patterns are
constant, independent of the initial CPU inputs.

3.2.3 Oblivious Multicasting

Our goal for Oblivious Multicasting is dual to that of the previous section: Namely, a subset of
CPUs must deliver information to (unknown) collections of other CPUs who request it. This is
abstractly modeled as follows, where keyi denotes which data item is requested by each CPU i.

Oblivious Multicasting:

Input: Each CPU i holds (keyi, datai) with the following promise. Let K =
⋃{keyi} denote the

set of distinct keys. For every key ∈ K, there exists a unique agent i with keyi = key such that
datai 6= ⊥; let datakey denote such datai.

Goal: Each agent i outputs outi = (keyi, datakeyi).

Figure 7 contains the protocol OblivMCast for achieving oblivious multicasting in a space-efficient
fashion. This procedure is roughly the “dual” of the OblivAgg protocol in the previous section.

Lemma 3.12 (Space-Efficient Oblivious Multicasting). Suppose m processors initiate protocol
OblivMCast on respective inputs {(keyi, datai)}i∈[m] of size ` that satisfies the promise specified
above. Then at the conclusion of execution, each processor i ∈ [m] outputs a pair (key′i, data′i) such
that the following properties hold (where asymptotics are w.r.t. m):

1. The protocol terminates in O(logm) rounds.

2. The local memory and computation required by each processor is Õ(logm+ `).

3. (Correctness). For every i, key′i = keyi, and data′i = datakeyi.

4. (Obliviousness). The inter-CPU communication patterns are independent of the inputs (keyi, datai).

Proof. Identical to the proof of Oblivious Aggregation, Lemma 3.10.

3.3 Putting Things Together

We now combine the so-called “Heavy-OPAccess” structure of our OPRAM formalized in Section 3.1
(Figure 2) within the simplified “free CPU communication” setting, together with the (oblivious)
Route, OblivAgg, and OblivMCast procedures constructed in the previous subsections (specified in
Figures 5,6,7). For simplicity, we describe the case in which the number of CPUs m is fixed;
however, it can be modified in a straightforward fashion to the more general case (as long as the
activation schedule of CPUs is a-priori fixed and public).

Recall the steps in Heavy-OPAccess where large memory/bandwidth are required.

• In Step 1, each CPUi broadcasts (ri, vi) to all CPUs. Let bi = bri/αc. This is used to
aggregate instructions to each bi and determine its representative CPU rep(bi).

• In Step 4, each CPUi broadcasts (bi, `i) or (⊥, `i). This is used to aggregate instructions to
each buckets along path `i about which blocks bi’s to be removed.

22



Oblivious Multicasting Procedure OblivMCast
Input: Each CPU i holds (keyi, datai) with the following promise. Let K =

⋃{keyi} denote the
set of distinct keys. For every key ∈ K, there exists a unique agent i with keyi = key such that
datai 6= ⊥; let datakey denote such datai.
Output: Each agent i outputs outi = (keyi, datakeyi).

1. Sort on (keyi, datai). Each CPUi initializes (sourceidi, keytempi, datatempi)← (i, keyi, datai).

For each layer L1, . . . , Ld in the sorting network:

• Let L` = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer `.

• In parallel, for each t ∈ [m/2], the corresponding pair of CPUs (CPUit , CPUjt) perform
the following pairwise sort w.r.t. key, additionally pushing payloads datakey to the left:

If (i) keytempjt < keytempit , or (ii) keytempjt = keytempit and datatempjt 6= ⊥, then
swap (sourceidit , keytempit , datatempit)↔ (sourceidjt , keytempjt , datatempjt).

2. Multicast to right. For t = 0, 1, . . . , logm:

• (Pass to right). Each CPUi for i ≤ m− 2t sends his current pair (keytempi, datatempi) to
CPUi+2t .

• (Aggregate). Each CPUi for i > 2t receiving a pair (keytempj , datatempj) with j =
i − 2t update its data as follows. If keytempi = keytempj and datatempj 6= ⊥, then set
datatempi ← datatempj .

Every CPU i now holds (keytempi, datatempi) = (key, datakey) for some key ∈ K.

3. Reverse sort (i.e., sort on sourceidi). Return received data to an original requesting CPU.

For each layer L1, . . . , Ld in the sorting network:

• Let L` = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer `.

• Each CPUi initializes idtemp← sourceidi. In parallel, for each t ∈ [m/2], the correspond-
ing pair of CPUs (CPUit , CPUjt) perform the following pairwise sort w.r.t. sourceid:

If idtempjt < idtempit , then
swap (idtempit , keytempit , datatempit)↔ (idtempjt , keytempjt , datatempjt).

At the conclusion, each CPUi holds a tuple with (idtempi, keytempi, datatempi) with idtempi =
i, keytempi = keyi, and datatempi = datakeyi .

4. Output. Each CPUi outputs outputi = (keyi, datakeyi).

Figure 7: Space-efficient oblivious data multicasting procedure.
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• In Step 5, each (representative) CPUi broadcasts (bi, v̄i, `
′
i). This is used to aggregate blocks

to be inserted to each bucket in appropriate level of the tree.

• In Step 6, each CPUi broadcasts `flush
i . This is used to aggregate information about which

buckets the flush operation should perform.

• In Step 7, each (representative) CPUrep(b) broadcasts the old value vold of block b to all CPUs,
so that each CPU receives desired information.

We will use oblivious aggregation procedure to replace broadcasts in Step 1, 4, and 6; the
parallel insertion procedure to replace broadcasts in Step 5, and finally the oblivious multicast
procedure to replace broadcasts in Step 7.

Let us first consider the aggregation steps. For Step 1, to invoke the oblivious aggregation
procedure, we set keyi = bi and datai = (ri mod α, vi), and define the output of Agg({(ui, vi)})
to be a vector v̄ = v̄[1] · · · v̄[α] of read/write instructions to each memory cell in the block, where
conflicts are resolved by writing the value specified by the smallest CPU: i.e., ∀s ∈ [α], take v̄[s]← vj
for minimal j such that uj = s and vj 6= ⊥. By the functionality of OblivAgg, at the conclusion of
OblivAgg, each block bi is assigned to a unique representative (not necessarily the smallest CPU),
who holds the aggregation of all instructions on this block.

Both Step 4 and 6 invoke UpdateBuckets to update buckets along m random paths. In our
rudimentary solution, the paths (along with instructions) are broadcast among CPUs, and the
buckets are updated level by level. At each level, each update bucket is assigned to a representative
CPU with minimal index, who performs aggregated instructions to update the bucket. Here, to
avoid broadcasts, we invoke the oblivious aggregation procedure per level as follows.

• In Step 4, each CPU i holds a path `i and a block bi (or ⊥) to be removed. Also note that
the buckets along the path `i are stored locally by each CPU i, after the read operation in
the previous step (Step 3). At each level lev ∈ [log n], we invoke the oblivious aggregation

procedure with keyi = `
(lev)
i (the lev-bits prefix of `i) and datai = bi if bi is in the bucket of

node `
(lev)
i , and datai = ⊥ otherwise. We simply define Agg({datai}) = {b : ∃datai = b} to

be the union of blocks (to be removed from this bucket). Since datai 6= ⊥ only when datai
is in the bucket, the output size of Agg is upper bounded by the bucket size K. By the

functionality of OblivAgg, at the conclusion of OblivAgg, each bucket `
(lev)
i is assigned to a

unique representative (not necessarily the smallest CPU) with aggregated instruction on the
bucket. Then the representative CPUs can update the corresponding buckets accordingly.

• In Step 6, each CPU i samples a path `flush
i to be flushed and the instructions to each bucket

are simply left and right flushes. At each level lev ∈ [log n], we invoke the oblivious aggregation

procedure with keyi = `
flush(lev)
i and datai = L (resp., R) if the (lev+1)-st bit of `flush

i is 0 (resp.,
1). The aggregation function Agg is again the union function. Since there are only two possible
instructions, the output has O(1) length. By the functionality of OblivAgg, at the conclusion

of OblivAgg, each bucket `
flush(lev)
i is assigned to a unique representative (not necessarily the

smallest CPU) with aggregated instruction on the bucket. To update a bucket `
flush(lev)
i , the

representative CPU loads the bucket and its two children (if needed) into local memory from
the server, performs the flush operation(s) locally, and writes the buckets back.

Note that since we update m random paths, we do not need to hide the access pattern, and thus
the dummy CPUs do not need to perform dummy operations during UpdateBuckets. A formal
description of full-fledged UpdateBuckets can be found in Figure 8.
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For Step 5, we rely on the parallel insertion procedure of Section 3.2.1, which routes blocks to
proper destinations within the relevant level of the server-held data tree in parallel using a simple
oblivious routing network. The procedure is invoked with msgi = bi and addri = `′i.

Finally, in Step 7, each representative CPU rep(b) holds information of the block b, and each
dummy CPU i wants to learn the value of a block bi. To do so, we invoke the oblivious multicast
procedure with keyi = bi and datai = voldi for representative CPUs and datai = ⊥ for dummy CPUs.
By the functionality of OblivMCast, at the conclusion of OblivMCast, each CPU receives the value
of the block it originally wished to learn.

The Final Compiler. For convenience, we summarize the complete protocol. Our OPRAM
compiler O, on input m,nt ∈ N and a m-processor PRAM program Π with memory size nt (which
in recursion level t will be nt = n/αt), will output a program Π′ that is identical to Π, but where each
Access(r, v) operation is replaced by a sequence of operations defined by subroutine OPAccess(r, v),
which we will construct over the following subsections. The OPAccess procedure begins with m
CPUs, each with a requested data cell ri (within some α-block bi) and some action to be taken
(either ⊥ to denote read, or vi to denote rewriting cell ri with value vi).

1. Conflict Resolution: Run OblivAgg on inputs {(bi, vi)}i∈[m] to select a unique representative
rep(bi) for each queried block bi and aggregate all CPU instructions for this bi (denoted v̄i).

2. Recursive Access to Position Map: Each representative CPU rep(bi) samples a fresh
random leaf id `′i ← [nt] in the tree and performs a (recursive) Read/Write access command
on the position map database `i ← OPAccess(t+ 1, (bi, `

′
i)) to fetch the current position map

value ` for block bi and rewrite it with the newly sampled value `′i. Each dummy CPU performs
an arbitrary dummy access (e.g., garbage← OPAccess(t+ 1, (1, ∅))).

3. Look Up Current Memory Values: Each CPU rep(bi) fetches memory from the database
nodes down the path to leaf `i; when bi is found, it copies its value vi into local memory.
Each dummy CPU chooses a random path and make analogous dummy data fetches along it,
ignoring all read values. (Recall that simultaneous data reads do not yield conflicts).

4. Remove Old Data: For each level in the tree,

• Aggregate instructions across CPUs accessing the same “buckets” of memory (correspond-
ing to nodes of the tree) on the server side. Each representative CPU rep(b) begins with the
instruction of “remove block b if it occurs” and dummy CPUs hold the empty instruction.
(Aggregation is as before, but at bucket level instead of the block level).

• For each bucket to be modified, the CPU with the smallest id from those who wish to
modify it executes the aggregated block-removal instructions for the bucket. Note that
this aggregation step is purely for correctness and not security.

5. Insert Updated Data into Database in Parallel: Run Route on inputs {(m, (msgi, addri))}i∈[m],
where for each rep(bi), msgi = (bi, v̄i, `

′
i) (i.e., updated block data) and addri = [`′i]logm (i.e.,

level-logm-truncation of the path `′i), and for each dummy CPU, msgi, addri = ∅.
6. Flush the ORAM Database: In parallel, each CPU initiates an independent flush of the

ORAM tree. (Recall that this corresponds to selecting a random path down the tree, and
pushing all data blocks in this path as far as they will go). To implement the simultaneous
flush commands, as before, commands are aggregated across CPUs for each bucket to be
modified, and the CPU with the smallest id performs the corresponding aggregated set of
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UpdateBuckets (m, (commandi, pathi))
Let path(1), path(2), . . . , path(logn) denote the bit prefixes of length 1 to log n of path.

For each level lev = 1, . . . , log n of the tree:

1. The CPUs invoke the oblivious aggregation procedure OblivAgg as follows.

Case 1: commandi = remove-bi.
Each CPU i sets keyi = path

(lev)
i and datai = bi if bi is in the bucket of node `

(lev)
i , and

datai = ⊥ otherwise. Use the union function Agg({datai}) = {b : ∃datai = b} as the
aggregation function.

Case 2: commandi = flush.
Each CPU i sets keyi = path

(lev)
i and datai = L (resp., R) if the (lev + 1)-st bit of pathi is

0 (resp., 1). Use the union function as the aggregation function.

At the conclusion of the protocol, each bucket path
(lev)
i is assigned to a representative CPU

bucket-rep(path
(lev)
i ) with aggregated commands agg-commandi.

2. Each representative CPU performs the updates:

If i 6= bucket-rep(path
(lev)
i ), do nothing. Otherwise:

Case 1: commandi = remove-bi.
Remove all blocks b ∈ agg-commandi in the bucket path

(lev)
i by accessing memory bucket

path
(lev)
i and rewriting contents.

Case 2: commandi = flush.
Access memory buckets path

(lev)
i , path

(lev)
i ||0, path

(lev)
i ||1, perform flush operation locally

according to agg-commandi ⊂ {L,R}, and write the contents back.

Specifically, denote the collection of stored data blocks b in path
(lev)
i by ThisBucket. Parti-

tion ThisBucket = ThisBucket-L ∪ ThisBucket-R into those blocks whose associated leaves
continue to the left or right (i.e., {bj ∈ ThisBucket : ¯̀(lev+1)

j = mypath(lev)||0}, and similar
for 1).

• If L ∈ agg-commandi, then set ThisBucket ← ThisBucket \ ThisBucket-L, and insert

data items ThisBucket-L into bucket path
(lev)
i ||0.

• If R ∈ agg-commandi, then set ThisBucket ← ThisBucket \ ThisBucket-R, and insert

data items ThisBucket-L into bucket path
(lev)
i ||0.

Figure 8: A space-efficient implementation of the UpdateBuckets procedure.
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commands. (For example, all CPUs will wish to access the root node in their flush; the
aggregation of all corresponding commands to the root node data will be executed by the
lowest-numbered CPU who wishes to access this bucket, in this case CPU 1).

7. Return Output: Run OblivMCast on inputs {(bi, vi)}i∈[m] (where for dummy CPUs, bi, v̄i :=
∅) to communicate the original (pre-updated) value of each data block bi to the subset of
CPUs that originally requested it.

A few remarks regarding our construction.

Remark 3.13 (Truncating OPRAM for Fixed m). In the case that the number of CPUs m is fixed
and known a priori, the OPRAM construction can be directly trimmed in two places.

Trimming tops of recursive data trees: Note that data items are always inserted into the OPRAM
trees at level logm, and flushed down from this level. Thus, the top levels in the ORAM tree are
never utilized. In such case, the data buckets in the corresponding tops of the trees, from the root
node to level logm for this bound, can simply be removed without affecting the OPRAM.

Truncating recursion: In the t-th level of recursion, the corresponding database size shrinks to
nt = n/αt. In recursion level logα n/m (i.e., where nt = m), we can then achieve oblivious data
accesses via local CPU communication (storing each block i ∈ [nt] = [m] locally at CPU i, and
running OblivAgg,OblivMCast directly) without needing any tree lookups or further recursion.

Size%n"

Size%n/α%

Size%n/α2%

Size%n/αi"

…%

log%m"m"

[Truncated%tree%tops]%

[Truncated%recursion]%

Remark 3.14 (Collision-Freeness). In the compiler above, CPUs only access the same memory
address simultaneously in the (read-only) memory lookup in Step 3. However, a simple tweak to
the protocol, replacing the direct memory lookups with an appropriate aggregation and multicast
step (formally, the procedure UpdateBuckets as described in the appendix), yields collision freeness.

4 Garbled PRAM

As an application of OPRAM, we demonstrate a construction of garbled parallel RAMs. Specifi-
cally, we show that the IBE-based garbled RAM of Gentry et al. [GHL+14] (which in turn builds
upon [LO13b]) can be directly generalized to garble PRAMs in a simple and modular way, given
an OPRAM compiler with certain properties, and instead relying on 2-level hierarchical IBE. We
then show (in the appendix) how to obtain these required properties generically from any OPRAM,
and how to reduce the assumption from 2-HIBE back to IBE with a further modification of the
scheme. We remark that constructions of garbled RAM can be obtained directly from one-way
functions [GHL+14, GLOS15, GLO15], and leave as an interesting open problem how to extend
these techniques to the PRAM setting.

We start by generalizing the notion of garbled RAM [LO13b,GHL+14] to garbled PRAM, where
the main difference is that a PRAM program Π consists of m CPUs. We allow each CPU ` to take a
short input x`, which can be thought of as the initial CPU state. We model the garbling algorithm
and garbled program evaluator also as PRAMs, and aim to preserve the parallel runtime of Π.
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4.1 Definition of Garbled PRAM

Following [GHL+14], we consider a scenario where an initial memory data meminit is garbled once,
and then multiple garbled PRAM programs can be executed in a fixed order with the memory
changes persisting throughout executions. Our presentation here follows closely to [GHL+14].

Definition 4.1 (Garbled PRAM). A garbled PRAM scheme consists of a tuple of procedures
(GData,GProg,GInput,GEval) with the following syntax:

• ˜mem ← GData(mem, k): Takes initial memory data mem ∈ {0, 1}n and a key k. Outputs the
garbled data ˜mem.

• (Π̃, kin) ← GProg(Π, k, n, tinit, tcur): Takes a key k and a description of a RAM program P
with memory-size n and run-time consisting of tcur parallel CPU timesteps. In the case of
garbling multiple programs, we also provide tinit indicating the cumulative timesteps executed
by all previous programs. Outputs a garbled program Π̃ and an input-garbling-key kin.

• x̃ ← GInput(x, kin): Takes an input vector x = (x1, . . . , xm) and input-garbling-key kin and
outputs a garbled input vector x̃ = (x̃1, . . . , x̃m).

• y = GEval ˜mem(Π̃, x̃): Takes a garbled program ˜mem, garbled input vector x̃ and garbled
memory data ˜mem and computes the output y = ΠD(x).

We model these procedures as PRAM programs, and require both GProg and GEval to preserve
the parallel runtime of Π. We additionally require GData to be parallelizable across CPUs. On the
other hand, the size of the garbled program may be proportional to the total time complexity of Π.

• (Parallel) Efficiency: The parallel runtime of GProg and GEval must be |CΠ
CPU |·tcur ·polylog(n)·

poly(κ), where κ is the security parameter. The parallel time of GData must be n/m·polylog(κ),
where m is the number of processors of the PRAM program to evaluate GData.

The correctness and security requirements of garbled PRAM are identical to that of garbled
RAM. Consider the following experiment: choose a key k ← {0, 1}κ, ˜mem← GData(mem, k) and for
i = 1, . . . , s: (Π̃i, k

∈
i ) ← GProg(Pi, n, t

init
i , ti, k), and x̃i ← GInput(xi, k

∈
i ), where tiniti =

∑
j∈[i−1] ti

denotes the parallel runtime of all programs prior to Πi. Let

(y′1, . . . , y
′
s) = (GEval(Π̃1, x̃1), . . . ,GEval(Π̃s, x̃s))

˜mem

denote the output of evaluating the garbled programs sequentially over the garbled memory. We
require

• Correctness: Pr[y′i = yi∀i ∈ [s]] ≥ 1− µ(κ), where µ(·) is a negligible function.

• Security: There exists a universal simulator Sim such that

( ˜mem, Π̃1, . . . , Π̃s, x̃1, . . . , x̃s) ≈ Sim(1κ, {Pi, ti, yi}si=1, n).

We also define a weaker security notion of security with unprotected memory access (UMA) for
garbled PRAM in an analogous way to [GHL+14], where the simulator is additionally given the
initial memory data mem, as well as the history of memory access throughout the computation,
including both access pattern and memory update content.
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Definition 4.2 (UMA security). Let MemAccess = {(addrRead
j,` , addrWrite

j,` , bWrite
j,` ) : j = 1, . . . , t, ` =

1, . . . ,m} denote the output memory instruction of the CPU-step for each CPU and each timestep of
the execution. A garbled PRAM has (weaker) security with Unprotected Memory Accesses (UMA)
if in the place of the Security requirement in Definition 4.1, we require only existence of a universal
simulator Sim such that

( ˜mem, Π̃1, . . . , Π̃s, x̃1, . . . , x̃s) ≈ Sim(1κ, {Pi, ti, yi}si=1,mem,MemAccess, n).

Finally, we also define a predictably timed writes (ptWrites) property for a PRAM program in
an analogous way, which is used in intermediate steps of our garbled PRAM construction.

Definition 4.3 (ptWrites). A collision-free PRAM program Π has predictably timed writes (ptWrites)
if there exists a poly-size circuit WriteTime such that the following holds for any execution of
Π, each timestep j, and each CPU `. Let the input/outputs of the timestep of the CPU be
CΠ
CPU (statej,`, b

Read
j,` ) = (statej+1,`, addrRead

j,` , addrWrite
j,` , bWrite

j,` ). Then, u = WriteTime(j, `, statej,`, addrRead
j,` )

is the largest value of u < j such that some CPU ` wrote to location addrRead
j,` at timestep u.

4.2 Overview of GPRAM Construction

At a high level, our construction takes the following form, analogous to the steps in [GHL+14]:

PRAM
Π

(1)−→
OPRAM+

Collision free
O(Π)

(2)−→
ptWrites,

Collision free
O(Π)cf

tw

(3)−→ Garbled PRAM
G(Π)

Step (1) is a collision-free “OPRAM+” compiler, consisting of standard collision-free OPRAM (as
defined and constructed in the previous sections), together with a simple layer of symmetric-key
encryption (SKE). Namely, data is encrypted using the SKE under a random key k that is hardcoded
into each CPU. Within each CPU step, read values are decrypted before computation, and values
to write are first encrypted (both using k). Thus, OPRAM+ hides both the memory content and
memory access patterns of the original program (i.e., these values can be simulated).

Step (2) converts a collision-free OPRAM+ compiled program to one with predictably timed
writes (ptWrites), while preserving the above simulation property and collision freeness. This can
be achieved by combining the generic transformation of [GHL+14] to obtain the ptWrites property,
together with techniques developed in our OPRAM construction in order to regain collision-freeness.
We elaborate on this transformation in Section 4.3.

Step (3) converts any collision-free, ptWrites PRAM into one with security with unprotected
memory access (UMA), as defined by [GHL+14] (i.e., that it leaks only memory access patterns
and database memory contents). When composed with the initial OPRAM+ compiler, this yields
full GPRAM security. We elaborate on this transformation in Section 4.4

4.3 Obtaining ptWrites and Collision-Freeness

As part of their garbled RAM construction, Gentry et al. [GHL+14] provide a general transforma-
tion taking any (sequential) RAM program generically to an equivalent one with the predictably
timed writes (ptWrites) property. The same approach may be taken in the PRAM setting, but
direct application of the [GHL+14] transformation introduces access collisions across CPUs, which
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will be a problem when attempting to garble the program (see Section 4.4). To avoid this, we will
apply a second transformation on top that removes these collisions. We make use of the specific
structure of the [GHL+14] transformation (and assume that we begin with an original PRAM that
is collision-free).

The [GHL+14] transformation applies a binary tree on top of the original data, where the leaves
of the tree correspond to the bits of the original data, and each internal node of the tree contains
the last write time of each of its two children (initially, these are all set to 0). For each memory
access request to location addr in the original data, the transformed program will now access the
path of nodes in the tree down the path to addr. The last-write time of the root corresponds to
the total number of write operations performed so far, which can be stored within the state of the
computation. Whenever a node is accessed, we temporarily remember the last-write-time of its
children (by keeping this info in the state). This ensures that before the contents of any node in
the tree are read (including the actual data at the leaves), its last-write time is known. To write
to some location in the original data, the same procedure is followed as in the case of a read, but
after the values in each node are read, we also increment the last-write-time for the corresponding
child on the path to the leaf. The resulting overhead is log n (for data size n), since each memory
access is now performed by accessing a log n-depth path in the tree.

Now, consider imposing the same tree structure in the PRAM setting. If the original PRAM was
collision free, then no two CPUs will wish to access the same leaf node addr in any step. However,
they will necessarily have collisions in nodes higher in the tree.

We observe that this is precisely the same scenario as faced in our OPRAM construction, when
CPUs wished to simultaneously update distinct paths within the ORAM data tree. To address this,
we provided the UpdateBuckets procedure (Figure 8), where for each level of the tree, the CPUs
perform a “coordination stage” (communicating through coordinated reads/writes in the memory)
in which for every collision the CPU with the smallest id receives and implements the aggregated
collection of instructions to take place at the target memory address. This same procedure will also
successfully remove collisions in the ptWrites-compiled PRAM program. The resulting overhead is
a factor of logm, since in each level of the tree (i.e., each memory access in the ptWrites-compiled
program), the m CPUs must execute the O(logm)-cost UpdateBuckets procedure.

Theorem 4.4 (ptWrites and Collision Freeness). There exists an efficient compiler taking any
collision-free PRAM Π to a functionally equivalent collision-free PRAM Π′ with ptWrites, with
both total and parallel overhead polylog(n). If the original program has simulatable data values and
access patterns, then this property is preserved.

4.4 Obtaining UMA-Secure GPRAM

We first describe the construction of [GHL+14] for obtaining UMA-secure garbled RAM, and then
present our analogous construction for garbled PRAM.

Construction of [GHL+14] and its UMA Security. Let Π be a RAM program with ptWrites
property. Π is represented as a small CPU-step circuit CΠ

CPU which executes each single CPU step.
Namely, CΠ

CPU on input a CPU state state and a read-bit bRead read from memory, outputs an
updated CPU state state′, a next read location addrRead, write location addrWrite, and a bit value
bWrite to write to addrWrite. The RAM computation is done by iteratively applying CΠ

CPU for t
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steps starting with some initial state stateinit and memory meminit, where t is the runtime of the
computation.

At a high level, Π is garbled by garbling t copies of some “augmented” CPU-step circuit CΠ
CPU+ .

The garbled CPU-step circuits can pass the CPU state securely from one to the next by identifying
the state output wire labels of j-th garbled circuit C̃Π

CPU+(j) to the state input wire labels of j+1-st

garbled circuit C̃Π
CPU+(j+1). The main issue is to handle memory accesses, which deal with runtime

information that cannot be determined in the compile time (i.e., the time to generate garbled
program). To handle a memory read, C̃Π

CPU+(j) outputs some translation information translate,

which together with the garbled memory bit ˜mem[addrRead] allows the evaluator to compute the
input label of the read-bit bRead of the next garbled circuit C̃Π

CPU+(j + 1). To do so, C̃Π
CPU+(j) has

both labels label0 and label1 of C̃Π
CPU+(j+1)’s bRead wire hard-wired in, the translation information

translate consists of encryptions (ct0, ct1) of the labels (label0, label1) under distinct keys, and the
garbled memory bit ˜mem[addrRead] stores exactly one of the secret key skb that allows the evaluator
to decrypt labelb of the bit value of addrRead while hides the other labelb̄. In this way, writing to
memory corresponds to outputting an appropriate version of a secret key.

A subtle circularity issue may arise in the above strategy. Roughly speaking, the security of
garbled circuits relies on one label for each input wire being hidden, which in ture relies on the
semantic security of the encryption scheme. However, to update memory, C̃Π

CPU+(j) needs to have
the ability to produce secret keys (say, with some master secret key hard-wired in). Thus, semantic
security in turn relies on the security of the garbled circuits. To cope with circularity, [GHL+14]
relies on a weaker “bounded” variant of 2-level hierachical IBE (HIBE) called timed IBE (TIBE),
which can be constructed based on any regular IBE. Here, we present their construction based
on 2-level HIBE, which enables a clean generalization to the parallel setting. We discuss how to
modify the construction to reduce the assumption back down to IBE in the end of this section.

Specifically, in the [GHL+14] construction, a garbled memory bit ˜mem[addr] is a secret key skid

of a 2-level HIBE scheme with identity id = (lwtime, (addr, b)) indexed by the timestep lwtime that
the memory is updated, the address addr of the memory, and the bit value b stored in the memory.
Here, the first-level id is the timestep lwtime, and the second-level id is (addr, b). To compute
the translation information translate = (ct0, ct1) for read location addrRead, C̃Π

CPU+(j) relies on the

ptWrites property to compute the last access time lwtime of addrRead, and encrypts each labelb
(which are both hardwired) with identity (lwtime, addrRead, b) using the hardwired master public
key mpk. Namely, ctb = Encmpk(labelb, (j, (addrRead, b))) for each b ∈ {0, 1}. To write bWrite to
memory location addrWrite, a delegation key dskj is hard-wired in C̃Π

CPU+(j) to generate skid with

identity id = (j, (addrWrite, bWrite)). The initial memory content is garbled using timestep lwtime = 0,
namely, ˜meminit[addr] = sk(0,(addr,meminit[addr])).

At a high level, the UMA security is proved by a sequence of hybirds that “erase” the compu-
tation by “erasing” the garbled circuits and “unused” input labels step by step “forward in time.”
Namely, starting from the real garbled program, the first garbled CPU-step circuit C̃Π

CPU+(j = 1)
is “erased” by replacing it with a simulated one, then the unused input lables of the second garbled
CPU-step circuit C̃Π

CPU+(2) are “erased” by replacing ciphertexts in translate with encryption of

dummy, then C̃Π
CPU+(2) is erased, and so on. This can be done since each time when we want to

erase a garbled circuit C̃Π
CPU+(j), we are in a hybrid where one of each input wire labels is infor-

mation theoretically erased, and when we want to erase the “unused” input label for C̃Π
CPU+(j+1),

the ciphertexts are encrypted with timestep ≤ j and all “future” garbled circuits only contain
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delegation keys with timestep ≥ j + 1. At the end, this leads to a hybrid that can be simulated by
a UMA simulator who is given the inital memory content as well as complete history of memory
access.

Our Construction of UMA-Secure Garbled PRAM. Let Π be a PRAM program with
ptWrites and collision free property with CPU-step circuit CΠ

CPU (recall that all CPUs have the
same CPU program with the same input/output interface as the RAM program). We show that
the above construction of [GHL+14] can be directly generalized to garble Π with UMA security.

For each timestep j, instead of one garbled CPU-step circuit C̃Π
CPU+(j), we generate m garbled

CPU-step circuits C̃Π
CPU+(j, `), one for each CPU ` ∈ [m]. As before, each garbled CPU-step circuit

C̃Π
CPU+(j, `) can pass its CPU state securely to the next timestep C̃Π

CPU+(j + 1, `) by identifying
wire labels. Also, thanks to the collision free and ptWrites property, memory access can be handled
in the same way. Namely, each garbled memory bit ˜mem[addr] is a secret key skid with iden-
tity id = (lwtime, (addr, b)). To handle memory read, C̃Π

CPU+(j, `) computes translate = (ct0, ct1)

with ctb = Encmpk(labelb, (j, (addrRead, b))) using hard-wirded master public key mpk. To han-
dle memory write, delegation key dskj is hard-wired in C̃Π

CPU+(j, `) to generate skid with identity

id = (j, (addrWrite, bWrite)). Note that all CPUs handle memory access in the same way, independent
of their CPU id `.

Note that ptWrites of the original program Π is required for correctness of the scheme (as
in [GHL+14]), and that collision-freeness is crucial for security. Indeed, if there is a write collision
of two CPUs in the same timestep with different write values, this would release both 0 and 1 HIBE
secret keys for the corresponding memory address in the GPRAM evaluation, which will decrypt
both the 0 and 1 input labels for the next garbled circuit who reads in this value.

• GData: The initial memory content is garbled using timestep lwtime = 0 as before. Namely,
for each location addr, the corresponding garbled data bit will be a 2-HIBE secret key corre-
sponding to identity (0, (addr,meminit[addr])): i.e., ˜meminit[addr] = sk(0,(addr,meminit[addr])).

• GProg: Generate m garbled CPU-step circuits C̃Π
CPU+(j, `), one for each CPU ` ∈ [m]. This

is done in reverse chronological order: for each timestep j, the resulting garbled input wire
labels are hardcoded into the circuit to be garbled for timestep j−1. In addition, within each
circuit for timestep j is hardcoded the 2-HIBE public key pk and a delegated secret key skj
that can generate 2-HIBE secret keys for ids (j, ·).
• GInput: Initial CPU state inputs are garbled simply as the corresponding input labels to the
m garbled circuits at initial timestep 1.

• GEval: Evaluate the m garbled circuits in parallel for each timestep, mimicking [GHL+14].

Theorem 4.5. Suppose Π is an m-processor PRAM with collision-free accesses and ptWrites.
Then, assuming the existence of 2-HIBE, the procedures (GData,GProg,GInput,GEval) described
above yield a UMA-secure garbled PRAM of size O(poly(κ) ·m · time(Π)) and (parallel) evaluation
time O(poly(κ) · time(Π)).

Sketch of proof. The size of the garbled PRAM corresponds to m · time(Π) garbled CPU-step cir-
cuits, which may be garbled in parallel time comparable to time(Π) (since CPU-step circuits for
the m CPUs may be garbled in parallel for each timestep).

The proof of security mirrors that of [GHL+14], except that we now “erase” garbled circuits
and unused input labels along two dimensions: first removing each garbled CPU circuit one by one
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for a given time step j, and then progressing “forward in time” to the next time (j + 1). This can
be done since each time when we want to erase a garbled circuit C̃Π

CPU (j, `), we are in a hybrid
where one of each input wire labels is information theoretically erased, and when we want to erase
the “unused” input label for C̃Π

CPU (j + 1, `), the ciphertexts are encrypted with timestep ≤ j and
all “future” garbled circuits only contains delegation keys with timestep ≥ j + 1.

4.5 GPRAM: Combining the Steps

Combining Theorems 4.4 and 4.5, we obtain UMA-secure GPRAM for any PRAM, assuming 2-
HIBE. It remains to combine this with the original collision-free OPRAM+step to obtain full
security, and to reduce the 2-HIBE assumption back down to IBE.

Full Security. Recall that UMA security leaks the patterns of memory accesses, and the values
held in memory during the GPRAM evaluation. Following the generic transformation of [GHL+14]
(which generalized to the parallel setting directly), when the PRAM program Π is first compiled
by OPRAM+compiler (as discussed in Section 4.2), then the final garbled PRAM program G(Π) is
fully secure. Indeed, the OPRAM+compiler precisely guarantees that these values can be simulated
without any secret information: OPRAM for the memory access patterns, and the extra layer of
SKE for the values stored in memory.

Reducing the Assumption to IBE. Note that the above construction of garbled PRAM relies
on 2-level HIBE, instead of the timed IBE (TIBE) used in [GHL+14]. The reason is that in TIBE,
each delegation key dskj can only be used to generate a single secret key skid with id = (j, ·)
(otherwise, the security breaks down). Namely, TIBE can be viewed as 2-level HIBE with “1-
bounded key delegation security.” In the PRAM setting, the m CPUs may perform parallel writes
(to distinct locations) in a timestep j, which create m secret keys with the same j. To overcome this
problem, simply “generalize” a timestep to consist of pair (t, i) corresponding to an actual timestep
t and a processor i (and record these generalized timesteps in the ptWritestree); this means that
generalize timesteps are only used once and TIBE suffices.
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