
Efficient String-Commitment from Weak Bit-Commitment and

Full-Spectrum Theorem for Puzzles

Kai-Min Chung∗(kmchung@fas.harvard.edu), Feng-Hao Liu (fenghao@cs.brown.edu),
Chi-Jen Lu (cjlu@iis.sinica.edu.tw), Bo-Yin Yang (by@crypto.tw)

(Preliminary Version)
December 26, 2009

Abstract

We study security amplification for weak bit-commitment schemes and improve the efficiency
of (black-box) transformations in both the information-theoretic and computational settings.
Let Com0 be a (weak) bit-commitment scheme that is p-hiding in the sense that no cheating
receiver can guess the committed bit correctly with probability better than (1 + p)/2, and q-
binding in the sense that no cheating sender can open in two ways with probability better than
q, for some constants p, q with p + q < 1. The task is to transform Com0 efficiently to a
commitment scheme Com that is 2−k-hiding and 2−k-binding, where the efficiency is measured
by the number of black-box calls to Com0.

Our transformation uses only O(k) calls to Com0 and moreover, we can commit to an Ω(k)-
bit string instead of one bit. These results improve on previous work of Damg̊ard et al. [DKS99]
and Halevi and Rabin [HR08], whose transformations require Ω(k2) black-box calls to Com0 and
commit to only one bit. To obtain our efficiency improvements, we use error-correcting codes and
randomness extractors. Similar methods have previously been applied to information-theoretic
settings or computational but non-interactive settings.

Our main technical contribution is to carry out the analysis in the interactive and computa-
tional setting of commitment schemes. In particular, we prove a “Full-Spectrum Theorem” for
puzzle systems which says that the hardness of solving at least r puzzles out of n puzzles, where
each puzzle can be solved with probability at most δ, amplifies/degrades at the essentially op-
timal, information-theoretic rate, namely, the probability that n independent Bernoulli random
variables with expectation δ have sum at least r. (Independently, Holenstein and Schoenebeck
[HS09] obtained similar results about amplification of puzzle systems.)

On the other hand, we provide a way to extract computational entropy in an interactive
setting. It is known that in a non-interactive setting, one can extract many bits of computa-
tional entropy out using Goldreich-Levin theorem [GL89]. By applying the Halevi-Rabin [HR08]
Direct Product Theorem of “sequentially” interactive weakly verifiable puzzles, we carry out the
analysis in the interactive setting.

Keywords: commitment schemes, puzzles, computational hardness, hardness amplification,
reductions, interactive proofs, entropy, extractors.

∗Supported by US-Israel BSF grant 2006060 and NSF grant CNS-0831289.

0

1 Introduction

Security amplification for weak cryptographic primitives is a basic question that has been stud-
ied since the seminal work of Yao [Yao82]. This question has been extensively studied in recent
years for a variety of primitives in various settings. For example, amplification has been studied
for encryption schemes [DNR04, HR05], commitment schemes [DKS99, HR08], oblivious transfer
[DKS99, Wul07] and others, message authentication codes (MACs) [DIJK09], digital signatures,
and pseudorandom functions [DIJK09]. Some of these works consider information-theoretic secu-
rity (e.g., [DKS99]), and others consider computational security. In addition, the various primitives
present different interactive settings, which require new proof techniques. For example, commit-
ment schemes are more interactive than encryption schemes, and the chosen-message-attack for
MACs introduces a different type of interaction. Proving amplification results is more challenging
in an interactive and computational setting.

In this paper, we continue the study of security amplification for commitment schemes in both
the information-theoretic and computational settings, which was previously studied in [DKS99,
Wul07, HR08]. Suppose a (weak) bit-commitment scheme Com0 is p-hiding in the sense that no
cheating receiver can guess the committed bit correctly with probability better than (1+ p)/2, and
q-binding in the sense that no cheating sender can open in two ways with probability better than
q, and we wish to transform Com0 to a secure commitment scheme Com that is ngl-hiding and
ngl-binding, where ngl represents a negligible function of the security parameter. Previous works
asked how weak can Com0 be while such a transformation is possible? In the information-theoretic
setting, Damg̊ard, Kilian and Salvail [DKS99] showed that a black-box transformation is possible if
and only if p+ q ≤ 1− 1/poly(s), where s is the security parameter. In the computational setting,
one way to do it is to construct a one-way function first [IL89], which can also be done provided
p + q ≤ 1 − 1/poly(s), and then construct a secure commit scheme from the one-way function
[Nao89, HILL99]. However, this construction is indirect and very inefficient. Thus, Halevi and
Rabin [HR08] analyzed the transformation of [DKS99] in the computational setting and obtained
a black-box transformation whenever p+ q ≤ 1− 1/polylog(s).

Another natural issue to consider is the efficiency of such transformations, which can be mea-
sured by the number of black-box calls to the weak commitment scheme Com0. More concretely:

Main question: Let Com0 be a p-hiding and q-binding bit commitment scheme against
time 2Ω(k) for some constants p, q with p + q < 1 and some parameter k. How many
black-box calls to Com0 are required to construct a (string) commitment scheme Com
that is 2−k-hiding and 2−k-binding against time 2Ω(k)? How many bits can Com commit
to?

The transformation of Damg̊ard et al. [DKS99] and Halevi and Rabin [HR08] works by compos-
ing two transformations alternately — a “secret sharing” transformation, which amplifies hiding
(p 7→ pn, where n is the number of “shares”) and degrades binding (q 7→ (1 − (1 − q)n)), and a
“repetition” transformation, which amplifies binding (q 7→ qn, where n is the number of “repeti-
tion”) and degrades hiding (p 7→ (1 − (1 − p)n)), up to negligible terms. The number of shares
and repetitions correspond to the number of black-box calls to Com0, and composition multiplies
these numbers. Observing that each transformation only improves one property, and it takes an
Ω(k) number of shares (resp., repetitions) to improve the hiding (resp., binding) property from
constant to 2−k, their transformation requires at least Ω(k2) black-box calls to Com0.

1 Moreover,

1Both [DKS99] and [HR08] did not optimize the efficiency of the transformation. In the information-theoretic

1

the resulting commitment scheme Com commits to only one bit. The transformation of [Wul07]
requires the use of the Goldreich-Micali-Wigderson compiler [GMW86], which is non-black-box and
inefficient.

1.1 Our Result and Contribution

We give a transformation that commits to a Ω(k)-bit string using only O(k) black-box calls to
Com0 and achieves 2−k security for both the hiding and binding properties. Our transformation
works for both the information-theoretic and computational settings. Both the transformation and
the reductions are uniform, and the reductions run in time polynomial in the security we achieved.

On the other hand, for the common framework of asymptotic security where we require “neg-
ligible” security against all PPT adversaries, i.e. s−ω(1) for another parametrization of security
parameter s, we can achieve a transformation with reduction running time in sΩ(1) = poly(s). Fur-
thermore, instead of a bit-commitment scheme, our transformation obtains a standard Ω(log s)-bit
string-commitment scheme using n′(s) black-box calls to Com0 for any n′(s) = ω(log s), improving
ω(log2 s) number of calls in the previous results [DKS99, HR08].

To bypass the Ω(k2) barrier of the previous transformation, we use error-correcting codes and
randomness extractors to amplify both hiding and binding properties simultaneously. To illustrate
the idea and our construction, let us informally use Com0(b) to denote a commitment of a bit
b, and let C : {0, 1}n → {0, 1}n′

be an error-correcting code with minimum distance δ · n′, and
Ext : {0, 1}n ×{0, 1}d → {0, 1}t a strong randomness extractor. Our transformation uses Com0, C
and Ext to commit to a string v ∈ {0, 1}t as follows.

• Commit Stage: the sender S samples a message m ∈R {0, 1}n uniformly at random, and
sequentially commits to each bit of the codeword C(m) using Com0, which generates com-

mitments Com0(C(m))
def
= (Com0(C(m)1), . . . ,Com0(C(m)n′)). Then S samples a uniform

seed z ∈R {0, 1}d, and sends the seed z with v ⊕ Ext(m, z) to the receiver R. In sum, the
commitment is Com(v) = (Com0(C(m)), z, v ⊕ Ext(m, z)).

• Reveal Stage: the sender S sends the value v, the message m and reveals each committed bit
of C(m) to R, who checks consistency and accepts or rejects accordingly.

The intuition is as follows. The binding property is improved because for an adversarial sender
S∗ to cheat, S∗ needs to decommit C(m) into two valid codewords. Since the code C has good
minimum distance, S∗ needs to successfully cheat on at least δ ·n′ committed bits out of n′ commit
bits. Intuitively, the q-binding property of Com0 says that, for each committed bit, S∗ can cheat
with probability at most q. Thus, in expectation, S∗ can cheat on at most q · n′ commit bits. If
q < (0.9)δ, the Chernoff bound says that S∗ should be able to cheat on at least δ · n′ commit bits
with only exponentially small probability in n′. The hiding property is improved because after
seeing the commitments of C(m), an adversarial receiver R∗ has only partial information about m
by the p-hiding property of Com0. Thus, Ext extracts the remaining (computational) entropy from
m, and hides the value v.

The idea of using error correcting codes and randomness extractors to amplify multiple security
properties has been used in various settings before. Crépeau [Cré97] used a very similar construc-
tion to construct information-theoretically secure bit commitment schemes using a noisy channel.
Dwork, Naor, and Reingold [DNR04] studied security amplification for encryption schemes in both

setting, O(k2) black-box calls suffices for this transformation. In the computational setting, the analysis of[HR08]
uses ω(k2) black-box calls.

2

information-theoretic and computational settings. In the information-theoretic setting, they men-
tioned that error-correcting codes can be used to amplify the security of encryption schemes. How-
ever, they did not analyze the construction in computational setting, and instead gave alternative
constructions for computational security. Later on, Holenstein and Renner [HR05] used error-
correcting codes to achieve one-way key agreement in information-theoretic setting and applied it
to bit encryption schemes in computational setting. Note that in the above applications of error-
correcting codes and extractors for security amplification, the first three are information-theoretic,
and the last one is computational but non-interactive.

Our main technical contribution is to carry out the analysis of the aforementioned trans-
formation in interactive and computational setting. In particular, we prove a “Full-Spectrum
Theorem” for hardness amplification of puzzle systems, generalizing previous known results of
[CHS05, IJK07, HR08, DIJK09].2 The result can be used to analyze the binding property. For
the hiding property, we give a way to extract computational entropy in interactive setting. Our
analysis requires the use of a specific type of randomness exactors and systematic codes with very
good rate. We elaborate on the challenges and our new ideas in detail below.

1.2 Our Techniques

1.2.1 Binding and Full-Spectrum Theorem for (Interactive) Puzzle Systems

The Task. Informally, we can view the task of breaking the binding property of Com0 as an
interactive puzzle system where the adversarial sender S∗0 is a solver and the honest receiver R0 is
a puzzle generator. The puzzle is the interactively generated commitment. S∗0 successfully solves
the puzzle if S∗0 can open the commitment in two ways. Com0 being q-binding means that no
S∗0 can solve the puzzle with probability better than q. Phrased in this way, we can describe the
task of breaking the binding property of Com as follows: S∗ gets n′ sequentially generated puzzles,
and for S∗ to cheat, S∗ is required to solve at least δ · n′ puzzles. Note that the puzzle system
is “two-phase” in the sense that the puzzles are generated sequentially (and interactively) in the
commit stage, and they are solved in parallel (non-interactively) in the reveal stage. Thus, we
need a Chernoff-type hardness amplification result for such two-phase puzzle systems saying that
if q < 0.9δ, then solving at least δn′ puzzles is exponentially small.
Context and Previous Work. The question of hardness amplification/degradation of puzzle
systems has been studied extensively in recent years. The answer to this question is very sensitive to
the model, for example, whether the puzzles are generated in parallel or sequentially, whether they
are interactive or non-interactive, and whether they are (weakly) verifiable or not? Negative results
where the hardness is not amplified are known for puzzle systems that are not verifiable [CHS05]
and interactive puzzle systems [BIN97, PW07]. Positive results are known for (weakly) verifiable
puzzle systems [CHS05] and puzzle systems with restricted type of interaction [HR08, DIJK09].

Previously, Chernoff-type Theorems are first proved by Impagliazzo, Jaiswal, and Kabanets
[IJK07] for parallel repetition of weakly-verifiable puzzles, and then extended by Dodis, Impagliazzo,
Jaiswal, and Kabanets [DIJK09] to dynamic weakly-verifiable puzzles, which are generalizations
of weakly-verifiable puzzles with interactive query oracles. Unfortunately, both their reduction
algorithms and analyses seem not applicable to the two-phase puzzles.

On the other hand, Halevi and Rabin [HR08] proved a “Direct Product Theorem” and “Hardness
Degradation Theorem” for the two-phase puzzles to analyze the binding property. Specifically, they
showed that suppose the probability of solving one puzzle is at most q, then the probability of solving

2Independently, Holenstein and Schoenebeck [HS09] obtained similar results about amplification of puzzle systems.

3

all n′ puzzles becomes at most qn
′
, and solving at least one puzzle becomes at most 1 − (1 − q)n

′

(up to negligible terms). Their reduction technique is different from that of [IJK07, DIJK09].
Our Results. We show that the three types of hardness results (Direct Prodcut, Hardness
Degradation, Chernoff-type) actually hold for the three aforementioned puzzle systems (weakly-
verifiable puzzles, dynamic weakly-verifiable puzzles3, and two-phase puzzles.) We establish a
“Full-Spectrum” Theorem that essentially says that the hardness of solving at least r puzzles out
of n′ puzzles, where each puzzle can be solved with probability at most q, amplifies/degrades at the
optimal, information-theoretic rate, namely, the probability that n′ independent Bernoulli random
variables with expectation q have sum at least r. In particular, this allows us to analyze the binding
property of our transformation.

Independent of our work, Holenstein and Schoenebeck [HS09] achieved similar results for all
puzzle systems. They had a cleaner way to deal with the parameters that handles wider range. Fur-
thermore, they consider more general “monotone combining functions” in addition to all threshold
functions in our work.

1.2.2 Hiding and Computational Entropy Extraction

The Task. As discussed in Section 1.1, the intuition behind the hiding property of our construction
is that the message m should still have a lot of “computational entropy” after the receiver seeing the
weak commitments to the bits of the codeword C(m), and thus Ext(m, z) should be pseudorandom
given the receiver’s view. Thus, we need to analyze this process of “extracting computational
entropy,” and need to do so in an interactive setting, which is a difficulty for previous approaches.
Context and Previous Work. Extracting computational entropy for non-interactive primitives
has been studied for years in cryptography and complexity theory. A classic example is the cele-
brated construction of pseudorandom generators from one-way functions by Hast̊ad, Impagliazzo,
Levin, and Luby [HILL99]. Holenstein [Hol06] recently gave a simpler and more modular proof of
their results. Following an approach of Sudan, Trevisan and Vadhan [STV01] in a different set-
ting (namely, nonuniform and non-cryptgraphic), Holenstein used a (new) version of Impagliazzo’s
Hardcore Lemma [Imp95] to “relate computational entropy to real entropy,” so that it suffices to
solve the information-theoretic analogue, namely, extracting almost uniform bits from a distribu-
tion with high real entropy. Indeed, Holenstein’s analysis works with any efficient randomness
extractor. This approach was later used by Holenstein and Renner [HR05] for amplifying weak
encryption schemes.

For the interactive primitives such as commitment schemes, Wullschleger [Wul07] applied the
Hardcore Lemma to the “honest-but-curious” model, and proved the security under this model.
One can use the Goldreich-Micali-Wigderson compiler [GMW86] to extend the security to against
malicious adversaries, but the transformation becomes non-black-box, and less efficient.

To summarize, these previous approaches using the Hardcore Lemma relied on the fact that
either the primitive is non-interactive or worked in the honest-but-curious model. Halevi and Rabin
[HR08] pointed out the difficulties of generalizing the Hardcore Lemma to interactive primitives
in general malicious model. Thus, instead of using Hardcore Lemma, Halevi and Rabin proved an
“interactive version” of Yao’s XOR lemma, and used this to extract one bit computational entropy
in the interactive setting. This indeed bypassed the barrier, but it only gives a commitment to one
bit for each XOR (which involves several calls to Com0.)
Our Result. In this work, we are able to extract computational entropy in the interactive setting

3Actually, a variant of dynamic weakly-verifiable puzzles. See discussion in Section 3.

4

with parameters that are close to the statistical setting. Our construction uses a specific strong
randomness extractor, namely the Goldreich-Levin extractor [GL89], and our analysis composes
various known techniques in a new way. A key step to handle the interactive setting is to use the
Direct Product Theorem of Halevi and Rabin [HR08] for sequential interactive puzzles. To the best
of our knowledge, this result is the first one that can extract many bits in the interactive setting.

2 Notations and Definitions

All log’s are base 2. s is the security parameter, and ngl = ngl(s) denotes a negligible function of
the security parameter. We use Un to denote uniform distribution over n-bit strings. We identify
{0, 1} with F2, the finite field of size 2. If x, y ∈ {0, 1}n are vectors in Fn

2 , then x ⊕ y ∈ {0, 1}n

denotes their sum, (i.e. bit-wise xor) and x · y def
=
∑

i xiyi ∈ {0, 1} denotes their inner product.
We review the facts we need about error-correcting codes. The lemma below says that a

short random linear code has good minimum distance with overwhelming probability. It can be
proved by standard probabilistic methods, and we omit the proof. The constants in the lemma are
computationally practical.

Definition 1 The Hamming distance of two strings x and y is the number of coordinates i such
that xi ̸= yi. Let C : {0, 1}n → {0, 1}n′

be a code. The minimum distance of C is the minimum
Hamming distance over all parts of codewords C(x) and C(y) such that x ̸= y.

Lemma 2 There exist universal constants d0, d1 such that the following holds. Let k be a positive
integer, and γ, δ ∈ [0, 1] be numbers such that γ > d0 · δ log(1/δ). Let n be an integer such that
n > d1 · k/δ. Let C : {0, 1}n → {0, 1}(1+γ)n be a random linear code defined by C(m) = (m,Am),
where A ∈ {0, 1}γn×n is a random 0-1 matrix. Then C has minimum distance at least δ · n with
probability at least 1− 2−k/2.

We also need the classic Goldreich-Levin theorem.

Lemma 3 (Goldreich-Levin[GL89]) There is an oracle algorithm B(·) such that for any x ∈
{0, 1}n and an oracle A satisfying

Prr←Un [A(r) = x · r] > 1

2
+ γ,

BA makes O(n
γ2) queries to A and then efficiently outputs a list of size O(1

γ2) elements such that

x is in the list with probability greater equal than 1
2 .

2.1 Commitment Scheme

In this section, we formally define commitment schemes and present our transformation and main
theorems. We consider a standard model where the communication is over the classical noiseless
channel and the decommitment is non-interactive with perfect correctness [Gol01, HR08].

Definition 4 (Commitment Scheme) A commitment scheme is an interactive protocol Com =
(S,R) with the following properties:

1. Scheme Com consists of two stages: a commit stage and a reveal stage. In both stages, the
sender S and the receiver R receive a security parameter 1s as common input.

5

2. At the beginning of the commit stage, sender S receives a private input v ∈ {0, 1}t, which
denotes the string to which S is supposed to commit. The commitment stage results in a
joint output, which we call the commitment x = output((S(v), R)(1s)), and a private output
for S, which we call the decommitment string d = outputS((S(v), R)(1s)). Without loss of
generality, x can be taken to be the full transcript of the interaction between S and R, and d
to be the private coin tosses of S.

3. In the reveal stage, sender S sends the pair (v, d), where d is the decommitment string for
string v. Receiver R accepts or rejects based on v, d, x.

4. The sender S and receiver R are probabilistic polynomial time in the security parameter s.

5. R will always accept with probability 1 − ngl if both the sender S and the receiver R follow
their prescribed strategy. If R accepts with probability 1, we say Com has perfect correctness.

6. When the commit string v is just a bit in {0, 1}, we call Com a bit-commitment scheme.
Otherwise, we call Com a t-bit string-commitment scheme.

Remark 5 The assumption of non-interactive reveal stage is essential in both our work and the
previous work [HR08]. This assumption can be made without loss of generality as long as no
additional property (e.g., if the sender wants to decommit in a zero-knowledgeness manner) is
required, because in the reveal stage, the sender S can send his coin tosses to the receiver R, who
can check the consistency and simulate the protocol. On the other hand, the assumption of perfect
correctness can be relaxed to (1− ngl)-correctness in both works.

We proceed to define the hiding and binding properties of commitment schemes. To facilitate
the presentation of our results and analysis, we are precise about the adversary’s running time
in the definition and define the binding property in terms of binding games. We will consider
both concrete and asymptotic formulations, where the security parameter will be used only for the
asymptotic version.

Definition 6 (p-hiding against time T) A commitment scheme Com = (S,R) is p-hiding against
uniform time T if for every time T cheating receiver R∗, the distributions (viewR∗(S(Ut), R

∗), Ut)
and (viewR∗(S(Ut), R

∗), U ′t) are p-indistinguishable for time T , where U ′t is an i.i.d. copy of Ut.
That is, for every time T distinguisher D,

|Pr[D(viewR∗(S(Ut), R
∗), Ut) = 1]− Pr[D(viewR∗(S(Ut), R

∗), U ′t) = 1]| ≤ p

We say Com is p-hiding if Com(1s) is p-hiding against time sc for every constant c, and sufficiently
large security parameter s.

We remark that the hiding property above is defined as the indistinguishability against randomly
values, which does not generally imply the standard definition of the indistinguishability against
a pair of efficiently generated values. Nevertheless, it is known how to transform a commitment
scheme with the above hiding property to one with standard hiding property. Moreover, it can be
shown that our transformation has the property that if the resulting commitment scheme satisfies
the above definition of hiding property, then it satisfies the standard hiding property.

Remark 7 For bit-commitment schemes, p-hiding is equivalent to saying that the receiver can
guess the committed bit with probability at most 1/2 + p/2. Formally, for every time T predictor
P ,

Pr[P (viewR∗(S(U1), R
∗)) = U1)] ≤ 1/2 + p/2.

6

Definition 8 (Binding Game) The binding game for a commitment scheme Com = (S,R) is
played between a honest receiver R, and (S∗, F), a cheating sender S∗ with a decommitment finder
F . The game consists of two stages:

1. In the commit stage, S∗ interacts with R to produce a view viewS∗(S∗, R).

2. In the decommitment finding stage, F gets the view viewS∗(S∗, R), and produces two decom-
mitment strings (s, d) and (s′, d′).

(S∗, F) succeeds if in the reveal stage, R accepts both decommitment strings (s, d) and (s′, d′).

Definition 9 (q-binding against time T) A commitment scheme Com = (S,R) is q-binding
against time T , if in the binding game, for every time T pair (S∗, F), the success probability of
(S∗, F) is at most q. We say Com is q-binding if Com(1s) is q-binding against time sc for every
constant c, and sufficiently large security parameter s.

For convenience, we say a commitment scheme Com is (p, q)-secure (against time T) if Com is
p-hiding and q-binding (against time T). Com is secure if Com(1s) is (s−c, s−c)-secure for every
constant c, and sufficiently large security parameter s. Let Com0 be a (p, q)-secure (weak) bit com-
mitment scheme against time 2Ω(k) for sufficiently small constants p, q ∈ (0, 1). The following black
box transformation uses Com0 to construct a (2−k, 2−k)-secure t-bit string-commitment scheme
against time 2k with t = Ω(k).

Definition 10 (Transformation T (Com0, n, ℓ, t)) Let Com0 be a bit commitment scheme, and
n, ℓ, t : N→ N be efficiently computable functions of the security parameter s. We define transfor-
mation T that construct a t-bit string-commitment scheme Com = (S,R) as follows.

• Commit stage: Let v ∈ {0, 1}t be the string to which S is committing .

1. R samples a uniformly random matrix A← {0, 1}ℓ×n, and sends A to S.

2. S samples the following uniformly at random: a vector m ← {0, 1}n and a matrix
Z ← {0, 1}t×n.

3. S uses Com0 to commit to each bit of m and each bit of Am to R sequentially. Let
x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , yℓ) denote the commitment of each bit respectively.

4. S sends (Z, v ⊕ Zm) to R, where v ⊕ Zm is the bit-wise xor of v and Zm.

In sum, the commitment of v is simply (A, x⃗, y⃗, Z, v ⊕ Zm).

• Reveal stage: S sends v and its coin tosses r to R, and R checks that v and r are consistant
with the honest sender’s algorithm.

The intuition for the above construction is as follows. The matrix A defines a systematic linear

code C(m)
def
= (m,Am), which has good minimum distance, say at least δ ·n, with high probability.

The random matrix Z corresponds to a (strong) randomness extractor Ext(m,Z)
def
=Zm. The sender

picks a random string m, commits to the codeword C(m), and extracts the remaining randomness
of m as a one-time pad to commit to v. The binding property is improved because for a sender
S∗ to cheat, S∗ needs to decommit C(m) into two valid codewords. Since the code C has good
minimum distance, S∗ needs to successfully cheat on at least δ ·n commit bits out of n+ ℓ commit
bits. The hiding property is improved because after seeing the commitments of C(m), a cheating
receiver R∗ has only partial information about m. Thus, Ext extracts the remaining entropy from
m, and hides the value of v. Formally, we prove the following theorem.

7

Theorem 11 (main) The following holds for all sufficiently small constants p, q ∈ (0, 1): For
every security parameter s and k = k(s) ∈ N, if there exists a (p, q)-secure (weak) bit commitment
scheme Com0 running in time 2O(k) against time 2Ω(k), then there exists a (2−k, 2−k)-secure t =
Ω(k)-bit string-commitment scheme Com against time 2Ω(k) that makes O(k) black-box calls to
Com0. Specifically, Com = T (Com0, n, ℓ, t) for appropriate n, ℓ = O(k), and t = Ω(k).

By composing our transformation with the transformations of Halevi and Rabin [HR08], we
can improve the efficiency of security amplification for weak bit commitment schemes. For every
constants p and q with p+ q < 1, to amplify the security from a (p, q)-secure commitment scheme
Com0, we can reduce the number of call to Com0 from ω(log2 s) to any ω(log s) function, such as,
log(s) · log∗(s). Furthermore, we can obtain a Ω(log(s))-bits string commitment scheme instead of
bit commitment scheme.

Theorem 12 Let p, q ∈ (0, 1) be constants with p+ q < 1. Suppose there exists a (p, q)-secure bit
commitment scheme Com0. Then for every n′ = ω(log s), t = O(log s), there exists a secure t-bit
commitment scheme Com that makes only n′ black-box call to Com0 on security parameter s.

2.2 Puzzles Systems and Hardness Amplification

In this section, we define the models for the analysis of the binding property. In particular we define
two-phase weakly-verifiable puzzle systems, which generalize the weakly-verifiable puzzle systems
of Canetti, Halevi, and Steiner [CHS05], and is implicitly studied in [HR08]. Here the two-phase
puzzle system considers the case where puzzles can be generated jointly by the puzzle generator
and the solver, where previously puzzles are generated only by the puzzle generator [CHS05].

To capture the task of breaking the security conditions of sequentially applied protocols, such
as breaking the binding or hiding property of n sequentially committed commitments, we consider
a composition of such puzzle systems, where n puzzles are generated sequentially, and then the
solver S is required to solve all puzzles simultaneously. We remark that this setting is different
from the dynamic weakly-verifiable puzzle systems of Dodis et al. [DIJK09], which also generalize
the model of [CHS05].

Definition 13 (Two-Phase Puzzle System) A puzzle system P is a two-phase puzzle system if
P = (G,V) consists of a randomized algorithm G (puzzle generator) and a deterministic algorithm
V (puzzle verifier). Let S be a solver for P. The interaction of ⟨S,P⟩ consists of two phases, where
the first phase corresponds to the puzzle generation phase, and the second is the puzzle solving
phase. More precisely,

• In the first phase, the solver and the generator jointly generate a puzzle p ← ⟨S, G(c)⟩(1s),
where c is the private coins of G. The generation of p may take polynomially many rounds.

• In the second phase, S sends an answer a = S(p) to P

• In the end of the protocol, P verifies the answer using V and accepts iff V (c, a) = 1.

Definition 14 We call a puzzle system P = (G,V) a fully verifiable puzzle system if the verifier V
depends only on the puzzle and the answer but not on P’s random coins. This is: for all puzzles p
and answers a, V (p, a) decides the correctness of the answer to the puzzle. On the other hand, for
a weakly verifiable puzzle system, V might depend on the random coins used to generate the puzzle,
as stated above V (c, a) = 1/0.

8

Definition 15 (Hardness of Solving a Puzzle) A puzzle system P is δ-hard against time T if
for every time T solver S, the success probability satisfies succP[S] ≤ δ.

For simplicity, if we only say a puzzle is δ-hard (without saying against time T), then we mean
that it is against all polynomial time adversaries. Note that this only makes sense in the asymptotic
setting.

Now, we claim that the puzzle system described above captures the task of breaking the binding
property of a commitment scheme Com0 = (S,R) as follows. The solver S plays the role of the
cheating sender S∗ and the generator G plays the role of the receiver R. Then the puzzle is
generated jointly by S and G according to the commitment scheme Com0 and results as the view of
S∗ i.e. viewS∗(S∗, R). The check information c is the private coin tosses of R, and a valid answer
for the puzzle is a pair of decommitment string ((v, d), (v′, d′)) that are accepted by the receiver R.
Thus, Com0 being q-binding against time T corresponds to the puzzle system begin q-hard against
time T .

Note that the puzzle system is weakly verifiable in the running time of Com0. Furthermore, if
Com0 has perfect correctness, then the puzzle system is verifiable, because the solver S can check
the acceptance of ((v, d), (v′, d′)) by herself without accessing to the check information (the coin of
receiver R) by checking consistency of (v, d) and (v′, d′) to the commitment.

We proceed to define the sequential generalization of a puzzle system, and the corresponding
puzzle solving game.

Definition 16 ((n, r)-Sequential Two-Phase Puzzle System) Let P = (G,V) be a two-phase
puzzle system. We define the corresponding (n, r)-sequential two-phase puzzle system Pn,r

seq =
(Gn, V n,r) as follows. For a solver Sn, ⟨Sn,Pn,r

seq⟩ in the first phase runs ⟨S, G(ci)⟩(1s) n times
sequentially to get the puzzle pi, where ci is G’s secret coins in i-th repetition, for i = 1, 2, . . . , n.
Then in the second phase, S computes answers a⃗ = Sn(p⃗) and sends them to Pn,r

seq. V n,r(c⃗, a⃗) accepts
iff at least k copies of V (ci, ai) accept.

Since Pn,r
seq is simply a two-phase puzzle system in the sense of Definition 13, its hardness is

defined via Definition 15. Phrased in this language, the Direct Product Theorems of [CHS05, HR08]
refers to the special case r = n, which says that if P is δ-hard, then Pn,n

seq is δn-hard (up to a small
slackness), and the Hardness Degradation Theorem of [HR08] refers to the special case r = 1, which
says that if P is δ-hard, then Pn,1

seq is (1− (1− δ)n)-hard (up to a small slackness.)
Observe that the hardness of breaking the binding property of r out of n sequentially committed

commitments translates to the hardness of solving r out of n puzzles in the corresponding puzzle
system, and that in our transformation in Definition 10, to break the binding property of Com
requires breaking δ · n out of n+ ℓ invocation of Com0, where δ · n is the minimum distance of the
code C(m) = (m,Am). A Chernoff-type hardness amplification result for puzzle system implies
the q-binding property is improved exponentially fast in n if q · (n+ ℓ) < (0.9)δ · n.

3 Puzzles and Full Spectrum Theorems

In this section, we present our full spectrum hardness results of puzzle systems. We prove the
following theorem, which essentially says that repetition amplifies the hardness of puzzle systems
in an optimal, information-theoretic rate. For our application to commitment schemes, we state and
analyze the theorem for sequential repetition of two-phase puzzle systems. Our reduction algorithm

9

can be implemented easily for parallel repetition of weakly-verifiable puzzles and a variant4 of
dynamic weakly-verifiable puzzles of Dodis et al. [DIJK09]. The same analysis goes through and
gives theorems of exactly the same form for (parallel repetition of) these models, generalizing the
Chernoff-type theorems of Impagliazzo et al. [IJK07] and Dodis et al. [DIJK09].

Theorem 17 For any constants γ, δ, α ∈ (0, 1) and efficiently computable functions n, r ∈ N→ N
with 1 ≤ r(s) ≤ n(s) ≤ poly(s), the following holds. Let P = (G,V)(1s) be a two-phase puzzle
system. Suppose P is δ-hard, then the following holds:

1. The (n, r)-sequential repetition Pn,r
seq is (P (n, r, (1 + α) · δ) + ngl)-hard.

2. If r ≥ (1 + γ)δn (i.e., the Chernoff-type regime), then Pn,r
seq is (P (n, r, δ) + ngl)-hard.

3. If P is fully-verifiable, then Pn,r
seq is (P (n, r, δ)+ngl)-hard even for efficiently computation and

noticeable δ : N→ [0, 1], where P (n, r, δ) =
∑n

i=r

(
n
i

)
δi(1− δ)n−i, i.e. the probability that the

sum of n independent binomial random variable with mean δ is greater than r.

Our theorem holds for any arbitrary number of repetition n ≤ poly(s) and threshold r ∈ [n], in
comparison to the Chernoff-type theorems of [IJK07, DIJK09], which holds for sufficiently large n
with r ≥ (1 + γ)δn). Independently, Holenstein and Schoenebeck [HS09] used essentially the same
idea for the reduction with a cleaner way to deal with error, and thus obtained the result for general
puzzles that matches the parameters of the third point in Theorem 17. For the case of parameters
in our applications, the differences are not significant. The core part of our proof is the following
concrete version of lemma (Lemma 18).

Lemma 18 For any n, r, η, T ∈ N, δ ∈ [0, 1] with r ≤ n, the following holds. Let P = (G,V) be
a two-phase puzzle system with TG, TV ≤ T , and Pn,r

seq the corresponding (n, r)-sequential puzzle
system. Suppose there exists a time T solver Sn for Pn,r

seq with succPn,r
seq

[Sn] ≥ P (n, r, δ). Then there

exists a solver S for P such that succP[S] ≥ δ ·(1−1/η), and S runs in time T ′ = poly(n, η, δ−r, (1−
δ)−(n−r)) · T , given n, r, η, T and δ.

Although the reduction runs in time poly(δ−r, (1 − δ)−(n−r)), which may seem inefficient, an
efficient reduction for Theorem 17 can be obtained by applying a simple reduction that converts
a solver Sn to a solver Sn

′
for a smaller n′ before applying Lemma 18. The slightly improved

parameter range for fully-verifiable puzzles comes from a more efficient reduction in the following
lemma.

Lemma 19 For any n, r, η, T ∈ N, δ ∈ [0, 1] with r ≤ n, the following holds. Let P = (G,V)
be a fully-verifiable two-phase puzzle system with TG, TV ≤ T , and Pn,r

seq the corresponding (n, r)-
sequential puzzle system. Suppose there exists a time T solver Sn for Pn,r

seq with succPn,r
seq

[Sn] ≥
P (n, r, δ). Then there exists a solver S for P such that succP[S] ≥ δ · (1− 1/η), and S runs in time
T ′ = poly(n, η, δ−1, P (n, r, δ)−1) · T , given n, r, η, T and δ.

We defer all proofs to Appendix.

4The variant is implicit in Lemma 5 of [DIJK09], which is the model where they actually prove the hardness
amplification.

10

4 The Proof of Main Theorem

This section is devoted to prove the main Theorem 11. We analyze the binding and hiding properties
separately in two lemmas below. Due to the space limit, we just outline the proofs and defer the
rigorous ones to the appendix.

Lemma 20 (Binding) Let d0 be the universal constant in Lemma 2. There exist universal con-
stants c1, c

′ such that the following holds. For any q ∈ (0, 1), n, k, ℓ, t, T0, T ∈ N satisfying (i)
d0 · (3q) · log(1/3q) < 1, (ii) c′k ≥ n ≥ c1 ·k/q, (iii) 2k ≥ ℓ ≥ d0 · (3q) · log(1/3q) ·n, and (iv) t ≤ 2k,
if a bit-commitment scheme Com0 = (S0, R0) running in time T0 is q-binding against time T , then
Com = T (Com0, n, ℓ, t) is 2−k-binding against time T ′ = T/poly(2k, T0).

(Outline) We give an outline of the proof as follow. By the setting of the parameters above,
Lemma 2 shows that with high probability, the linear code has minimum distance at least δn.
Conditioning on the code being good, we show the probability that adversary S∗ breaks at least
δn Com0’s decreases exponentially fast, using the Chernoff-type result of the Lemma 18. This
completes the proof.

Lemma 21 (hiding) There exist universal constants c2, c
′′ such that the following holds. For

every α ∈ (0, 1), n, k, ℓ, t, T0, T ∈ N satisfying (i) 2k ≥ n ≥ c2 · k/α, (ii) ℓ ≤ c′′k, (iii) t ≤ αn/12, if
Com0 = (S0, R0) running in time T0 is a (1−α)-hiding against time T , then Com = T (Com0, n, ℓ, t)
is 2−k-hiding against time T ′ = T/poly(2k, T0).

(Outline) We give an outline of the proof as follows. We prove the contrapositive statement
that if we can break the hiding property of Com, then we can break the hiding property of Com0.
First, suppose there exists a distinguisher that distinguishes (Com(Ut), Ut) and (Com(Ut), U

′
t) with

probability non-negligibly larger than 1/2 , then we can obtain a next bit predictor P that predicts
the i-th bit of Ut given the first i − 1 bits of Ut and Com(Ut). From our construction and P , we
can use Goldreich-Levin algorithm to obtain the message Ut with non-negligible probability. Then
using the Direct Product Theorem for weakly verifiable puzzles in [HR08] and Lemma 18, we can
predict U1 given Com0(U1) with high probability, which implies we can break the hiding property
of Com0.
Proof. (of Main Theorem) We set the parameters n, k, ℓ as follows: n = max{ c1kq , c2k

1−p} = O(k),

ℓ = d0(3q) log(3q) ·n, and t = (1−p)n
12 = Ω(k), where c1, c2, d0 are the constants in the Lemma 2, 20,

and 21. Then the proof follows directly from the lemmas.

5 Commitment Schemes with Standard Asymptotic Security

In this section, we present the ideas for the proof to Theorem 12, which says that for all constants
p, q with p + q < 1, given a weak (p, q)-secure bit commitment scheme Com0, we can securely
commit to Ω(log s) bit by applying Com0 only n′ times for any function n′ = ω(log s). Recall that
the standard asymptotic security refers to (s−c, s−c)-secure against time sc for every constant c for
sufficiently large s. Working with this definition incurs some subtleties. We outline the construction
with an informal discussion below.

Let p0, q0 be constants with p0+ q0 < 1, and Com0 be a (p0, q0)-secure bit commitment scheme.
Since our transformation only works for sufficiently small p and q, we apply the transformations of

11

[HR08] first to bring p0, q0 down to sufficiently small constants p1, q1. Since we amplify the security
from constant to constant, this requires only a constant number of calls to Com0. Let Com1 be the
resulting (p1, q1)-secure bit commitment scheme.

The next step is to apply our transformation to Com1 to obtain a t-bit string commitment
scheme Com2. However, since the reductions can only run in poly(s) time, we can only apply
Theorem 11 with k = O(log(s)) and thus obtain an (s−c, s−c)-secure for a constant c. Then we
apply the transformations of [HR08] to Com2 to amplify the security to negligible.

Here there are some subtleties that we need to deal with. Our transformation gives a “string”-
commitment scheme instead of a “bit”-commitment scheme, so we need to generalize the “repetition
transformation” and the “secret-sharing transformation” of [HR08]. For the “repetition transforma-
tion” of [HR08], it is not hard to generalize the analysis for both the binding and hiding properties.
For the “secret-sharing,” it is not hard to achieve the degradation of the binding property, as we can
view that as solving puzzles. Recently, Maurer and Tessaro [MT09] generalized the XOR lemma
to the setting of string-commitment schemes. Putting these together, we are able to transform a
(s−c, s−c)-secure commitment scheme to a (ngl, ngl)-secure one with ω(1) calls of that. Thus in
total, we obtain a secure commitment scheme with ω(log s) calls to Com0.

We put the detailed transformation and proofs in the appendix.

References

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols? In FOCS, pages 374–383, 1997.

[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly veri-
fiable puzzles. In TCC, pages 17–33, 2005.

[Cré97] Claude Crépeau. Efficient cryptographic protocols based on noisy channels. In EURO-
CRYPT, pages 306–317, 1997.

[DIJK09] Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Security
amplification for interactivecryptographic primitives. In TCC, pages 128–145, 2009.

[DKS99] Ivan Damg̊ard, Joe Kilian, and Louis Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In EUROCRYPT,
pages 56–73, 1999.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In EUROCRYPT, pages 342–360, 2004.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In STOC, pages 25–32, 1989.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract). In
FOCS, pages 174–187, 1986.

[Gol01] Oded Goldreich. Foundations of Cryptography. Basic tools. Cambridge University Press,
2001.

12

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[Hol06] Thomas Holenstein. Pseudorandom generators from one-way functions: A simple con-
struction for any hardness. In TCC, pages 443–461, 2006.

[HR05] Thomas Holenstein and Renato Renner. One-way secret-key agreement and applications
to circuit polarization and immunization of public-key encryption. In CRYPTO, pages
478–493, 2005.

[HR08] Shai Halevi and Tal Rabin. Degradation and amplification of computational hardness.
In TCC, pages 626–643, 2008.

[HS09] Thomas Holenstein and Grant Schoenebeck. General hardness amplification of predi-
cates and puzzles. Unpublished manuscript, 2009.

[IJK07] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Chernoff-type direct
product theorems. In CRYPTO, pages 500–516, 2007.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography (extended abstract). In FOCS, pages 230–235, 1989.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS,
pages 538–545, 1995.

[MT09] Ueli Maurer and Stefano Tessaro. Computational indistinguishability amplification:
Tight product theorems for system composition. In Shai Halevi, editor, Advances in
Cryptology — CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
350–368. Springer-Verlag, August 2009.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, pages 128–136,
1989.

[PW07] Krzysztof Pietrzak and Douglas Wikström. Parallel repetition of computationally sound
protocols revisited. In TCC, pages 86–102, 2007.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the xor lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Wul07] Jürg Wullschleger. Oblivious-transfer amplification. In EUROCRYPT, pages 555–572,
2007.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In FOCS, pages 80–91, 1982.

A Proofs in Section 4

This section we put the missing proofs for the two main lemmas in section 4.

13

A.1 Binding Lemma

Proof. Let S∗ be a time T ′ cheating sender. We want to show that in the binding game,

Pr[S∗ succeeds] ≤ 2−k.

Recall that in the binding game, the honest receiver R first sends a random 0-1 matrix A to S∗,
and then (S∗, R) is supposed to use Com0 (n + ℓ) times to commit each bit of a random message
pair (m,Am). Let C : {0, 1}n → {0, 1}n+ℓ be a linear code defined by C(m) = (m,Am). For S∗ to
win the game, he needs to decommit the (n+ ℓ) bits into two valid codewords in C.

We observe that

Pr[S∗ succeed] ≤ Pr[C has min-distance < δn] + Pr[S∗ succeeds & C has min-distance ≥ δn]

and will bound the two probabilities.
First we want to apply Lemma 2 to say that C is a good code with high probability. Let d0, d1

be the constants in the Lemma 2, δ = 3q, and γ = d0δ log(1/δ). We will set c1 > 3d1 so that
n ≥ d1 ·k/δ. By Lemma 2, the code C has minimum distance at least δ ·n with probability at least
1− 2−k/2.

Then we want to show that S∗’s success probability is small with the code C having min-
distance δn. Suppose to the contrary, that S∗ succeeds with probability greater than 2−k/2, as
in the section 1.2.1 and 2.2, we can view breaking the binding property as the task of solving
(n+ ℓ, δn)-sequential two-phase puzzle system Pn+ℓ,δn

seq = (Gn+ℓ, V n+ℓ,δn). From S∗ we can obtain a

solver that solves Pn+ℓ,δn
seq with success probability greater equal to P (n+ ℓ, δ ·n, 1.02q) def= ρ running

within time T ′′
def
= max{T ′, T0}, then let η = 100, and by Lemma 18, there exists another solver

that succeeds of breaking P with probability greater than 1.02 · q · (1− 1/100) ≥ q running in time
T = poly(n + ℓ, η, q−δn, (1 − q)−n−δn) · T ′′. This translates to the fact that there exists a time T
adversary S∗0 that breaks q-binding of Com0. Here 1.02 is an arbitrary constant greater to 1, and
by setting this, we can make the proof work.

Recall that δ = 3q, and γ ∈ [0, 1]. Thus, δn = 3qn > 1.02qn(1 + γ) = 1.02q(n + ℓ). Then by
standard Chernoff bound, we have

P (n+ ℓ, δ · n, 1.02q) ≤ 2−δn/c

for some constant c that is independent of q and k. Thus, we can set c1 = max{3d1, 6c}, c′ =
max{ 1

3q log(
1
q),

1
1+3q log(

1
1−q)}, so that c′k ≥ n ≥ c1 · k/q implies 2−δn/c ≤ 2−k/2, q−δn ≤ 2k, and

(1 − q)−n−δn ≤ 2k. Also we have T ′′ = max{T0, T
′}, and therefore T = T ′ · poly(2k, T0). This

contradicts the fact that Com0 is q-hard against time T = T ′ · poly(2k, T0).
Thus we have Pr[S∗ succeeds] ≤ 2−k/2 + 2−k/2 ≤ 2−k.

Remark 22 We observe that in the condition (ii), “c′k ≥ n” is only used to bound the reduction
time to be polynomial in 2k. If Com0 has perfect correctness, where the binding property can be
modeled as solving verifiable puzzle systems, then we have a more efficient reduction algorithm as
Lemma 19. Thus we can relax the condition (ii) as 2k ≥ n ≥ c1 · k/q.

14

A.2 Hiding Lemma

Proof. We prove the contrapositive statement. Suppose Com is not 2−k-hiding against time T ′,
then there exists a time T ′ cheating receiver R∗, and a time T ′ distinguisher D such that

|Pr[D(viewR∗(S(Ut), R
∗)(1k), Ut) = 1]− Pr[D(viewR∗(S(Ut), R

∗)(1k), U ′t) = 1]| > 2−k

Let us understand the view of R∗ better. In the commit stage, R∗ tosses some coins r, sends some
0-1 matrix A to S, and reaches some configuration σ. We can assume without loss of generality
that σ contains r and A. Next, the honest sender S plays the role of S0 in Com0, and commits to
n random bits m← {0, 1}n, and ℓ parity bits Am. Again, let C : {0, 1}n → {0, 1}n+ℓ be the linear
code defined by C(m) = (m,Am). In each interaction i = 1, . . . , n+ ℓ, R∗ plays a cheating receiver

R∗0,i, and gets a view xi
def
= viewR∗

0,i
(S0(C(m)i), R

∗
0,i). Let x⃗ = (x1, . . . , xn+ℓ). Finally, R∗ receives

a random matrix Z, and s⊕ Zm, where s is the string that S commits to. In sum, the view of R∗

in (S(s), R∗)(1k) can be described by (σ, x⃗, Z, s⊕ Zm). Thus, we have,

|Pr[D((σ, x⃗, Z, Ut ⊕ Zm), Ut) = 1]− Pr[D((σ, x⃗, Z, Ut ⊕ Zm), U ′t) = 1]| > 2−k

This implies the existence of time T ′ +O(t) distinguisher D′ such that5

|Pr[D′((σ, x⃗, Z, Zm) = 1]− Pr[D′((σ, x⃗, Z, Ut) = 1]| > 2−k

Let Z = (z1, . . . , zt), where each zi is a row of Z. We can write Zm as (z1 ·m, . . . , zt ·m). By the
equivalence of pseudorandomness and next-bit unpredictability, there is a time T ′ +O(t) next-bit-
predictor P such that

Pr[P (σ, x⃗, Z, z1 ·m, . . . , zi−1 ·m) = zi ·m] > 1/2 + 2−k/t

where the probability is also taken on a random choice of i ∈ [t].
For convenience, let Z−i = (z1, . . . , zi−1, zi+1, . . . , zt), and write (σ, x⃗, Z, z1 ·m, . . . , zi−1 ·m) as

(σ, x⃗, Z−i, z1 ·m, . . . , zi−1 ·m, zi) (i.e., move zi to the last coordinate). By a Markov argument, with
probability at least 2−k/2t over random (i, σ, x⃗, Z−i, z1 ·m, . . . , zi−1 ·m),

Pr
zi
[P (σ, x⃗, Z−i, z1 ·m, . . . , zi−1 ·m, zi) = zi ·m] > 1/2 + 2−k/2t

We can view P (σ, x⃗, Z−i, z1 ·m, . . . , zi−1 ·m, ·) as a corrupted Hadamard encoding of m. By the
Goldreich-Levin Algorithm as Lemma 3, if Przi [P (σ, x⃗, Z−i, z1 · m, . . . , zi−1 · m, zi) = zi · m] >
1/2 + 2−k/2t, we can make O(n · 22k) queries to P (σ, x⃗, Z−i, z1 · m, . . . , zi−1 · m, ·) and guess m
correctly with probability Ω((2−k/t)2). Therefore, there exists a time (T ′ + O(t)) · O(n · 22k)
algorithm B such that

Pr[B(σ, x⃗, Z−i, z1 ·m, . . . , zi−1 ·m) = m] ≥ (2−k/2t) · Ω((2−k/t)2) = Ω((2−k/t)3)

Now, suppose we only get input σ and x1, . . . , xn, we claim that we can still guess m correctly
with probability at least 2−(ℓ+i−1) · Ω(2−3k/t3). The idea is try to generate the rest of the input
(xn+1, . . . , xn+ℓ, Z−i, z1 ·m, . . . , zi−1 ·m) with correct distribution, and feed it to B. Observe that

5On input (σ, x⃗, Z, a), D′ simply samples a fresh copy of uniform bits U ′
t , and feeds ((σ, x⃗, Z, U ′

t ⊕ a), U ′
t) to D.

If a is drawn from Zm, then D gets distribution ((σ, x⃗, Z, U ′
t ⊕ Zm), U ′

t), and if a is drawn from Ut, then D gets
((σ, x⃗, Z, U ′

t ⊕ Ut), U
′
t) = ((σ, x⃗, Z, Ut ⊕ Zm), U ′

t).

15

xn+1, . . . , xn+ℓ are generated by the interaction of a honest S, who plays the role of S0 to commit
each bit of (Am), and a cheating receiver R∗, who has the view (σ, x1, . . . , xn) and plays a cheating
sender R∗0,i. Since we have the view (σ, x1, . . . , xn) of R

∗, if we can guess (Am) correctly, then we
can simulate the interaction of S and R∗, and generate the correct distribution of (xn+1, . . . , xn+ℓ)
in time T ′. Since S is honest, Z−i is uniformly random, and easy to prepare. Finally, we can simply
guess the value of (z1·m, . . . , zi−1·m). In sum, if we can guess the value of (Am) and (z1·m, . . . , zi−1·
m) correctly, then we can generate the correct distribution of B’s input (σ, x⃗, Z−i, z1 ·m, . . . , zi−1 ·m)
in time T ′. Since we only need to guess (ℓ+ i− 1) bits, we can guess it correctly with probability
2−(ℓ+i−1). Therefore, we have a time (T ′ +O(t)) ·O(n · 22k) algorithm B′ such that

Pr[B′(σ, x1, . . . , xn) = m] ≥ 2−(ℓ+i−1) · Ω(2−3k/t3) = Ω(2−(3k+ℓ+i−1)/t3)

Now, we can view B′ as solving a sequentially generated stateful weakly verifiable puzzle system
Pn as follows. The set of puzzles p ∈ P in P is the set of possible views viewR∗

0
(S0(b), R

∗
0) of a

cheating receiver R∗0 in Com0. The answer is simply the bit b that a honest S0 commits to. The
check information is the private coins of S0, or the decommitment string. The puzzle generator G
simulates the interaction of a honest sender S0(b) who wants to commit a uniformly random bit b,
with a cheating receiver R∗0 provided by the solver S. The state of G is a description of R∗0 together
with a configuration of R∗0 that G uses to simulate the interaction. Thus, B′’s task is to solve all
n sequentially generated puzzles correctly.

By Remark 7, Com0 being (1−α)-hiding against time T means that for every time T cheating
receiver R∗0, and time T predictor P ,

Pr[P (viewR∗
0
(S0(U1), R

∗
0)(1

k)) = U1] ≤ 1/2 + (1− α)/2 = 1− α/2

This means that the puzzle system P is (1 − α/2)-hard against time T . Now, we want to apply
Lemma 18 with η = 6/α so that (1−α/4)(1− 1/η) > (1−α/2), and r = n. We set the parameters
c2, c

′′ such that the conditions (i)(ii)(iii) imply Ω(2−(3k+ℓ+i−1)/t4) ≥ e−αn/4 ≥ (1 − α/4)n, and
we know B′ is a solver running in T ′ · O(n22k) that solves all n sequentially generated puzzles
with probability (1 − α/4)n. Then by the theorem we can obtain a solver B′′ that solves a single
puzzle with probability (1 − 1/η)(1 − α/4) ≥ (1 − α/2), running in time T ′′ = T ′ · O(n22k) ·
poly(n, η, 2(3k+ℓ+i−1)) = T ′ · poly(n, 2k) with the parameter settings.

This is a contradiction to the fact that Com0 is (1 − α)-hiding against time T , where T =
T ′ · poly(n, 2k) = T ′′ · poly(n, 2k).

B Detailed Transformation in Section 5

We define the repetition and secret-sharing transformation of [HR08] first.

Definition 23 (Repetition R(Com0, u)) Let Com0 be a t-bit string-commitment scheme, and
u ∈ N. The repetition transformation R(Com0, u) defines a t-bit string-commitment scheme Com =
(S,R) as follows. In the commit stage, to commit a value v ∈ {0, 1}t to R, S simply uses Com0

sequentially u times to commit the same value v to R.

Definition 24 (Secret-Sharing SS(Com0, u)) Let Com0 be a t-bit string-commitment scheme,
and u ∈ N. The secret-sharing transformation SS(Com0, u) defines a t-bit string-commitment
scheme Com = (S,R) as follows. In the commit stage, to commit a value v ∈ {0, 1}t to R, S first
obtains random v1, v2, . . . vt ∈ {0, 1}t with

⊕
i∈[t] vi = v, i.e. a share of v, and then uses Com0

sequentially t times to commit to each vi to R.

16

We proceed to present the analysis of the aforementioned transformation as the following lem-
mas. The first lemma says that using the transformation of [HR08], we can amplify the security
from constant to constant (resp., o(1)) using constant (resp., ω(1)) number of black-box calls, and
from s−c to negligible using ω(1) black-box calls.

Lemma 25 ([HR08]) For all constants p0, q0, p, q > 0 with p0 + q0 < 1, we can transform
a (p0, q0)-secure bit-commitment scheme Com0 into a (p, q)-secure bit-commitment scheme Com,
which makes O(1) black-box calls to Com0.

We next analyze the effect of the repetition and secret-sharing transformation to a string com-
mitment scheme.

Lemma 26 Let Com be a t-bit string-commitment scheme, and Com′ = R(Com, u) with efficiently
computable u = u(s) ≤ poly(s). If Com is q-binding, then Com′ is (qu + ngl)-binding, for some
negligible function ngl in the security parameter s.

Proof. (sketch) Observe that breaking the binding property of Com′ requires breaking the binding
property of all u calls of Com. The lemma follows by Theorem 18 with r = u (which is the Direct
Product Theorem of [HR08].)

Lemma 27 Let Com be a t-bit string-commitment scheme, and Com′ = R(Com, u) with efficiently
computable u = u(s) ≤ poly(s). If Com is ngl-hiding, so does Com′.

Proof. (sketch)We sketch the argument by the following informal notation. Let (Com(Ut), Ut) ≈c

(Com(Ut), U
′
t) represents the ngl-hiding property of Com, where Com(Ut) is the distribution of a

commitment of random value Ut and U ′t is an i.i.d. copy of Ut. Note that the condition is equivalent
to (Com(Ut), Ut) ≈c (Com(U ′t), Ut). By definition, (Com′(Ut), Ut) = (Com(Ut), . . . ,Com(Ut), Ut).
Observing the we can efficiently generate Com(Ut) from Ut, (Com(Ut), Ut) ≈c (Com(U ′t), Ut) implies

(Com(Ut), . . . ,Com(Ut), Ut) ≈c (Com(U1
t),Com(Ut), . . . ,Com(Ut), Ut),

where U1
t denotes an i.i.d. copy of Ut. Note that Com(U1

t) can be generated efficiently as well, by
the same argument, we have

(Com(U1
t),Com(Ut), . . . ,Com(Ut), Ut) ≈c (Com(U1

t),Com(U2
t),Com(Ut), . . . ,Com(Ut), Ut).

Iteratively applying this argument, we have

(Com′(Ut), Ut) = (Com(Ut), . . . ,Com(Ut), Ut) ≈c (Com(U1
t), . . . ,Com(Uu

t), Ut).

On the other hand, observing that (Com(Ut), Ut) ≈c (Com(U ′t), Ut) implies

(Com(Ut),Com(Ut), . . . ,Com(Ut)) ≈c (Com(U ′t),Com(Ut), . . . ,Com(Ut)),

we have

(Com′(Ut), U
′
t) = (Com(Ut),Com(Ut), . . . ,Com(Ut), U

′
t)

≈c (Com(U1
t),Com(Ut), . . . ,Com(Ut), U

′
t)

≈c (Com(U1
t),Com(U2

t), . . . ,Com(Ut), U
′
t)

...

≈c (Com(U1
t),Com(U2

t), . . . ,Com(Uu
t), U

′
t)

= (Com(U1
t),Com(U2

t), . . . ,Com(Uu
t), Ut).

17

Therefore, (Com′(Ut), Ut) ≈c (Com
′(Ut), U

′
t), as desired.

Lemma 28 Let Com be a t-bit string-commitment scheme, and Com′ = SS(Com, u) with effi-
ciently computable u = u(s) ≤ poly(s). If Com is q-binding, then Com′ is (uq + ngl)-binding, for
some negligible function ngl in the security parameter s.

Proof. (sketch) Observe that breaking the binding property of Com′ requires breaking the binding
property of all u calls of Com. The lemma follows by Lemma 18 with r = 1 (which is the Hardness
Degradation Theorem of [HR08]. Also, a simple hybrid argument also yields this.)

Lemma 29 ([MT09]) Let Com be a t-bit string-commitment scheme, and Com′ = SS(Com, u)
with efficiently computable u = u(s) ≤ poly(s). If Com is p-hiding, then Com′ is (pu+ngl)-binding,
for some negligible function ngl in the security parameter s.

Proof. (sketch) This lemma generalizes the bit XOR lemma [HR08] to the string one, and it was
proved by Maurer and Tessaro [MT09]. We state it in this form for convenience.

We are ready to prove both parts of Theorem 12.
Proof. (of Theorem 12, sketch) Let p0, q0 be constants with p0+q0 < 1, and Com0 be a (p0, q0)-
secure bit commitment scheme. We (i) apply Lemma 25 to obtain a bit commitment scheme Com1

that is (p1, q1)-secure for sufficiently small constants p1, q1, (ii) apply our transformation with
k = O(log s) in Theorem 11 to obtain an t = Ω(log s)-bit string-commitment scheme that is
(s−c, s−c)-secure for some constant c, denoted as Com1 and then (iii) let a be an arbitrary ω(1)
function with a = o(log s). We apply the secret-sharing transformation Com2 := SS(Com1, a),
and then apply the repetition transformation R(Com2, a). Then lemma 29 with u = a shows that
Com2 is a (ngl, as−c)-secure t-bit string commitment, and lemma 26 shows that the final scheme is
(ngl, ngl) secure. The total number of calls is O(1) ·O(log s) · a2 = n′ = ω(log s).

C Proofs for the Puzzles

This section devotes to the proofs of Theorem 17 and Lemma 18, 19. We outline the organization
of this section. First we prove the fully-verifiable case, namely Lemma 19. Then we prove Lemma
18 with a different framework. Finally we sketch how to achieve Theorem 17 from both lemmas.

Before the proof, we first observe that if there exists a PPT solver for a puzzle system, then
there exists a deterministic solver that also has almost the same success probability. Thus, in
the reduction, we may assume a solver Sn for n-fold repetition Pn,k of a puzzle system P to be
deterministic by the reasoning. We formalize the lemma as below.

Lemma 30 For all puzzle system P, for all η(s) ≤ poly(s), if there exists a PPT solver T such
that succP[T](s) ≥ δ(s), then there exists a PPT S such that with probability (1 − ngl(s)) over S’s
random coins r, let Sr be the solver S with fixed random coins r, we have succP[Sr](s) ≥ δ · (1− 1

η).
Note that Sr is S with the fixed coins, so Sr is deterministic.

18

C.1 Fully Verifiable Two-Phase Puzzle System

In this section, we are going to prove Lemma 19. Our strategy is to show the contrapositive
argument: suppose there exists a solver Sn with success probability P (n, r, δ) over n puzzles, then
there exists a solver S with success probability δ over a single puzzle. We use the notion of game
that relates success probabilities of the optimal solver Sopt and the efficient solver Seff . Then we
can focus on the analysis of Sopt, and have a cleaner proof.

C.1.1 Reduction Game

Definition 31 A game G = (Q,W,J) consists of two players Q,W and a judge J . In the game,
Q and W plays a fixed number of rounds, denoted by ℓ ∈ N. Q always plays the first round, and in
each round, Q or W makes a move alternatively. At the end of the game, on the entire history of
Q and W’s moves, the judge J outputs 1 or 0 to indicate whether Q succeeds in the game.

We denote the sequence of moves by q1, w1, . . . , qm, wm, and let h̄iq = (q1, w1, . . . , qi−1, wi−1, qi)
and h̄iw = (q1, w1, . . . , qi, wi) to denote the history of the game up to (2i − 1)-st and 2i-th round,
respectively. The game G naturally induces a game tree, where each h̄iq (respectively, h̄

i
w) corresponds

to a W-move node (respectively, Q-move node) in the game tree. Thus, the entire histories, which
correspond to the leaf nodes of the game tree, are either of the form h̄mq when ℓ = 2m − 1 is odd,
or h̄mw when ℓ = 2m is even.

We are interested the settings where W plays a fixed randomized strategy, and our goal is to
maximize the success probability of Q. Below, we formally define strategies of players and express
the success probability of Q.

Definition 32 Let G = (Q,W,J) be a game. A strategy of player Q is a randomized algorithm
(not necessarily efficient) Qs that at each Q-move node h̄i−1w , computes Q’s next move qi basing
on the history h̄i−1w . Thus, Qs induces a distribution Ds(h̄

i−1
w) over h̄i−1w ’s children h̄iq = h̄i−1w ◦ qi

for every Q-move node h̄i−1w . We define a strategy Wt of player W and the induced distribution
Dt(h̄

i
q) analogously.

Since W always plays a fixed strategy Wt in our settings, the success probability of Q depends
only on Q’s strategy.

Definition 33 Let G = (Q,W,J) be a game with W playing a fixed strategy Wt. Let Qs be a
strategy of Q. We inductively define γs(·) to express the success probability of Qs at each node of
the game tree as follows.

γs(h̄) = J (h̄) for every leaf node h̄ (of the form either h̄mq or h̄mw),

γs(h̄
i
q) = Ewi←Dt(h̄i

q)
[γs(h̄

i
q ◦ wi)] for every W-move node h̄iq,

γs(h̄
i−1
w) = Eqi←Ds(h̄

i−1
w)[γs(h̄

i−1
w ◦ qi)] for every Q-move node h̄i−1w .

In particular, γs is the success probability of Qs.

We will consider two strategies of Q, an optimal strategy Qopt and an “efficient” strategy Qeff .
Let us consider an optimal strategy Qopt first. Qopt is a deterministic algorithm that in each round,
picks a deterministic move that maximize the success probability of Qopt after taking the move. In

19

other words, for every Q-move node h̄i−1w , the distribution Dopt(h̄
i−1
w) concentrate on a single move

q∗i that maximize γopt(h̄
i−1
w ◦ qi), and thus we have

γopt(h̄
i−1
w) = E

qi←Dopt(h̄
i−1
w)

[γopt(h̄
i−1
w ◦ qi)] = γopt(h̄

i−1
w ◦ q∗i) = max

qi
{γopt(h̄i−1w ◦ qi)}.

The optimality of Qopt is easy to show by induction. The problem with Qopt is that Qopt may
not be efficient in general. Thus, we try to approximate Qopt by the following strategy Qeff that
finds a good move by sampling. In each round, Qeff samples several moves, estimates the success
probability of Qeff itself after taking each move by sampling, and then takes the best move among
them according to the estimation.

Definition 34 Let G = (Q,W,J) be a game with ℓ rounds and W playing a fixed strategy Wt.
Let S(·) be (efficiently samplable) distributions such that for every Q-move node h̄i−1w , S(h̄i−1w) is
a distribution over the next moves qi. Let ε ∈ (0, 1] be a real number. We define a strategy Qeff(ε)
of Q as follows. At each Q-move node h̄i−1w , Qeff(ε) does the following.

1. Let M = Θ((1/ε) · (log(1/ε) + ℓ)). Sample M moves qi,1, . . . , qi,M ← S(h̄i−1w) independently.

2. For every j ∈ [M], estimate the success probability γeff(h̄
i−1
w ◦ qi,j) of Qeff itself after taking

the move qi,j by sampling.

• Let Mi = Θ((4i/ε)2 · (logM + log(1/ε)+ ℓ)). Independently simulate Mi times the game
G with Q playing Qeff and W playing Wt from the 2i-th round with history h̄i−1w ◦ qi,j.

• Let γest(h̄
i−1
w ◦qi,j)

def
= (# Q-successful simulations)/Mi be the fraction of simulations that

Q succeeds, which is an estimation of γeff(h̄
i−1
w ◦ qi,j).

3. Let j∗ = argmaxj{γest(h̄i−1w ◦ qi,j)}. Take the move qi,j∗ that maximize the estimated success
probability γest(h̄

i−1
w ◦ qi,j).

Note that in the second step, Qeff needs to simulate itself in the remaining rounds, which uses
sampling too. Thus, what Qeff(ε) does is to use recursive sampling to select his next move. We
note that although we do not define efficiency explicitly in our notion of game, it is conceivable that
if Wt is efficient, the distribution S is efficiently samplable and the number of rounds ℓ is constant,
then Qeff(ε) can be implemented efficiently.

However, it is impossible for Qeff(ε) to always approximate the optimal strategy Qopt well,
because Qeff(ε) may never see the best move from distribution S, and the best move can be
significantly better than all the other moves. Nevertheless, Qeff(ε) can see one of the ε-fraction of
best moves (according to the distribution S) with high probability. Thus, it is possible for Qeff(ε)
to achieve comparable success probability to an optimal strategy ˜Qopt of Q̃ in a modified game
G̃ where ε-fraction of best moves are “turned off”. Indeed, we will define the modified game G̃
formally and show that the success probability γeff of Qeff(ε) in G is close to the success probability
˜γopt of ˜Qopt in the modified game G̃.

Definition 35 Let G = (Q,W,J) be a game with W playing a fixed strategy Wt. Let S(·) be
distributions such that for every Q-move node h̄i−1w , S(h̄i−1w) is a distribution over the next moves
qi. Let ε ∈ (0, 1] be a real number. Let Qeff(ε) be the strategy defined in Definition 34.

20

• A W-move node h̄iq = (h̄i−1w ◦ qi) is strong if h̄iq has the ε-fraction of largest γeff(h̄
i
q) among

the children (h̄i−1w ◦ q′i) of h̄i−1w according to S(h̄i−1w). That is,

Pr
q′i←S(h̄

i−1
w)

[
γeff(h̄

i−1
w ◦ qi) ≤ γeff(h̄

i−1
w ◦ q′i)

]
≤ ε.

Let H denote the set of strong W-move nodes.

• Let G̃ = (Q̃, W̃, J̃) be a game that is the same as G except that the judge J̃ , which is defined
below, is different from J . For every leaf node h̄, if there exists an ancestor W-move node
h̄iq of h̄ such that h̄iq is strong, then J̃ (h̄) = 0. Otherwise, J̃ (h̄) = J (h̄).

Lemma 36 Let G = (Q,W,J) be a game with W playing a fixed strategy Wt. Let S(·) be dis-
tributions such that for every Q-move node h̄i−1w , S(h̄i−1w) is a distribution over the next moves
qi. Let ε ∈ (0, 1] be a real number. Let Qeff(ε) be the strategy defined in Definition 34 and G̃ the
corresponding modified game. We have γeff ≥ ˜γopt − ε.

Proof. We prove the statement by induction on the level of the game tree from the leaf level.
The inductive hypotheses are{

γeff(h̄
i
q) ≥ ˜γopt(h̄

i
q)− ε/4i for every W-move node h̄iq,

γeff(h̄
i
w) ≥ ˜γopt(h̄

i
w)− ε/4i for every Q-move node h̄iw.

The base case is trivial. For every leaf node h̄ (of the form either h̄mw or h̄mq), we have

γeff(h̄) = J (h̄) ≥ J̃ (h̄) ≥ ˜γopt(h̄)− ε/4m.

There are two cases in the inductive step. Let us prove the simpler case first. Suppose that the
inductive hypothesis is true for every Q-move node h̄iw in the 2i-th level. Then for every W-move
node h̄iq in the (2i− 1)-st level, we have

γeff(h̄
i
q) = E

wi

[γeff(h̄
i
q ◦ wi)] ≥ E

wi

[˜γopt(h̄
i
q ◦ wi)− (ε/4i)] = ˜γopt(h̄

i
q)− (ε/4i),

where the middle inequality follows by the inductive hypothesis. Thus, the inductive hypothesis
holds for the (2i− 1)-st level.

Now, suppose that for everyW-move node h̄iq in the (2i− 1)-th level, γeff(h̄
i
q) ≥ ˜γopt(h̄

i
q)− ε/4i.

We want to show that for every Q-move node h̄i−1w in the (2i− 2)-nd level,

γeff(h̄
i−1
w) ≥ ˜γopt(h̄

i−1
w)− ε/4i−1.

Consider an arbitrary Q-move node h̄i−1w . Let T the set of children (h̄i−1w ◦ qi) of h̄i−1w with
largest γeff(h̄

i
q) among (h̄i−1w ◦ q′i)’s not in H. That is,

T = {(h̄i−1w ◦ qi) /∈ H : γeff(h̄
i−1
w ◦ qi) = max

(h̄i−1
w ◦q′i)/∈H

γeff(h̄
i−1
w ◦ q′i)}.

The disired inequality follows by the following three claims.

Claim 37 In the first step of Qeff , with probability at least 1−(1−ε)M over qi,1, . . . , qi,M ← S(h̄i−1w),
there exists a j0 ∈ [M] such that h̄i−1w ◦ qi,j0 ∈ H ∪ T . In this case, we call the first step is good.

21

Proof of claim: Observe that

Pr
qi←S(h̄i−1

w)
[h̄i−1w ◦ qi ∈ H ∪ T] > ε.

Since qi,1, . . . , qi,M are sampled from S(h̄i−1w) independently, the claim follows. 2

Claim 38 In the second step of Qeff , with probability at least 1−M ·2−Ω(Mi·(ε/4i)2), the estimation
γest(h̄

i−1
w ◦ qi,j) of γeff(h̄i−1w ◦ qi,j) is within additive error ε/4i for every j ∈ [M]. That is,

|γest(h̄i−1w ◦ qi,j)− γeff(h̄
i−1
w ◦ qi,j)| ≤ (ε/4i) for every j ∈ [M].

In this case, we call the second step is good.

Proof of claim: Follow by a standard Chernoff bound and a union bound. 2

Claim 39 Suppose in the execution of Qeff , both the first two steps are good. Then Qeff will take
a move q∗i with γeff(h̄

i−1
w ◦ q∗i) ≥ ˜γopt(h̄

i−1
w)− (3ε/4i).

Proof of claim: Let qi,1, . . . , qi,M ← S(h̄i−1w) be the M samples drawn in the first step
of Qeff . Since the first step is good, there exists a j0 ∈ [M] such that h̄i−1w ◦qi,j0 ∈ H∪T .
We first argue that γeff(h̄

i−1
w ◦qi,j0) ≥ ˜γopt(h̄

i−1
w)−(ε/4i). Note that ˜γopt(h̄

i−1
w ◦qi) = 0 for

every h̄i−1w ◦ qi ∈ H by our construction of G̃, and ˜γopt(h̄
i−1
w ◦ qi) ≤ γeff(h̄

i−1
w ◦ qi)+(ε/4i)

for every h̄i−1w ◦ qi by the induction hypothesis. We have

˜γopt(h̄
i−1
w) = max

qi:(h̄
i−1
w ◦qi)/∈H

{ ˜γopt(h̄
i−1
w ◦ qi)}

≤ max
qi:(h̄

i−1
w ◦qi)/∈H

{γeff(h̄i−1w ◦ qi) + (ε/4i)}

≤ γeff(h̄
i−1
w ◦ qi,j0) + (ε/4i).

However, Qeff takes q∗i that maximize γest(h̄
i−1
w ◦ qi,j), which may not be qi,j0 . Nev-

ertheless, since the second step is good, |γest(h̄i−1w ◦ qi,j) − γeff(h̄
i−1
w ◦ qi,j)| ≤ (ε/4i) for

every j ∈ [M]. Therefore,

γeff(h̄
i−1
w ◦ q∗i) ≥ γest(h̄

i−1
w ◦ q∗i)− (ε/4i)

≥ γest(h̄
i−1
w ◦ qi,j0)− (ε/4i)

≥ γeff(h̄
i−1
w ◦ qi,j0)− (2ε/4i)

≥ ˜γopt(h̄
i−1
w)− (3ε/4i),

as desired. 2

By the above claims and a union bound, with probability at least 1−(1−ε)M−M ·2−Ω(Mi·(ε/4i)2) ≥
1− ε/4i, Qeff takes a move q∗i with γeff(h̄

i−1
w ◦ q∗i) ≥ ˜γopt(h̄

i−1
w)− (3ε/4i). Thus,

γeff(h̄
i−1
w) ≥ ˜γopt(h̄

i−1
w)− (3ε/4i)− ε/4i = ˜γopt(h̄

i−1
w)− ε/4i−1,

as desired. Since the argument holds for every Q-move node h̄i−1w , the inductive hypothesis holds
for the (2i− 2)-nd level, which completes the proof.

22

C.1.2 Proof of Lemma 19

We introduce the following notation. Let Sn be a solver for Pn,r
seq. For every i ∈ [n], we use ⟨Sn,Pi⟩

to denote the i-th round repetition of ⟨Sn,Pn,r
seq⟩. We say that Sn succeeds on Pi if P

n,r
seq accepts the

i-th round repeatition, and define indicator random variables Ti = 1 iff Sn succeeds on Pi. In this
section, we prove the following concrete version of full-spectrum hardness theorem for sequential
repetition of puzzle systems.

We recall that the theorem says that, for every puzzle system P, if there is a time T solver Sn

solving the n-fold sequential repetition Pn,r
seq of P with probability greater than P (n, r, δ), then we

can construct a solver S from Sn that can successfully solve one puzzle P with probability at least
δ · (1 − 1/η), where η is a slackness parameter. Furthermore, the reduction solver S runs in time
polynomial in all parameters n, η, 1/δ, 1/P (n, r, δ) and T . We remark that we use multiplicative
slackness in both sides to make the proof cleaner.

We follow the outline described in the introduction to prove Lemma 19. We will define a game
G played between S and P, analyze the success probability of an optimal strategy Sopt, and apply
Lemma 36 to show that there exists an efficient strategy Seff succeeds with probability close to δ.

Let P be a puzzle system and Pn,r
seq the corresponding (n, r)-sequential puzzle system. Let Sn be

a solver with success probability succPn,r
seq

[Sn] ≥ P (n, r, δ) for Pn,r
seq. Without loss of generality we

can assume that Sn is deterministic (he can sample the best coin tosses and uses these particular
fixed tosses.) Thus, the outcome of ⟨Sn,Pn,r

seq⟩ depends only on each Pi’s private coin tosses pi,
which can be viewed as the puzzle of each Pi.

We now define a game G(Sn) = (S,P,J) that captures a natural approach for S to solve
P. The game G(Sn) consists of only three rounds. In the first round, S picks some coordinate
i ∈ [n] and puzzles p1, . . . , pi−1 as her move (i; p1, . . . , pi−1). In the second round, P randomly
pick a move pi. Finally S picks the suffix (pi+1, pi+2, . . . , pn). This corresponds to S simulates
the first i − 1 rounds of ⟨Sn,Pn,r

seq⟩ using p1, . . . , pi−1 as Pn,r
seq’s coins and then simulates the i-th

round ⟨Sn,Pi⟩ with real P. Finally S simulates the last n − i rounds using the suffix. We define
J (i; p1, . . . , pi−1, pi, pi+1, . . . pn) = Ti(p1, . . . , pn), since S succeeds iff Sn succeeds on Pi.

The next step is to analyze the optimal strategy Sopt. We prove the following lemma, which says
that if succPn,r

seq
[Sn] ≥ P (n, r, δ), then the optimal strategy has success probability succP[Sopt] ≥ δ.

Lemma 40 Let n, k be positive integers with k ≤ n, and δ ∈ (0, 1) a real number. Let P be
a puzzle system, Pn,r

seq the corresponding (n, k)-sequential puzzle system, and Sn a deterministic
solver. Let G(Sn) be the corresponding game defined as above and Sopt be an optimal strategy. If
succPn,r

seq
[Sn] ≥ P (n, r, δ), then succP[Sopt] ≥ δ.

Proof. We will prove the contrapositive statement. Let us consider the success probability γopt(·)
of Sopt at each node of the game tree. We have

γopt(i; p1, . . . , pn) = Ti|(p1,...,pn) for each leaf node (i; p1, . . . , pn).

γopt(i; p1, . . . , pi−1, pi) = 1 iff ∃ (pi+1, pi+2, . . . , pn) s.t. Ti|(p1, p2, . . . , pn) = 1; otherwise 0.

for the second S-move node (i; p1, . . . , pi−1, pi),

γopt(i; p1, . . . , pi−1) = Epi [γopt(i; p1, . . . , pi)] for each P-move node (i; p1, . . . , pi−1),

γopt = max(i;p1,...,pi−1){γopt(i; p1, . . . , pi−1)} for the root.

Thus, γopt(i; p1, . . . , pi−1) ≤ γopt for every i ∈ [n] and every p1, . . . , pi−1. Given this, we claim that
the random variables (T1, . . . , Tn) can be coupled with i.i.d. binary random variables (R1, . . . , Rn)

23

with Pr[Ri = 1] = γopt such that Ti ≤ Ri for every i with probability 1. It follows that

succPn,r
seq

[Sn] = Pr

[∑
i

Ti ≥ r

]
≤ Pr

[∑
i

Ri ≥ r

]
= P (n, r, γ) < P (n, r, δ),

as desired. Note that the last inequality holds because f(α)
def
= P (n, r, α) is a strictly increasing

function in α for every n and r ∈ [n].
It remains to prove the claim. First we define the conditional random variable R′i|(p1,...,pi−1) = 1

if there exists a suffix pi, pi+2, . . . , pn such that T |p1,p2,...,pn = 1, and otherwise 0. It is easy to see
that Ti ≤ R′i conditioning on all possible prefixes. On the other hand, since γopt(i; p1, . . . , pi−1) =
Prpi [R

′
i|p1,...,pi−1 = 1] by the construction of R′i, and thus we have Prpi [R

′
i|p1,...,pi−1 = 1] ≤ γopt.

Then we define Ri by defining the conditional random variable Ri|(p1,...,pi−1) for every i ∈ [n]
and every p1, . . . , pi−1. We want Ri|(p1,...,pi−1) to satisfy (i) R′i|(p1,...,pi−1) ≤ Ri|(p1,...,pi−1) and (ii)
Pr[Ri|(p1,...,pi−1) = 1] = γopt, which is doable because Pr[R′i|(p1,...,pi−1)] ≤ γopt. For every i ∈ [n]
and every p1, . . . , pi, if R

′
i|(p1,...,pi−1) = 1, we set Ri|(p1,...,pi−1) = 1, and if R′i|(p1,...,pi−1) = 0, we

toss independent coins and set Ri|(p1,...,pi−1) = 1 with probability (γopt − γ(i; p1, . . . , pi−1))/(1 −
γ(i; p1, . . . , pi−1)). It is easy to verify that (i) and (ii) are satisfied for every i and p1, . . . , pi−1,
which implies Ti ≤ Ri for every i ∈ [n] with probability 1 and Pr[Ri = 1] = γopt for every i ∈ [n].
To check the independence, for every r1, . . . , ri−1 ∈ {0, 1}, we have

Pr[Ri = 1|R1 = r1, . . . , Ri−1 = ri−1]

= E
(p1,...,pi−1)

[Pr[Ri = 1|p1, . . . , pi−1, R1 = r1, . . . , Ri−1 = ri−1]]

= E
(p1,...,pi−1)

[Pr[Ri = 1|p1, . . . , pi−1]]

= γopt,

where the second-to-third line follows because once we conditioning on p1, . . . , pi−1, Ri is indepen-
dent of R1, . . . , Ri−1 by our construction.

The next step is to use Lemma 36 to show that if there is an efficient deterministic solver Sn

with succPn,r
seq

[Sn] ≥ P (n, r, δ), then there is an efficient strategy Seff that succeeds with probability
at least δ · (1− 1/η) by the following argument.

• For the S-move nodes of the game tree, the root, define an efficiently samplable distribution
S over the possible S moves, and set the parameter ε = min{δ, P (n, r, δ)}/(nη). This defines
a strategy Seff and a modified game G̃ by Definition 34 and 35.

• Define a modified solver S̃
n
from Sn such that succPn,r

seq
[S̃

n
] ≥ P (n, r, δ)(1 − 1/2η) and the

corresponding game G(S̃n) = G̃. It follows by Lemma 40 that succP[˜Sopt] ≥ δ and by Lemma
36 that succP[Seff] ≥ succP[˜Sopt]− ε ≥ δ · (1− 1/η).

Lemma 41 Let n, r, η, T : N → N and δ : N → [0, 1] be efficiently computable functions with
r ≤ n. Let P be a puzzle system, Pn,r

seq the corresponding (n, r)-sequential puzzle system, and Sn a
deterministic solver such that ⟨Sn,Pn,r

seq⟩(1s) runs in time T (s). If succPn,r
seq

[Sn] ≥ P (n, k, δ)·(1−1/η),
then there exists a solver S for P runs in time poly(n, q, δ−1, P (n, r, δ)−1, T) with success probability
succP[S] ≥ δ · (1− 1/η).

Proof. Let G(Sn) be the corresponding game. We consider the solver Seff that solves P by
playing the game G(Sn) with P as defined in Definition 34. To specify Seff , we need to set the

24

parameter ε and define distributions S(·) for every S-move nodes in the game tree. We set ε =
min{δ, P (n, r, δ)}/(nη). Note that G(Sn) has three rounds. The corresponding distribution S
over {(i; p1, . . . , pi−1)} is as follows. i ← [n] is chosen uniformly at random, and (p1, . . . , pi−1) is
generated by the first (i − 1) rounds of ⟨Sn,Pn,r

seq⟩. The next move’s (P-move) distribution is the
i-round of the repetition Pn,r

seq and it outputs the puzzle pi. Finally the last move is the suffix
(pi+1, . . . , pn) of the system Pn,r

seq. More precisely, the corresponding solver Seff is as follows.

1. Let ε = min{δ, P (n, k, δ)}/(nη) and M = Θ((1/ε) · (log(1/ε))). For every j ∈ [M], inde-
pendently sample ij ← [n] uniformly at random and generate (p1,j , . . . , pij−1,j) by simulating
⟨Sn,Pn,r

seq⟩ for (i− 1) rounds.

2. For every j ∈ [M], estimate the success probability γeff(ij ; p1,j , . . . , pij−1,j) by sampling as
follows. Let M ′ = Θ((1/ε)2 · (logM + log(1/ε))). Independently simulate M ′ times the
interaction ⟨Sn,Pi⟩ with history (p1,j , . . . , pij−1,j). Let γest(ij ; p1,j , . . . , pij−1,j) be the fraction
of simulation that Sn succeeds on Pi.

3. Let j∗ = argmaxj{γest(ij ; p1,j , . . . , pij−1,j)}. Let the real puzzle P plays the role of Pij∗ , and
solve P by simulating ⟨Sn,Pij∗ ⟩ with history (p1,j∗ , . . . , pij∗−1,j∗).

In other words, Seff selects a good prefix puzzles (p1, . . . , pi−1) by sampling, and solves the real
puzzle P using Sn with P playing the role of Pi and history (p1, . . . , pi−1). Note that Seff runs in
time poly(n, η, δ−1, P (n, r, δ)−1, T), as desired.

Now, recall that the corresponding modified game G̃ is obtained by “turning off” all strong
P-move nodes, where a P-move node (i; p1, . . . , pi−1) is strong if it has the ε-fraction of largest
γeff(i; p1, . . . , pi−1) among all P-move nodes. That is,

Pr
(i′;p′1,...,p

′
i−1)←S

[
γeff(i; p1, . . . , pi−1) ≤ γeff(i

′; p′1, . . . , p
′
i−1)

]
≤ ε.

For every leaf node (i; p1, . . . , pi), if its P-move parent (i; p1, . . . , pi−1) is strong, then J̃ (i; p1, . . . , pi) =
0; otherwise, J̃ (i; p1, . . . , pi) = J (i; p1, . . . , pi) = Ti|(p1,...,pi). Let S̃

n
be a solver for Pn,r

seq and

T̃1, . . . , T̃n the indicator random variables such that T̃i = 1 iff S̃
n
succeeds on Pi. Note that if

T̃i|(p1,...,pi) = 0 when (i; p1, . . . , pi) is strong and otherwise, T̃i|(p1,...,pi) = Ti|(p1,...,pi), then G̃ =

G(S̃n).6 Thus, we can lower bound the success probability of ˜Sopt by lower bounding the success

probability of S̃
n
and applying Lemma 40.

Claim 42 The statistical distance ∆((T1, . . . , Tn), (T̃1, . . . , T̃n)) ≤ n · ε ≤ 1/η, and thus

succPn,r
seq

[S̃
n
] ≥ succPn,r

seq
[Sn]− 1/η ≥ P (n, r, δ).

Proof of claim: Note that for every i and p1, . . . , pi, Ti|(p1,...,pi) ̸= T̃i|(p1,...,pi) only
when (i; p1, . . . , pi−1) is strong, and the fraction of strong nodes is at most ε. That is,

Pr
(i;p1,...,pi−1)←S

[(i; p1, . . . , pi−1) ∈ H] ≤ ε.

6One realization of such S̃n is to let S̃n to behave exactly the same as Sn but for each i ∈ [n] abort the interaction
with Pi when (i; p1, . . . , pi−1) is strong. Note that such S̃n may not be efficient and needs to know the private coins
of Pn,r

seq to decide whether to abort or not. Nevertheless, Lemma 40 is still applicable.

25

Intuitively, T⃗ = (T1, . . . , Tn) and
˜⃗
T = (T̃1, . . . , T̃n) can only differ on at most (n · ε)-

fraction of probability mass because Pr[(i; p1, . . . , pi−1)] = (1/n) · Pr[(p1, . . . , pi−1)].
Formally, we have

∆(T⃗ , ⃗̃T) ≤ Pr[T⃗ ̸= ⃗̃T]

≤ Pr[∃i ∈ [n] s.t. (i; p1, . . . , pi−1) ∈ H]

≤
∑
i

Pr[(i; p1, . . . , pi−1) ∈ H]

= n · Pr
(i;p1,...,pi−1)←S

[(i; p1, . . . , pi−1) ∈ H]

≤ n · ε

2

Putting things together, by Lemma 40 and 36, we have

succP[Seff] ≥ succP[˜Sopt]− ε ≥ δ · (1− 1/η),

as desired.
Lemma 19 follows easily from Lemma 30 and 41.

Proof. (of Lemma 19) By Lemma 30 with slackness parameter min{δ, P (n, k, δ)}/(2η), there
exists a solver Ŝ

n
such that ⟨Ŝn,Pn,r

seq⟩ runs in time poly(η, δ−1, P (n, r, δ)−1, T) and with probability

at least 1 − δ/(2η) over Ŝ
n
’s random coins c, the deterministic solver Ŝ

n

c obtained by fixing Ŝ
n
’s

coins to c has success probability succPn,r
seq

[Ŝ
n

c] ≥ P (n, k, δ) · (1− 1/(2η)). Consider a solver S that

samples random coins c for Ŝ
n
, and solves P by playing strategy Seff ,c in the corresponding game

G(Ŝnc). It is not hard to see that S runs in time poly(n, η, δ−1, P (n, r, δ)−1, T). By Lemma 41 with
slackness parameter 2η, if succPn,r

seq
[Ŝ

n

c] ≥ P (n, r, δ) · (1− 1/(2η), then succP[Seff ,c] ≥ δ · (1− 1/(2η)).

Since succPn,r
seq

[Ŝ
n

c] ≥ P (n, r, δ) · (1 − 1/(2η)) with probability at least 1 − δ/(2η) over c, it follows
that

succP[S] ≥ δ · (1− 1/(2η))− δ/(2η) = δ · (1− 1/η).

C.2 General Two-Phase Model

In this section, we consider a more general two-phase model where the puzzle systems are only
weakly verifiable. We wonder whether Full Spectrum Hardness can be achieved here where the
solver cannot verify the answer to the puzzle not generated by himself. Let Sn be the solver with
success probability at least P (n, r, δ) of solving Pn,r

seq, from this our goal is to construct another
solver S that solves P with success probability δ. By the same argument as previous, without loss
of generality we assume Sn to be deterministic.

In the first place, it is natural to look at the previous framework (i.e. Fully verifiable Two-Phase
system) and see if the same reasoning also applies. To our observation, there are some technical
barriers with which it is unclear how the same framework can apply. Recall in this framework,
given a solver Sn for Pn,r

seq, we then get an induced game G = (S,P,J) for the single puzzle system
P and a solver S. Here the judge J ’s rule depends on the behavior of Sn that whether he solves the
n-fold puzzle. The game consists of the following moves. First the S finds a prefix, then P gives a
puzzle, then S finds a suffix. Then S succeeds iff J on these moves outputs 1. Then we construct

26

the players Sopt and Seff who play the optimal strategy and the efficient strategy respectively and
relate the success probabilities of those, and argue that if Sn has high success probability to Pn,r

seq,
then the player Seff also has high success probability.

Here in the weakly verifiable case, the judge’s rule is different from that for the verifiable case
since whether the answer to any puzzle is correct or not depends on the puzzle generator’s secret
coins. Thus for the same answer to a particular answer, the judge may give different results. Thus,
the judge must be probabilistic. Here by the same argument in Lemma 36, we can argue that the
optimal strategy still has high success probability. However, when we want to approximate it by
sampling, it is unclear how to make it. We observe that in this approach, the judge cannot be
efficiently implementable. This is because no efficient algorithm can sample P’s random coins that
are consistent to the puzzle it generates, and then makes the judgement according to the consistent
coins. This results in the failure of the sampling technique of Seff in that we cannot efficiently
estimate the success probability at each node. To be more concrete, after a prefix and a puzzle are
chosen, it is not clear how S estimates the success probability and cannot choose the best suffix
consequently.

Although it seems hard to bypass the barrier in the above direction, there are other techniques
used in the previous works and had positive results for some special cases. In the above, we
identified the barrier that it is hard to estimate the success probability of any particular suffix.
Canetti, Halevi, and Steiner [CHS05] gave a new idea that chooses a good suffix by “conditioning.”
That is, even though we cannot estimate the success probability of each suffix, we believe that Sn

gives a correct answer conditioning on some particular event with the suffix. They gave an algorithm
that finds a good prefix, and with conditioning, they proved the Direct Product Theorem. Followed
by a similar idea by Halevi and Rabin [HR08], the Hardness Degradation can also be achieved. We
summarize these two algorithms and give a high level analysis to see why this idea works.

For the Direct Product Theorem [CHS05], the algorithm firstly uses recursion to find a good pre-
fix. Let E i(k) be the event that Sn solves k puzzles over {pi, pi+1, . . . , pn}, and Pr[E i(k)] is the prob-
ability that this event happens with the randomness over the rest of the puzzles {pi, pi+1, . . . , pn}.
Starting from prefix i = 1, p⃗ = ∅, the recursion iteratively extends it by the condition: if there
exists a puzzle pi such that Pr[E i+1(n − i)] ≥ δn−i, then p⃗ = p⃗ ◦ {pi}, i = i + 1 and it recurs. We
observe that when the algorithm recurs, it reduces the problem to the smaller subproblem with the
same structure, (i.e. Sn with the prefix solves the other puzzles with probability better than δn−i,
and this is the smaller subproblem.) On the other hand, when the recursion condition does not
hold, we claim p⃗ is the good prefix. Then with this prefix, the solver S embeds the puzzle from the
P, then he finds a suffix conditioning on the event E i+1(n− i− 1), which means conditioning on S
solves all of the puzzles in the suffix, the algorithm outputs Sn’s answer to the real puzzle.

Here we give a high level analysis of this algorithm. Let b ∈ {0, 1, ∗}, and for convenience
we introduce another similar notation E i(b, k) to be the event that Sn solves k puzzles among
pi+1, pi+2, . . . , pn and with b = 0 it fails to solve pi, b = 1 it succeeds, and b = ∗, it does not care.
Observe that the recursion deals with the problem of the same structure, so we analyze the case
when the recursion stops at the first place, i.e. i = 1, p⃗ = ∅. With the same reasoning, we can
handle the case whenever the recursion stops. Then we claim that the success probability of the

algorithm is Ep1 [E1(1, ∗)|E1(∗, n− 1)] = Ep1

[
E1(1,n−1)
E1(∗,n−1)

]
. This is because for every p1 the algorithm

has success probability Pr
[
E1(1,n−1)
E1(∗,n−1)

∣∣∣ p1] of solving it correctly (by conditioning), and thus the

average value over p1 is the success probability of the algorithm.
At the beginning, we have (i) Pr[E1(1, n − 1)] ≥ δn from the assumption. Since the recursion

27

stops at i = 1, we then have (ii) for any first puzzle p1, Pr[E1(∗, n− 1)|p1] ≤ δn−1. Then we have

E
p1

[
E1(1, n− 1)

E1(∗, n− 1)

]
≥ E

p1

[
E1(1, n− 1)

δn−1

]
≥ δn

δn−1
= δ,

where the first inequality is by (ii), and the second is by (i). This gives the result we desire for the
Direct Product Theorem.

For the other case of Hardness Degradation in [HR08], the authors uses the same framework
with some variations. Still the algorithm first finds a good prefix by recursion. Starting from prefix
i = 1, p⃗ = ∅, the recursion iteratively extends it by the condition: if there exists a puzzle pi such
that Pr[E i+1(≥ 1)] ≥ 1− (1− δ)n−i, then p⃗ = p⃗ ◦ {pi}, i = i+ 1 and it recurs. On the other hand,
when the recursion condition does not hold, we claim p⃗ is the good prefix. Then with this prefix,
the solver S embeds the puzzle from the P, then he finds a suffix conditioning on the event E i+1(0),
which means conditioning on S solves none of the puzzles in the suffix, the algorithm outputs Sn’s
answer to the real puzzle.

With the same reason for the Direct Product Theorem, we consider the case when the recursion
stops in the beginning i = 1, and then we have the success probability Ep1 [E1(1, ∗)|E1(∗, 0)] =
Ep1

[
E1(1,0)
E1(∗,0)

]
. At the beginning we have (i) Pr[E1(1, 0) + E1(∗,≥ 1)] ≥ 1 − (1 − δ)n from the

assumption. Then since the recursion stops, we have (ii) for all p1, Pr[E(∗,≥ 1)|p1] < 1−(1−δ)n−1.
From (ii) we have for all p1, Pr[E1(0, 0)|p1] = 1 − Pr[E1(∗,≥ 1)|p1] > (1 − δ)n−1. By (i) and (ii)
we have Pr[E1(1, 0)] ≥ 1 − (1 − δ)n − (1 − (1 − δ)n−1) = δ · (1 − δ)n−1. Then we have the success
probability, and Jensen’s inequality:

E
p1

[
E1(1, 0)
E1(∗, 0)

]
= E

p1

[
E1(1, 0)

E1(1, 0) ∪ E(0, 0)

]
≥ E

p1

[
E1(1, 0)

E1(1, 0) + (1− δ)n−1

]
≥ E[E1(1, 0)]

E[E1(1, 0)] + (1− δ)n−1
≥ δ.

These two directions gave positive results in the two special cases; however, there are no direct
clues of how we can generalize it to the case r between 2 to n − 1. First, the recursion condition
is not clear. Which subproblem the algorithm should recur to is not clear, since the original
condition seems not to work directly. The other problem is which condition the algorithm believes
the output to be correct, and the previous conditions that all the other puzzles are simultaneously
solved correctly or incorrectly at the same time seem not work in the general case.

In this work, we find the correct recursive subproblems and the corresponding conditional event
that the algorithm believes the answer to be correct. We slightly modify the previous recursion
that in the generalized case, it occurs with either of the following two facts holds: for n ∈ N, r ∈ [n],
starting from the empty prefix p⃗ = ∅, i = 1, the algorithm checks if there exists a pi such that (1)
Pr[E i(∗, k)|p⃗, pi] ≥ P (n− i, r, δ), or (2) Pr[E i(∗, k− 1)|p⃗, pi] ≥ P (n− i, r− 1, δ), then the algorithm
recurs with p⃗ = p⃗ ◦ pi, i = i+ 1 (to the case that the condition holds). If both conditions fail, then
it claims p⃗ is the good prefix, and it believes the answer from Sn if it solves exactly r − 1 puzzles
in the remaining puzzles, i.e. conditioning on the event E i(∗, r − 1).

In the following, we are going to argue the above scheme succeeds with probability more than
δ given the Sn has success probability more than P (n, r, δ). Here we first give a formal definition
of the events and the main theorem as follows:

Definition 43 Let n, r, i, t ∈ N, b ∈ {0, 1, ∗}, P be a two-phase puzzle system and Pn,r
seq the corre-

sponding (n, r)-sequential two-phase puzzle system. Let Sn be the solver to Pn,r
seq. Given an n-fold

puzzle (p1, p2, . . . , pn) from Pn,r
seq, define the following events:

1. E i(≥ t): Sn solves at least t puzzles over {pi, pi+1, . . . , pn}.

28

2. E i(t): Sn solves exactly t puzzles over {pi, pi+1, . . . , pn}

3. E i(b,≥ t): Sn solves at least t puzzles over {pi+1, pi+2, . . . , pn}; and it solves pi if b = 1; it
does not if b = 0; else b = ∗, E i(∗,≥ t) = E i(1,≥ t) ∪ E i(0,≥ t).

4. E i(b, t): Sn solves exactly t puzzles over {pi+1, pi+2, . . . , pn}; and it solves pi if b = 1; it does
not if b = 0; else b = ∗, E i(∗, t) = E i(1, t) ∪ E i(0, t).

Let p⃗i−1 = (p1, p2, . . . , pi−1) be a prefix with length i − 1, and pi be the next puzzle. We define

the conditional probability T (i, p⃗i−1 ◦ pi; E i+1(≥ t))
def
= Pr[E i+1(≥ t)|p⃗i−1 ◦ pi]. Similarly, the other

types of events defined as above can be the parameters of T in the same way.

Now we are going to prove Lemma 18. Similarly we first consider a lemma in below that
considers the solver Sn to be deterministic, and it follows from the argument of Lemma 30 that
this is without loss of generality. Specifically, we are going to prove the lemma below:

Lemma 44 Let n, r, η, T : N → N, and δ : N → [0, 1] be efficiently computable functions with
r ≤ n. Let P be a two-phase puzzle system and Pn,r

seq the corresponding (n, r)-sequential two-phase
puzzle system. Let Sn be a deterministic solver for Pn,r

seq such that ⟨Sn,Pn,r
seq⟩(1s) runs in time T (s),

and succPn,r
seq

[Sn] ≥ P (n, r, δ). Then there exists a solver S for P that achieves ⟨S,P⟩(1s) running in

time T ′(s) = poly(n, r, η, 1/δr, T) and succP[S] ≥ δ · (1−1/η0.99). In particular the solver is defined
in the below.

Given a deterministic solver Sn that has success probability at least P (n, r, δ), we construct a
reduction algorithm as follow.

Definition 45 From the premises of the lemma above, we define a reduction algorithm S. Let
i = 1, p⃗ = ∅ as the initial condition. Then on input (i, p⃗, n, k) and oracle access to Sn, S does:

• repeat the following procedure: (prefix finding)

1. independently sample M = O(ηδ log(4ηn/δ)) pi’s denoted as pi,1, pi,2, . . . , pi,M

2. for each j ∈ [M], let ηi = P (n − i, r, δ)/δ, and then use M ′i = O(η2i log(4ηnM/δ))
independent samples to estimate the probability of the events E i(∗,≥ r) and E i(∗,≥ r−1)
conditioning on p⃗◦pi,j, denoted as T̃ (i, p⃗◦pi,j ; E i(∗,≥ r)), and T̃ (i, p⃗◦pi,j ; E i(∗,≥ r−1))

3. if there exists a j∗ such that the estimation of T̃ (i, p⃗ ◦ pi,j∗ ; E i(∗,≥ r)) ≥ P (n − i, r, δ)
then p⃗ = p⃗ ◦ pi,j∗ , i = i + 1; else if that T̃ (i, p⃗ ◦ pi,j∗ ; E i(∗,≥ r − 1)) ≥ P (n − i, r − 1, δ)
then p⃗ = p⃗ ◦ pi,j∗ , i = i+ 1, r = r − 1; then repeat with the new values of (i, p⃗, n, r)

4. if both conditions above do not hold or it i = n, then exit the repeat loop

the algorithm gets a puzzle pi from P and tries to solve it: (puzzle solving)

• repeat the following procedure:

1. sample a suffix pi+1, pi+2, . . . , pn

2. if Sn on input p⃗, pi, pi+1, pi+2, . . . , pn solves exactly r − 1 puzzles among the suffix, then
output ai, the answer from Sn to the puzzle pi+1

29

Proof. From a solver Sn, we define S as in the definition. Let i be the index that S stops the
prefix finding and begins the puzzle solving. Then we have the following claims:

Claim 46 In the execution of the algorithm, with probability 1− δ
4ηnM over the randomness of the

algorithm, the estimation of the event E i(∗,≥ r) has precision error at most P (n−i,r,δ)
η additively.

That is, for all T̃ (i, p⃗ ◦ pi,j ; E i(∗,≥ r)), we have

Pr

[∣∣∣T̃ (i, p⃗ ◦ pi,j∗ ; E i(∗,≥ r))− T (i, p⃗ ◦ pi,j∗ ; E i(∗,≥ r))
∣∣∣ < P (n− i, r, δ)

η

]
> 1− δ

4ηnM
.

Proof of claim: This is by Chernoff Bound since we take Mi = O(η2i log(4ηnM/δ))
with qi =

η
P (n−i,r,δ) independent samples. 2

We can bound the total number of estimations in the algorithm by Mn since for each i ∈ [n]
the algorithm takes M independent estimations. Thus, by union bound and the claim above, we
have with probability 1− δ

4ηn , all the estimations at loop i have precision P (n−i,r,δ)
η . We define this

event as Good 1 , and we have Pr[Good 1] > 1− δ
4η .

Claim 47 Let i ∈ [n], p⃗ be the prefix found in the algorithm in the round i, and E i(∗,≥ r) be
the event that it is going to estimate. Define B(i, p⃗, E i(∗,≥ r)) = {pi : T (i, p⃗ ◦ pi; E i(∗,≥ r)) ≥
(1 + 1/η) · P (n− i, r, δ)}.

Then for a given i, conditioning on the event Good 1 , with probability 1 − δ
4ηn over the ran-

domness of the algorithm, we have the following fact. Suppose for all j ∈ [M], the estimations
T̃ (i, p⃗ ◦ pi,j ; E i(∗,≥ r)) ≤ P (n− i, r, δ), then we have Prpi [pi ∈ B(i, p⃗, E i(∗,≥ r))] < δ

η .

Proof of claim: This is equivalent to prove that conditioning on the event Good 1 ,
with probability 1− δ

4ηn over the randomness of the algorithm, suppose we have Prpi [pi ∈
B(i, p⃗, E i(∗,≥ r))] ≥ δ

η , then we have at least one j such that T̃ (i, p⃗ ◦ pi,j ; E i(∗,≥ r)) ≥
P (n− i, r, δ).

Since we condition on the event Good 1 , which means all the estimations are within
precision errors at most P (n−i,r,δ)

η , then given a pi ∈ B(i, p⃗, E i(∗,≥ r)), the algorithm

will correctly identify this. Thus suppose Prpi [pi ∈ B(i, p⃗, E i(∗,≥ r))] ≥ δ
η , then taking

M = O(ηδ log(4ηn/δ)) samples without hitting any set element is at most (1 − δ
η)

M =

O(δ
4ηn). Thus hitting at least one element has probability at least 1− δ

4ηn , as desired.
2

Let the event Good 2 (i) to be: given i, suppose for all j ∈ [M], the estimations T̃ (i, p⃗ ◦
pi,j ; E i(∗,≥ r)) ≤ P (n − i, r, δ), then we have Prpi [pi ∈ B(i, p⃗, E i(∗,≥ r))] < δ

η . Let the event
Good 2 to be: for all i event Good 2 (i) holds. From the claim above and by union bound, we
have Pr[Good 2 |Good 1] > 1 − δ

4η . Also by the previous claim we have Pr[Good 1&Good 2] >

(1− δ
4η)

2 > 1− δ
2η .

Then we are going to calculate the success probability that the algorithm outputs conditioning
on the both events Good 1 and Good 2 .

30

Claim 48 Let i ∈ [n] be the index when the algorithm stops recurring, and p⃗ be the prefix it found.
Conditioning on both events Good 1 and Good 2 hold, for all sufficiently small constant c ∈ (0, 1)
and sufficiently large η the algorithm has success probability greater equal to (1−Θ(1/η1−c)) · δ. In

particular, η = Ω

((
P (n− i− 1, r, δ)/δ

(
n−i−1
r−1

))1/c)
is sufficient.

Proof of claim: Since the algorithm stops at i, found p⃗ as the prefix, and both
Good 1 ,Good 2 hold, by claim 46 and 47, we can deduce: for at least 1− δ

η fraction of pi,
we have (i) T (i, p⃗◦pi; E i(∗,≥ r)) ≤ (1+1/η)·P (n−i, r, δ), (ii) T (i, p⃗◦pi; E i(∗,≥ r−1)) ≤
(1+1/η)·P (n−i, r−1, δ). Also we have (iii) T (i, p⃗; E i(≥ r)) ≥ (1−1/η)·P (n−i+1, r, δ)
from the recursion criteria in the previous level i − 1. Similarly to the discussion of
the analysis of Direct Product Theorem and Hardness Degradation [CHS05, HR08],
we can express the success probability of the algorithm as Epi [E i(1, ∗)|E i(∗, r − 1)] =

Epi

[
Ei(1,r−1)
Ei(∗,r−1)

]
. Thus we have for every pi,

T (i, p⃗ ◦ pi; E i(1, r − 1))

T (i, p⃗ ◦ pi; E i(∗, r − 1))

=
T (i, p⃗ ◦ pi; E i(≥ r))− T (i, p⃗ ◦ pi; E i(∗,≥ r))

T (i, p⃗ ◦ pi; E i(∗,≥ r − 1))− T (i, p⃗ ◦ pi; E i(∗,≥ r))

≥ T (i, p⃗ ◦ pi; E i(≥ r))− (1 + 1/η) · P (n− i− 1, k, δ)

(1 + 1/η) · P (n− i− 1, r − 1, δ)− (1 + 1/η) · P (n− i− 1, r, δ)

Then by taking the expected value over pi, we get

E
pi

[
T (i, p⃗ ◦ pi; E i(1, r − 1))

T (i, p⃗ ◦ pi; E i(∗, r − 1))

]
≥ (1− 1/η) · P (n− i, r, δ)− (1 + 1/η) · P (n− i− 1, r, δ)

(1 + 1/η) · P (n− i− 1, r − 1, δ)− (1 + 1/η) · P (n− i− 1, r, δ)

≥ (1− 1/η1−c)δ, for all η ≥

(
2P (n− i− 1, r, δ)

δ
(

n
r−1
))1/c

.

2

Thus succP[S] ≥ Pr[S succeeds |Good 1&Good 2] Pr[Good 1&Good 2] > (1− 1/η0.99)δ by tak-
ing c = 0.01. This completes the proof of Lemma 44. Then together with Lemma 30, it is easy to
prove Lemma 18 as the previous section for fully-verifiable puzzle systems.

C.2.1 The Asymptotic Result: Proof of Theorem 17

Similar to [CHS05, HR08], we want to establish the asymptotic result from the lemmas with concrete
parameters developed in the previous section. Lemma 19 in section C.1 directly gives us the asymp-
totic result of Theorem 12, since the reduction time depends is polynomial in n, r, η, 1/δ, 1/P (n, r, δ).
However, for weakly verifiable puzzles, we are not able to apply Lemma 18 directly in that the re-
duction time is polynomial in δ−r, which is super-polynomial when δ is a constant and r = poly(s)
for the security parameter s. However, through a trick that composes two reduction algorithms, we
can still achieve the task. For simplicity, we present the form whose parameters are within Chernoff
range, and remark that for the other regions, the same argument directly follows.

31

Lemma 49 Let γ, δ ∈ (0, 1) be any arbitrary small constant, n, r ∈ N → N be any efficiently
computable and polynomially bounded functions with (1 + γ)δn(s) ≤ r(s) ≤ n(s), P = (G,V)(1s)
be any two-phase weakly verifiable puzzle system where s is the security parameter. Suppose P is
δ-hard, then Pn,r

seq is (P (n, r, δ) + ngl)-hard.

Proof. (sketch) We prove the contrapositive argument. Suppose Pn,r
seq is not P (n, r, δ)-hard, i.e.

there exists a solver with success probability greater equal than P (n, r, δ) + ϵ for some noticeable
function ϵ, then we want to construct a single puzzle solver S with success probability greater equal
than δ + ϵ′ for another noticeable function ϵ′, which means that P is not δ-hard.

Suppose n = O(log s), then Lemma 18 already gives us a reduction algorithm that runs in
poly(n, r, δ−r, (P (n, r, δ)+ϵ)−1) = poly(s). Thus we are done. For larger n, r, we take the following
strategy.

Let C = 1
(γ2/4)(1+γ/2)δ

be a constant, n′ = C log(nϵ) = O(log s) since n/ϵ = poly(s), and

t = n/n′, r′ = r/t. First we observe that from Sn we can construct a solver S̃ to the system Pn′,r′
seq

with success probability P (n,r,δ)+ϵ
t . This can be done by a simple average argument where S̃ first

randomly sample i ← [t − 1], then sample a prefix (i · n′ puzzles) by simulating a puzzle system

Pit,tr′
seq , then embed the n′ puzzles from Pn′,r′

seq , and finally sample the suffix for the solver Sn.

Let δ′ be the parameter such that P (n′, r′, δ′) = P (n,r,δ)+ϵ
t holds. Given S̃, by Lemma 18, we

can construct a solver S that solves a single puzzle with success probability greater equal than δ′,
running time in poly(n′, r′, δ−r

′
, 1/ϵ) = poly(s).

Our goal is to show that δ′ ≥ (1 + γ/2)δ ≥ δ + ϵ′ for ϵ′ = γϵ/2 being noticeable. First we
observe that P (n′, r′, ρ) is a increasing function with ρ given fixed n′, r′. Then we claim that
P (n′, r′, ρ) < P (n′, r′, δ′) for ρ = (1 + γ/2)δ, and thus we will have δ′ > ρ = (1 + γ/2)δ. Since
r′ ≥ (1 + γ)δn′ = (1 + γ)/(1 + γ/2)ρn′ > (1 + γ/2)ρn′, by standard Chernoff bound, we have
P (n′, r′, ρ) < e−(γ

2/4)ρn′
= e−(γ

2/4)(1+γ/2)δn′
= ϵ/n < P (n′, r′, δ′). Thus our goal is fulfilled.

32

