Abstract. Problem statements often resort to superlatives such as in eg. “...the smallest such number”, “...the best approximation”, “...the longest such list” which lead to specifications made of two parts: one defining a broad class of solutions (the easy part) and the other requesting one particular such solution optimal in some sense (the hard part). This report introduces a binary relational combinator which mirrors this linguistic structure and exploits its potential for calculating programs by optimization. This applies in particular to specifications written in the form of Galois connections, in which one of the adjoints delivers the optimal solution.

The framework encompases re-factoring of results previously developed by by Bird and de Moor for greedy and dynamic programming, in a way which makes them less technically involved and therefore easier to understand and play with.

1 Introduction

Computer programming is admittedly a challenging intellectual activity, calling for experience and training under a read-understand-repeat learning cycle. By acquiring good practices, relying on experienced teachers and practising a lot, the learning curve eventually bents, but reliability cannot be fully ensured. If one asks a student in programming about why she/he programs in that way (whatever this is) the answer is likely to be: I don't know — my teachers used to do it this way.

Why is this so? Isn’t programming a scientific discipline? Surely it is, as several landmark textbooks show \(^3\). But, perhaps the question

Why and in what measure *is* programming difficult?

is yet to be given a satisfactory answer. By satisfactory we mean one which should unravel problem solving (by computer) in a structured way, shedding light into the core mental activities involved in programming and thus identifying which skills one should acquire to become a good programmer.

\(^3\) See eg. the following (by no means exhaustive) list of widely acclaimed references: [13, 8, 23, 22, 6, 4].
Abstraction is one such skill [14]. Abstracting from the programming language and underlying technology is generally accepted as mandatory in the early stages of thinking about a software problem, leading to abstract modeling, which has become a discipline in itself [12, 11]. However, handling abstractions is not easy either (many will say it is harder) and the question persists: why and in what measure is abstract modeling difficult?

Induction is another such skill, to which programmers unconsciously appeal whenever solving a complex problem by (temporarily) imagining some (smaller) parts of it already solved. This leads to the divide-and-conquer programming strategy which explains many algorithms, often leading into parallel solutions. However, where and how does induction crop up in the design of a program? For instance, where exactly in the design of quicksort from its specification,

\[\text{Yield an ordered permutation of the input sequence} \]

does the doubly recursive strategy of the algorithm show up? The starting specification does not look inductive at all.

Are there other generic skills, or competences, that one such acquire to become a “good programmer”? This report tries to answer this question by splitting algorithmic specifications generically in two parts, to be addressed in different stages. Let us see where these come from.

In program construction one often encounters specifications asking for the “best” solution among a collection of solution candidates. Such specifications may have the form “the smallest such number . . .”, “the best approximation such that . . .”, “the longest prefix of a list satisfying . . .”, etc. A typical example is the definition of whole number division \(x \div y \), for a natural number \(x \) and positive natural number \(y \). A specification in words would say that \(x \div y \) is the largest natural number that, when multiplied by \(y \), is at most \(x \). The standard function \(\text{takeWhile} \, p \), as another example, returns the longest prefix of the input list such that all elements satisfy predicate \(p \).

Many other, less classroom-like problem statements share the same linguistic pattern in its use of superlatives. For instance, the computation of the “best” (in the sense of “quickest”) schedule for a collection of tasks, given their time spans and an acyclic graph describing which tasks depend upon completion of which other tasks 4 is another problem of the same kind. Such a schedule is “best” (among other schedules paying respect to the given graph of dependencies) in the sense that its tasks start as early as possible.

It is often relatively easy to construct a program that meets half of such specifications: returning or enumerating the feasible solution candidates, such as a natural number, or prefixes of the input list. This is the easy part. The hard part of the specification, however, demands that we return a candidate that is “best” in some sense (eg. some ordering): the largest integer, or the longest prefix, that satisfies the first, easy part of the specification.

4 This is widely known as a Gantt graph, a term coined after the surname of the mathematician Henry Gantt (1861-1919) who introduced them.
In this report we propose a new relational operator mirroring this “easy/hard”
dichotomy of problem statements into mathematics. The operator is of the form

\[E \upharpoonright H, \]

where \(E \) specifies the easy part — the collection of solution candidates —, while
\(H \) specifies the hard part — criteria under which a best solution is chosen.

One might wonder how to come up with the easy/hard split in the first place. In
this report we aim at characterizing problem specifications in terms of Galois
connections, in which one of the adjoints specifies the easy part (usually a known
function) and the other specifies the one at target (the hard one). For instance,
the (easy) adjoint of whole division is multiplication. This setting, which suggests
that “mathematics comes in easy/hard pairs”, provides a very natural way to
split a problem in its parts, as seen below.

Paper structure. In Section 2 we argue why Galois connections are suitable as
calculation specifications. After giving a minimal review of relational program
calculation in Section 3, we motivate and introduce the \((\upharpoonright)\) operator in Section 4.
If some components in the Galois connection are inductively defined, as reviewed
in Section 5, we present in Section 6 two theorems that allows us to calculate the
wanted adjoint, demonstrated by two examples. A larger example, scheduling a
collection of tasks given a Gantt graph, is presented in Section 7, before we
conclude in Section 8.

2 Galois connections as program specifications

Let us take the problem of writing the algorithm of whole division as starting
example \(^5\). What is its specification, to begin with? This has already been stated
above, informally:

\[x \div y \text{ is the largest natural number that, when multiplied by } y, \text{ is at most } x. \]

Which mathematics should we write to capture the text above? One possibility
is to write a “literal” one,

\[x \div y = \{ \vee z : z \times y \leq x \} \tag{1} \]

encoding superlative largest explicitly as a supremum. However, handling suprema
is not easy in general. A second version will circumvent this difficulty,

\[z = x \div y \equiv (\exists r : 0 \leq r < y : x = z \times y + r) \quad \frac{x}{r} \mid \frac{y}{z} \tag{2} \]

at the cost of existentially quantifying over remainders, still too involved for
reasoning.

\(^5\) This example is taken from [20].
A third alternative [20] comes in the form of an equivalence universally quantified in all its variables,

\[z \times y \leq x \Leftrightarrow z \leq x \div y \quad (y > 0) \]

(3)

and is surprisingly simpler. Pragmatically, it expresses a “shunting” rule which enables one to exchange between a whole division in the upper side of a \((\leq)\) inequality of natural numbers and a multiplication in the lower side, very much like in handling equations in school algebra.

Equivalences such as (3) are known as Galois connections [1, 7, 20]. In general, a Galois connection is a pair of functions \(f\) and \(g\) satisfying

\[f z \leq x \Leftrightarrow z \sqsubseteq g x. \]

for all \(z\) and \(x\), given preorders \((\leq)\) and \((\sqsubseteq)\) (which can be the same). Functions \(f\) and \(g\) are said to be adjoints of each other — \(f\) is the lower adjoint and \(g\) the upper adjoint. In the case of (3) the adjoint functions are as identified in

\[z (\times y) \leq x \Leftrightarrow z \leq x (\div y). \]

Why can one be so confident of the adequacy of (3) in the face of the given requirements? Do substitution \(z := x \div y\) in (3) and obtain \((x \div y) \times y \leq x\): this tells that \(x \div y\) is a candidate solution. Now read (3) from left to right, that is, focus on the implication \(z \times y \leq x \Rightarrow z \leq x \div y\): conclude that \(x \div y\) is largest among all other candidate solutions \(z\).

So (3) means the same as (1). What are the advantages of the former over the latter? It turns up that (3) is far more generous with respect to inference of properties of \(x \div y\). Some of these will arise from mere instantiation, as is the case of

\[\begin{align*}
0 &\leq x \div y \quad (z := 0) \\
y &\leq x \Leftrightarrow 1 \leq x \div y \quad (z := 1)
\end{align*} \]

Other properties, for instance

\[x \div 1 = x \]

call for properties of the lower adjoint (multiplication):

\[z \leq x \div 1 \]

\[\equiv \{ \text{Galois connection (3), for } y := 1 \} \]

\[z \times 1 \leq x \]

\[\equiv \{ 1 \text{ is the unit of } \times \} \]

\[z \leq x \]
That is, every natural number \(z \) which is at most \(x \div 1 \) is also at most \(x \). We conclude that \(x \div 1 \) and \(x \) are the same. The rationale behind this style of reasoning is known as the principle of indirect equality \(^6\):

\[
a = b \iff (\forall x :: x \leq a \equiv x \leq b) \tag{4}
\]

More elaborate properties can be inferred from (3) using indirect equality and basic properties of the “easy” adjoint (multiplication), for instance (for \(m, d > 0 \)):

\[
(n \div m) \div d = n \div (d \times m)
\]

Again Galois connection (3) blends well with indirect equality in delivering an easy proof:

\[
z \leq (n \div m) \div d \\
\equiv \{ \text{ Galois connection (3), twice } \}
\]

\[
(z \times d) \times m \leq n
\equiv \{ \times \text{ is associative } \}
\]

\[
z \times (d \times m) \leq n
\equiv \{ \text{ Galois connection (3) again, in the opposite direction } \}
\]

\[
z \leq n \div (d \times m)
:: \{ \text{ indirect equality (4) } \}
\]

\[
(n \div m) \div d = n \div (d \times m)
\]

Readers are challenged to compare this with alternative proofs of the same result using (1) or (2) instead of (3), not to mention the inductive proof which would be required if relying on the obvious recursive implementation of \(x \div y \) \(^2\). Simple (non inductive) proofs of this kind show the calculational power of Galois connections used as specifications and operated via indirect equality.

This strategy is applicable to arbitrarily complex problem domains, provided candidate solutions are ranked by a partial order such as \(\leq \) above. This is shown in our next example, in which the underlying partial order is the prefix relation \(\subseteq \) on finite sequences and what is being specified is \(\text{take} \), the function which yields the longest prefix of its input sequence up to some given length \(n \) \(^7\):

\[
\text{length } z \leq n \land z \sqsubseteq x \equiv z \sqsubseteq \text{take}(n, x) \tag{5}
\]

\(^6\) See [1]. Readers unaware of this way of indirectly establishing algebraic equalities will recognize that the same pattern of indirection is used when establishing set equality via the membership relation, cf. \(A = B \equiv (\forall x :: x \in A \equiv x \in B) \) as opposed to, e.g. circular inclusion: \(A = B \equiv A \subseteq B \land B \subseteq A \).

\(^7\) See [18]. The authors would like to thank Roland Backhouse for spotting this Galois connection, whose upper adjoint \(g = \text{take} \) is specified in terms of a lower adjoint involving \(\text{id} \) and \(\text{length} \): \(f z = (\text{length } z, z) \). Thus the lower ordering is the product partial order \((\leq) \times (\subseteq) \), defined pointwise in the obvious way.
The property being sought,

\[\text{take}(n, \text{take}(m, x)) = \text{take}(\min(n, m), x) \] \hspace{1cm} (6)

will rely on another Galois connection — that of defining the minimum of two numbers,

\[x \leq n \land x \leq m \equiv x \leq \min(n, m) \] \hspace{1cm} (7)

in a way which shows how Galois connections compose with each other in a natural and effective way \(^8\):

\[
\begin{align*}
z \sqsubseteq \text{take}(n, \text{take}(m, x)) \\
\equiv \{ \text{Galois connection (5), twice } \} \\
\text{length } z \leq n \land \text{length } z \leq m \land z \sqsubseteq x \\
\equiv \{ \text{Galois connection of } \min \text{ of two numbers (7) } \} \\
\text{length } z \leq \min(n, m) \land z \sqsubseteq x \\
\equiv \{ (5) \text{ again, now folding } \} \\
z \sqsubseteq \text{take}(\min(n, m), x) \\
:: \{ \text{indirect equality over prefix partial ordering } \sqsubseteq \} \\
\text{take}(n, \text{take}(m, x)) = \text{take}(\min(n, m), x)
\end{align*}
\]

Once again, the inductive proof of the same property likely to be arise from a recursive definition of \text{take} (such as that available from the Haskell prelude) can but be regarded as an over-kill in face of such a simple calculation relying on the Galois connection concept.

One may wonder about the extent to which such a calculational style carries over to supporting the actual \textit{synthesis} of the implementation of \text{take} given its specification (5) in the form of a Galois connection. This brings us to the core subject of the current report

How calculational is \textit{programming from Galois connections}?

Reference [20] shows how the defining Galois connection of \(\div\) provides most of what is required for calculating its implementation. Reference [18] does the same for \text{take}, but Galois connection (5) is productive only after an inductive definition of prefix \(\sqsubseteq\) is given explicitly, at point level. This somehow suggests that similar, but more economic and generic reasoning could be performed at the point-free level of the algebra of programming [6], capitalizing on the point-free definition of partial orderings such as prefix as relational folds.

Presenting such a generic, pointfree style of \textit{programming from Galois connections} is the main aim of the current report and leads us into the core of the research being reported.

\(^8\) For a detailed account of the algebra of Galois connections see eg. [1, 20, 18].
3 Preliminaries

In this section we give a minimal review of the point-free calculus of relations. For a thorough introduction, the reader is referred to Aarts et al. [1], and to Bird and de Moor [6] for a categorical perspective.

Relations. A relation R from set B to set A, written $R :: A \leftarrow B$, is a subset of the set $\mathbb{T} = \{(a,b) \mid a \in A \land b \in B\}$. When $(a,b) \in R$, we say R maps b to a. Set operations such as union, intersection, etc., apply to relations as well. Note that orderings like \leq, \subseteq, etc., are also relations, mapping “larger” elements to “smaller” ones. The largest relation (with respect to set inclusion (\subseteq)) of its type is \top, while the empty relation is denoted by \bot. Given $R :: A \leftarrow B$ and $S :: B \leftarrow C$, their composition $R \cdot S :: A \leftarrow C$ is defined by:

$$(a,c) \in (R \cdot S) \equiv \exists b \cdot (a,b) \in R \land (b,c) \in S.$$

Composition is monotonic with respect to (\subseteq). The identity relation $id_A :: A \leftarrow A$ defined by $\forall a : a \in A : (a,a) \in id_A$ is the unit of composition. We often omit the subscript when it is clear from the context. Given a relation $R :: A \leftarrow B$, its converse $R^c :: B \leftarrow A$ is defined by $(b,a) \in R^c \equiv (a,b) \in R$.

A relation that is a subset of id is said to be coreflexive, often used to filter results satisfying certain conditions. Given a predicate p, the coreflexive relation p^c is defined by: $(a,a) \in p^c \equiv p a$. The domain and range of a relation R are given respectively by $\text{dom } R = id \cap (R^c \cdot R)$ and $\text{ran } R = id \cap (R \cdot R^c)$. A relation R is said to be (1) simple, if $(a,b) \in R$ and $(a',b) \in R$ implies $a = a'$, or $R \cdot R^c \subseteq id$; (2) entire, if every $b \in B$ is mapped to some a, or $id \subseteq R^c \cdot R$.

A (total) function is a relation that is both simple and entire. As a convention, single small-case letters refer to functions. One nice property of functions is that inclusion equivalls equality: $f \subseteq g \equiv f = g$. The following shunting rules allows us to move functions to the other side of inclusion:

$$f \cdot R \subseteq S \equiv R \subseteq f^c \cdot S, \quad R \cdot f^c \subseteq S \equiv R \subseteq S \cdot f. \quad (8)$$

The relation $R \cdot R^c$ is called the image of R, denoted by $\text{img } R$.

Given $R :: A \leftarrow B$, $S :: B \leftarrow C$, and $T :: A \leftarrow C$, the relation $T/S :: A \leftarrow B$ is defined by the Galois connection:

$$R \cdot S \subseteq T \equiv R \subseteq T/S.$$

If $(\cdot S)$ is like multiplication, $(/S)$ is like division: T/S is the largest relation such that $T/S \cdot S \subseteq T$.

Relations on functions Relations are not bound to relating “atomic values” only: they can relate functions with other functions, for instance. An example of this is the so-called Reynolds arrow combinator, $R \leftarrow S$, which given two relations $R :: D \leftarrow C$, $S :: B \leftarrow A$, is the relation on functions such that

$$(f,g) \in (R \leftarrow S) \equiv f \cdot S \subseteq R \cdot g \quad (9)$$
So, \(f \) being \((R \leftarrow S)\)-related to \(g \) means that \(f \) and \(g \) produce \(R \)-related outputs provided their inputs are \(S \)-related \(^9\). We will write notation

\[
R \leftarrow^f S
\]

as abbreviation of \((f, f) \in (S \leftarrow R)\) — the same as \(f \cdot S \subseteq R : f \) — which expresses a monotonicity condition on \(f \). For example, let \((\leq)\) and \((\leq)\) be two partial orders. Then writing \(\leq \leftarrow^f \leq \) means that \(f \) is monotonic on such orderings.

Relators, Sum, and Product A relator is an extension of a functor in category theory. For the purpose of this report it suffices to know that a relator \(F \) consists of an operation on types that takes a type \(A \) to another type \(FA \), and an operation on relations, denoted by the same symbol \(F \), that takes \(R :: A \leftarrow B \) to \(FR :: FA \leftarrow FB \). A relator is supposed to preserve identity \((\text{Id}_A = id_{FA})\) and composition \((FR \cdot FS = F(R \cdot S))\), and is monotonic with respect to \((\subseteq)\) \((R \subseteq S \Rightarrow FR \subseteq FS)\).

The unit relator \(1 \) takes any type to the unit type (with one element denoted by \((\))\), and any relation to \(id \).

A bi-relator is a relator generalised to having two arguments. We will need two bi-relators: sum \((+\)) and product \((\times)\). For \((\times)\), the operation on types is the Cartesian product \(A \times B \), defined by \{"(a, b) \mid a \in A, b \in B\}\). The projections are \(\text{fst} (a, b) = a \) and \(\text{snd} (a, b) = b \). Given \(R :: A \leftarrow C \) and \(S :: B \leftarrow C \), the “split” \(\langle R, S \rangle :: (A \times B) \leftarrow C \) is defined by:

\[
(a, b, c) \in \langle R, S \rangle \equiv (a, c) \in R \land (b, c) \in S.
\]

Equivalently, \(\langle R, S \rangle = (\text{fst} \circ R) \cap (\text{snd} \circ S) \). The operation on relations is defined using split:

\[
(R \times S) = \langle R \cdot \text{fst}, S \cdot \text{snd} \rangle.
\]

Functional programmers may be more familiar with the special case for functions:

\[
\langle f, g \rangle a = (f a, g a), \quad (f \times g) (a, b) = (f a, g b).
\]

The disjoint sum of two sets \(A \) and \(B \) is defined by \(A + B = \{\text{inl} a \mid a \in A\} \cup \{\text{inr} b \mid b \in B\}\), with \(\text{inl} \) and \(\text{inr} \) being two injections. Given two relations \(R :: A \leftarrow B \) and \(S :: A \leftarrow C \), their “join” \([R, S] :: A \leftarrow (B + C)\) is defined by:

\[
(a, \text{inl} b) \in [R, S] \equiv (a, b) \in R \quad (a, \text{inr} c) \in [R, S] \equiv (a, c) \in S.
\]

Equivalently, \([R, S] = (R \cdot \text{inl} \circ) \cup (S \cdot \text{inr} \circ)\). This gives rise to the relator operation on relations:

\[
R + S = [\text{inl} \cdot R, \text{inr} \cdot S].
\]

Note the symmetry between the definitions for sum and product. We will often need this absorption law:

\[
[R, S] \cdot (T + U) = [R \cdot T, S \cdot U].
\]

\(^9\) This combinator extensively studied in [2] and [17] in the context of calculating theorems for free.
One of the applications of the join is to define the branching operator \((P \rightarrow R,S)\), corresponding to the \textbf{if} \(P\) \textbf{then} \(R\) \textbf{else} \(S\) construct in many programming languages:

\[
(p \rightarrow R,S) = [R,S] \cdot ((inl \cdot p?) \cup (inr \cdot (\neg p)?))
\]

\[
= (R \cdot p?) \cup (S \cdot (\neg p)?).
\]

More generally, a common programming pattern is to use the converse of a join \([T,U]\) \circ = \(\text{inl} \cdot T \circ \cup (\text{inr} \cdot U \circ)\) to simulate possibly non-deterministic case analysis, and process the two cases by another join. In such situations the following rule comes in handy:

\[
[R,S] \cdot [T,U] = (R \cdot T \circ) \cup (S \cdot U \circ).
\]

(12)

4 Calculating Galois adjoints

Recall the definition of a Galois connection: given two preorders \((\leq)\) on \(A\) and \((\sqsubseteq)\) on \(B\), we say that two functions \(f : A \leftarrow B\) and \(g : B \leftarrow A\) form a Galois connection if they satisfy the following equivalence:

\[
f x \leq y \equiv x \sqsubseteq g y \quad \text{cf. diagram:}
\]

(13)

It is quite common in Galois connections to have adjoints of disparate complexity. In Galois connection (3) relating multiplication \((\times)\) and whole division \((\div y)\), for example, the former is easier to define than the latter. A common scenario is that of one being given the two preorders and an easy adjoint, thereupon targeting at calculating the other adjoint.

Recall the easy/hard split discussed in Section 1. We will propose in this section a relational operator that manifests the split: by \(E \mid H\) we denote a problem specification where the easy part \(E\) is “shrunk” by the requirements of the hard part \(H\). It will then be shown that given \((\leq)\), \((\sqsubseteq)\), and lower adjoint \(f\) in a Galois connection, the upper adjoint can be expressed by:

\[
g = (f^\circ \cdot (\leq)) \downarrow (\sqsubseteq).
\]

(14)

We will then discuss, in this section and the next, some properties of (\(\mid\)) that help us to calculate \(g\). The operator (\(\downarrow\)) is similar to, and shares many properties of, the \textit{min} operator of Bird and de Moor [6], with the significant advantage of not requiring a power allegory.\(^{10}\)

\(^{10}\)Interestingly enough, the combinator arose in [9] in reasoning about sequences in Alloy [11]. This shows how versatile relational algebra is — the same constructs apply evenly at both algorithm and data level.
4.1 The “shrink” operator

The first step toward manifesting the easy/hard split is to rewrite (13) to point-free style by turning both sides into relations between x and y. Since partial orders such as (\leq) and (\sqsubseteq) are relations that map larger elements to smaller ones, the right hand side trivially translates to $(\sqsubseteq) \cdot g$. The left hand side, noting that $(x, f x) \in f^o$ and that $f x \leq y$ is another way of writing $(f x, y) \in (\leq)$, translates to $f^o \cdot (\leq)$. The equivalence means that the two relations are equal:

$$f^o \cdot (\leq) = (\sqsubseteq) \cdot g.$$

(15)

Such equality splits into two inclusions to be dealt with separately:

$$(\sqsubseteq) \cdot g \subseteq f^o \cdot (\leq) \quad \land \quad f^o \cdot (\leq) \subseteq (\sqsubseteq) \cdot g.$$

(16) (17)

We show that (16) is equivalent to $g \subseteq f^o \cdot (\leq)$ provided that f is monotonic, that is, $x \sqsubseteq y \Rightarrow f x \leq f y$, which can be written point-free as

$$(\sqsubseteq) \cdot f^o \subseteq (\sqsubseteq) \cdot (\leq).$$

That (16) implies $g \subseteq f^o \cdot (\leq)$ is easy to see — since (\sqsubseteq) is a preorder, $g \subseteq id \cdot g \subseteq (\sqsubseteq) \cdot g$. For the other direction, we reason:

$$g \subseteq f^o \cdot (\leq)$$

$$\Rightarrow \{ \text{ monotonicity of } (\cdot) \}$$

$$(\sqsubseteq) \cdot g \subseteq (\sqsubseteq) \cdot f^o \cdot (\leq)$$

$$\Rightarrow \{ \text{ assumption: } f \text{ monotonic } \}$$

$$(\sqsubseteq) \cdot g \subseteq f^o \cdot (\leq) \cdot (\leq)$$

$$\Rightarrow \{ \text{ (\leq) transitive: } (\leq) \cdot (\leq) \subseteq (\leq) \}$$

$$(\sqsubseteq) \cdot g \subseteq f^o \cdot (\leq).$$

Concerning (17):

$$f^o \cdot (\leq) \subseteq (\sqsubseteq) \cdot g$$

$$\equiv \{ \text{ take converses of both sides } \}$$

$$(f^o \cdot (\leq))^o \subseteq g^o \cdot (\sqsubseteq)$$

$$\equiv \{ \text{ shunting (8) } \}$$

$$g \cdot (f^o \cdot (\leq))^o \subseteq (\sqsubseteq).$$

All in all, we have just factored Galois connection (16) into two parts,

$$f^o \cdot (\leq) = (\sqsubseteq) \cdot g \equiv g \subseteq f^o \cdot (\leq) \land g \cdot (f^o \cdot (\leq))^o \subseteq (\sqsubseteq).$$

(18)
uncovering the easy/hard blend which is implicit in the original formulation. To see this, let us first abbreviate \(f^\circ \cdot (\leq) \) to \(S \). The left hand operand of the conjunction, \(g \subseteq S \), states that \(g \) must return a result permitted by \(S \) — the “easy” part. The right hand operand \(g \cdot S^\circ \subseteq (\supseteq) \), on the other hand, states that if \(S \) maps \(x \) to \(y \) (therefore \((x, y) \in S^\circ \)), it must be the case that \(g \cdot x \supseteq y \). That is, \(g \) returns a maximum result, under \((\supseteq) \), among those results allowed by \(S \). This is the “hard” part of the connection.

This is in fact nothing surprising: we have merely reconstructed an equivalent definition of a Galois connection [1, Theorem 5.29, page 66]:

\[- f \text{ is monotonic}, \]
\[- (f \cdot g) x \leq x, \]
\[- (f x) \leq y \Rightarrow x \subseteq (g y). \]

The calculation above, however, inspires us to capture this pattern by a new relational operator. Given relations \(S :: A \leftarrow B \) and \(R :: A \leftarrow A \), define \(S \downarrow R : A \leftarrow B \), pronounced “\(S \) shrunk by \(R \)”, by

\[X \subseteq S \downarrow R \equiv X \subseteq S \land X \cdot S^\circ \subseteq R, \text{ cf. diagram:} \]

The definition states that \(X \) must be at most \(S \), and that if \(X \) yields an output for an input \(x \), it must be a maximum, with respect to \(R \), among all possible outputs of \(x \). In terms of the easy/hard split, \(S \) is the easy part and \(R \) defines the (optimisation) criterion to be taken into account in the hard part. Using the properties of relational intersection and division, one may come up with a closed form for \(S \downarrow R \):

\[S \downarrow R = S \cap R/S^\circ. \]

With the new notation we can go back to (18) and rephrase the right hand side of the equivalence in terms of (\(\downarrow \)):

\[g \subseteq (f^\circ \cdot (\leq)) \downarrow (\supseteq). \]

4.2 Properties of shrinking

From the definition (19), it is clear that \(S \downarrow R \subseteq S \). It is easy to find out under what condition the other direction of inclusion holds: \(S \subseteq S \downarrow R \) iff \(S \cdot S^\circ \subseteq R \), and so

\[S = S \downarrow R \equiv \text{img } S \subseteq R. \]

since \(\text{img } S = S \cdot S^\circ \). Since \(\top \) is above anything, we have

\[S \downarrow \top = S, \]

that is, \(S \) stays the same if we put no constraints in the “hard” part.
When \(R = \perp \), no maximum exists, and thus \(S \upharpoonright \perp \) yields nothing for any input:
\[
S \upharpoonright \perp = \perp.
\]

The following rule shows how \((\upharpoonright R)\) distributes into relational union:
\[
(S \cup T) \upharpoonright R = (S \upharpoonright R) \cap R / T^c \cup (T \upharpoonright R) \cap R / S^c.
\tag{23}
\]
This arises from (20) and distribution of intersection over union. A most important consequence of (23) is that \((\upharpoonright R)\) distributes into joins,
\[
[S, T] \upharpoonright R = [S \upharpoonright R, T \upharpoonright R],
\tag{24}
\]
— recalling that \([S, T] = (S \cdot \text{inl}^o) \cup (T \cdot \text{inr}^o)\) — and therefore conditionals,
\[
(p \rightarrow S, T) \upharpoonright R = (p \rightarrow (S \upharpoonright R), (T \upharpoonright R)).
\tag{25}
\]

The following two rules allow us to distribute a function in and out of \((\upharpoonright R)\):
\[
(S \cdot f) \upharpoonright R = (S \upharpoonright R) \cdot f,
\]
\[
(f \cdot S) \upharpoonright R = f \cdot (S \upharpoonright (f^o \cdot R \cdot f)).
\]
The first equality can be proved using shunting and indirect equality, while the second generalizes a similar result in [6].

A number of results of the \((\upharpoonright)\) combinator relate to simplicity. Recall that the image of a simple relation \(S \) is coreflexive, that is, \(\text{img} S \subseteq \text{id} \). Then, from (22) we draw
\[
S = S \upharpoonright R \iff S \text{ simple and } R \text{ reflexive}
\]
since \(\text{img} S \subseteq \text{id} \) and \(\text{id} \subseteq R \) entail \(\text{img} S \subseteq R \).

Very often, \(R \) in (19) is anti-symmetric: \(R \cap R^c \subseteq R \). In this case it can be shown that \(S \upharpoonright R \) is always simple [9]. An application of this result concerns (21), ensuring \((f^o \cdot (\leq)) \upharpoonright (\supseteq)\) simple for \((\supseteq)\) a partial order. Thus equality (14) holds in such a situation.

The special case \(R = \text{id} \) in (19) deserves some attention. In this situation, each output in the shrunk relation can relate only to itself. Thus \((y, x) \in S \upharpoonright \text{id}\) only when \(y \) is the sole value that \(x \) is mapped to by \(S \). When more than one such \(y \) exists, \(x \) cannot be in the domain of \(S \upharpoonright \text{id} \). Therefore, \(S \upharpoonright \text{id} \) is the largest deterministic fragment of \(S \). Formally,
\[
X \subseteq S \upharpoonright \text{id} \iff X \subseteq S \wedge X \cdot X^c \subseteq \text{id}.
\tag{26}
\]
where \(X \subseteq S \) means \(S \cdot \text{dom} X = X \), that is, \(X \) is less defined than \(S \) but as non-deterministic as \(S \) where defined. This is the \(\uparrow_{\text{pro}} \) ordering of [19], where it is shown to be a factor of the standard refinement ordering. The proof of (26), given in Appendix A, essentially shows that the right hand sides of (19) and (26) coincide, for \(S = \text{id} \).
5 Inductive relations

A question was raised in Section 1: where and how does induction crop up in the design of a program? An answer is provided in the remainder of this report, in two steps. First, we recall that the “natural” way of ordering inductively defined data (such as eg. lists and trees) is through inductive relations defined using well-known combinators of the algebra of programming known as \textit{folds} and \textit{unfolds} [6]. Second, we show how specifications written as Galois connections on such inductive orderings “naturally” lead to inductive implementations, by calculation.

Inductively defined datatypes. Natural numbers are often inductively defined to be the smallest set \mathbb{N} such that (a) $0 \in \mathbb{N}$; (b) if $n \in \mathbb{N}$, so is $1 + n$. Let $F_{\mathbb{N}}$ be a function from sets to sets defined by $F_{\mathbb{N}} X = \{0\} \cup \{1 + n \mid n \in X\}$. The two conditions together are equivalent to saying that $F_{\mathbb{N}} \mathbb{N} \subseteq \mathbb{N}$, and the requirement that \mathbb{N} being the smallest means that \mathbb{N} is the least prefix-point, and also the least fixed-point \footnote{For f monotonic on (\leq), x is a prefix-point of f if $f x \leq x$, and a fixed-point if $f x = x$. The least prefix-point is also the least fixed-point [3].}

If we abstract over 0 and $(1+)$, representing them respectively by $\text{inl}()$ and inr, F can be expressed as the type operation of relator $F_{\mathbb{N}} X = 1 + X$. Letting $\text{in} : \mathbb{N} \leftrightarrow F_{\mathbb{N}} \mathbb{N}$ be the isomorphism between $F_{\mathbb{N}} \mathbb{N}$ and \mathbb{N}, the successor function $(1+)$ can be encoded by $\text{suc} = \text{in} \cdot \text{inr}$. The number 0 is encoded by $\text{in} (\text{inl}())$. In point-free calculation, however, we often find the constant function $\text{zero} = \text{in} \cdot \text{inl} \cdot \top$ (that always yields 0 for any input) more useful.

Many inductively defined datatypes can be encoded this way. A finite list of elements of type A, for example, can be defined as the least fixed-point of $F_{\text{List}} X = 1 + A \times X$, with constructors $\text{nil} : A \leftarrow B$ defined by $\text{in} \cdot \text{inl} \cdot \top$ and $\text{cons} : A \times \text{List} A \leftarrow \text{List} A$ by $\text{in} \cdot \text{inr}$. The type of leaf-valued binary trees, as defined in Haskell notation by $\text{data} \ Tree A = \text{Tip} A \mid \text{Bin} (\text{Tree} A) (\text{Tree} A)$, is the least fixed-point of $F_{\text{Tree}} X = A + X \times X$.

Catamorphisms. To design programs on these inductively defined datatypes, one is often encouraged to define the function on the inductive structure of its input. The \textit{catamorphism}, also known as \textit{fold}, is one such useful pattern of induction. Functional programmers are familiar with \textit{foldr} defined on lists:

\[
\begin{align*}
\text{foldr } f e \ [] &= e \\
\text{foldr } f e \ (x : xs) &= f (x, \text{foldr } f e \ xs).
\end{align*}
\]

Knowing that \mathbb{N} is an inductively defined datatype, a fold function can also be defined on \mathbb{N}:

\[
\begin{align*}
\text{foldN } f e \ 0 &= e \\
\text{foldN } f e \ (1 + n) &= f (\text{foldN } f e \ n).
\end{align*}
\]

Folds exist for all datatypes defined as least fixed-points of so-called \textit{regular} relators: those defined in terms of 1, (\cdot), (\times), constants, and type relators. Let
T denote the least fixed-point of the type operation of relator F. Given a relation $R :: B \leftarrow FB$, the catamorphism $\langle R \rangle_F :: B \leftarrow T$ is the least prefix point, and also the least fixed-point, of $\lambda X \rightarrow R \cdot FX \cdot in_T^\circ$. Thus it is the least relation satisfying:

$$\langle R \rangle_F \supseteq R \cdot F\langle R \rangle_F \cdot in_T^\circ,$$

$$\langle R \rangle_F = R \cdot F\langle R \rangle_F \cdot in_T^\circ.$$

Take $FX = 1 + A \times X$ as an example, and note that every relation $R :: B \leftarrow (1 + A \times B)$ can be factored to $[R_1, R_2]$ with $R_1 :: B \leftarrow 1$ and $R_2 :: B \leftarrow (A \times B)$. By taking $in_T = [nil, cons]$ and instantiating R_1 and R_2 respectively to a constant and a function we recover foldr above.

The fold fusion rule is one of the most important properties of folds:

$$\langle T \rangle \subseteq S \cdot \langle R \rangle_F \quad \leftarrow \quad T \cdot FS \subseteq S \cdot R.$$

It states conditions under which we may promote relations into the body of the fold. We will need this rule later.

Inductively defined orderings. While functional folds are often used to define operations on inductively defined datatypes, it is often overlooked that many relations between inductively defined data can also be inductively defined as relational folds.

The (\geq) ordering on \mathbb{N}, for example, is nothing but the least relation satisfying

$$x \geq 0 \land x \geq y \Rightarrow (x + 1) \geq (y + 1).$$

The two lines respectively translate to $\top \cdot zero^\circ \subseteq (\geq)$ and $(\geq) \subseteq suc^\circ \cdot (\geq) \cdot suc$ in point-free style. We reason:

$$\top \cdot zero^\circ \subseteq (\geq) \land (\geq) \subseteq suc^\circ \cdot (\geq) \cdot suc$$

$$\equiv \{ \text{shunting} \}$$

$$\top \cdot zero^\circ \subseteq (\geq) \land suc \cdot (\geq) \cdot suc^\circ \subseteq (\geq)$$

$$\equiv \{ \text{since } R \subseteq T \land S \subseteq T \equiv R \cup S \subseteq T \}$$

$$(\top \cdot zero^\circ) \cup (suc \cdot (\geq) \cdot suc^\circ) \subseteq (\geq)$$

$$\equiv \{ \text{by (12): } [R, S] \cdot [T, U]^\circ = (R \cdot T^\circ) \cup (S \cdot U^\circ) \}$$

$$[\top, suc \cdot (\geq)] \cdot [zero, suc]^\circ \subseteq (\geq)$$

$$\equiv \{ \text{absorption (11)} \}$$

$$[\top, suc \cdot (id + (\geq)) \cdot [zero, suc]^\circ \subseteq (\geq)$$

$$\equiv \{ (27) \}$$

$$(\geq) = \langle \top, suc \rangle.$$

Thus (\geq) is a fold. Note that $(+)$ in the penultimate line denotes the sum functor, defined in Section 3 rather than numerical sum.
This is not the only way the ordering on natural numbers can be defined, however. If we instead perform case analysis on the lesser side of the ordering, we come up with:

\[
0 \leq y \land \\
0 \leq y \Rightarrow (x + 1) \leq (y + 1).
\]

The first line translates to \(\text{zero} \cdot \top \subseteq (\leq) \), where \(\top \), having type \(A \leftarrow N \), is equivalent to \([\text{zero}, \text{suc}] \). By a similar calculation, we come up with a definition of \((\leq) \) as a fold:

\[
(\leq) = ([\text{zero}, \text{zero} \cup \text{suc}]).
\]

Given two finite lists \(xs \) and \(ys \), let \(xs \subseteq ys \) mean that \(xs \) is a prefix of \(ys \). Natural numbers and finite lists are similar in structure and, through a similar calculation, one comes up with the following definition of \((\subseteq) \) as a fold:

\[
(\subseteq) = ([\text{nil}, \text{nil} \cup \text{cons}]). \quad (28)
\]

Knowing that lists are special cases of binary trees, one might define a fold with a similar structure expressing the ordering on trees which “grow” by substitution of empty nodes by any other (sub)trees. But the two orderings above are enough for our purposes of showing their role in calculating implementations of adjoints of Galois connections, as is shown in the sequel.

6 Program calculation by optimization — “shrinking specs into programs”

Given a Galois connection \(f x \leq y \equiv x \subseteq g y \), recall the conclusion of Section 4.1 that \(g \) can be expressed as \(g = (f^\circ \cdot (\leq)) \restriction (\subseteq) \). The next step is triggered by a question: what can we do wherever \((\leq) \) and/or \((\subseteq) \) are inductive relations?

In this section we will see two examples that follow a standard scheme we propose: (1) fusion, in the easy part, of the inner ordering \((\leq) \) with \(f^\circ \), to form either a fold or a restricted form of a hylomorphism (a fold followed by the converse of a fold); (2) shrinking the easy part using the hard part \(\restriction (\subseteq) \), hence the motto: “shrinking specs into programs”.

We present two theorems to perform the shrinking: the Greedy Theorem, which applies when the easy part is a fold, and the Dynamic Programming (DP) Theorem, when it is a hylomorphism where the folding phase is a function. The Greedy Theorem is a simplification of that of Bird and de Moor [6]: it does not need a power allegory, and thus is applicable in more categories and, we believe, easier to comprehend. The DP-Theorem is similar to that of Bird and de Moor, with a different precondition, arising from its more general setting.

Both theorems are datatype-generic, and in fact applicable not only for problems specified as Galois connections, but also for optimisation problems in general.
6.1 Example of greedy programming

Given a predicate \(p \), \(\text{takeWhile} \ p \ xs \) yields the longest prefix of \(xs \) whose elements all satisfy \(p \):

\[
\text{all} \ p \ xs \land xs \subseteq ys \equiv xs \subseteq \text{takeWhile} \ p \ ys.
\]

(29)

This expresses a Galois connection between the set of all finite sequences \(ys \) and that of the ones \((xs) \) whose elements all satisfy \(p \). The upper adjoint is \(\text{takeWhile} \ p \) and the lower adjoint is the embedding of all such sequences into the larger set. To see this we rewrite (29) into the pointfree equality

\[
\text{map} \ p? \cdot (\subseteq) = (\subseteq) \cdot \text{takeWhile} \ p
\]

by expressing \(\text{all} \ p \) by coreflexive relation \(\text{map} \ p? \). Recall that \((a, a) \in \text{map} \ p? \equiv p \ a\).

Therefore, \((xs, xs) \in \text{map} \ p? \equiv \text{all} \ p \ xs\).

Note how \(\text{map} \ p? \) captures the lower-adjoint of the connection, as it is simple and entire over the set of all sequences satisfying \(p \). Since \((\text{map} \ p?)^\circ \) is the same as \(\text{map} \ p? \) (coreflexives are symmetric) we have that \(\text{takeWhile} \ p \) can be defined in terms of \((\cdot)\):

\[
\text{takeWhile} \ p = (\text{map} \ p? \cdot (\subseteq)) \ | (\|).
\]

What to do now? If we manage to transform the easy part \(\text{map} \ p? \cdot (\subseteq) \) into a fold, the following Greedy Theorem gives us conditions under which we may promote \((\cdot)\) into a fold:

Theorem 1. \(([S \mid R]) \subseteq ([S]) \mid R \) if \(R \) is transitive and \(S \) is monotonic with respect to \(R^\circ \), that is, \(R^\circ \overset{S}{\longrightarrow} FR^\circ \) holds. **Proof:** see appendix B.

The “monotonic condition” means the same as \(S \cdot FR^\circ \subseteq R^\circ \cdot S \), recall (10). It states that if \(x_1 \) is no worse than \(x_2 \) under \(R \), at least one output of \(S \) on \(x_1 \) is no worse than any output on \(x_2 \). Thus we lose nothing if we compute only the locally optimal answers, that is, doing \((\cdot)\) in the fold.

Transforming \(\text{map} \ p? \cdot (\subseteq) \) into a fold turns out to be easy because, as shown in (28), \((\subseteq)\) is already a fold. By a standard fold-fusion we get:

\[
\text{map} \ p? \cdot (\subseteq) = ([\text{nil}, \text{nil} \cup (\text{cons} \cdot (p? \times \text{id}))])
\]

that is, in every step we may choose between taking an empty prefix (\(\text{nil} \)) and, if the current element satisfies \(p \), attach it to the previously computed prefix \(\text{cons} \cdot (p? \times \text{id}) \).

The monotonicity condition basically says that a longer prefix remains longer after such an operation. For a formal proof, it expands to \(\text{nil} \subseteq (\subseteq) \cdot \text{nil} \), which is true because \(\text{id} \subseteq (\subseteq) \), and

\[
(\text{nil} \cup (\text{cons} \cdot (p? \times \text{id}))) \cdot (\text{id} \times (\subseteq)) \subseteq (\subseteq) \cdot (\text{nil} \cup (\text{cons} \cdot (p? \times \text{id}))).
\]

The interesting part is verifying \(\text{cons} \cdot (p? \times (\subseteq)) \subseteq (\subseteq) \cdot \text{cons} \cdot (p? \times \text{id}) \), which is true because \(\text{cons} \cdot (\text{id} \times (\subseteq)) \subseteq (\subseteq) \cdot \text{cons} \), following from (28).
By Theorem 1 we may choose \([\text{[]} \uplus (\text{nil} \cup (\text{cons} \cdot (p \times \text{id}))))\) as a candidate for \(\text{takeWhile}\) \(p\). By (24), we may distribute \((\uplus (\text{nil} \cup (\text{cons} \cdot (p \times \text{id}))))\) into the join. The relation \((\text{nil} \cup (\text{cons} \cdot (p \times \text{id}))))\) returns a longer list whenever possible, that is, whenever the current element satisfies \(p\). Thus the fold refines to \([\text{nil}, ((p \cdot \text{fst}) \rightarrow \text{nil}, \text{cons})]\), which translates to the usual definition of \(\text{takeWhile}\):

\[
\text{takeWhile}\ p\ [\] = [\]
\text{takeWhile}\ p\ (x : xs) \mid p\ x = x : \text{takeWhile}\ p\ xs
\mid \text{otherwise } = [].
\]

6.2 Example of DP-programming

Given the Galois connection (3) between multiplication and division, \((\div y)\) can be expressed in terms of \(\uplus\):

\[
(\div y) = ((xy)^0 \cdot (\leq)) \uplus (\geq).
\]

To calculate \((\div y)\), one may proceed the same way as in the previous section and fuse \((xy)^0\) into \((\leq)\) to form a fold, and attempt to apply Theorem 1. This time, however, we can not prove the monotonicity condition.

Fortunately, for this and many other examples, the following Dynamic Programming Theorem applies. Let \(\langle \mu X :: f X \rangle\) denote the least fixed point of \(f\), the theorem goes:

Theorem 2. Let \(M = ((\text{[]} \cdot (T))^0) \uplus R\), we have \(\langle \mu X :: (h \cdot FX \cdot T^0) \uplus R \rangle \subseteq M\) if \(h\) is monotonic with respect to \(R\), that is, \(R h \rightarrow \rightarrow FM\) holds, and \(\text{dom} T \subseteq \text{dom} FM\). **Proof:** see appendix B.

As a special case, by taking \(h = \text{in}\) (and thus \((h) = \text{id}\)), we have

\[
\langle \mu X :: (\text{in} \cdot FX \cdot T^0) \uplus R \rangle \subseteq (T)^0 \uplus R,
\]

if \(\text{in} \cdot FR \subseteq R \cdot \text{in}\).

To apply Theorem 2, we aim at turning \((xy)^0 \cdot (\leq)\) to converse of a fold or, equivalently, turning \((\geq) \cdot (xy)\) into a fold. It is known that \((xy)\) can be defined in terms of a fold: \((xy) = (\text{[]} \cdot \text{zero}, (+y))\). By fold fusion, we get: \((\geq) \cdot (xy) = (\text{[]} \cdot (\text{top}, (+y)))\); the base case can be any number.

The monotonicity condition in Theorem 2 instantiates to:

\[
[\text{zero}, \text{succ}] \cdot (id + (\geq)) \subseteq (\geq) \cdot [\text{zero}, \text{succ}],
\]

which expands to two terms: \(\text{zero} \subseteq (\geq) \cdot \text{zero}\), which is true because \(id \subseteq (\geq)\), and \(\text{succ} \cdot (\geq) \subseteq (\geq) \cdot \text{succ}\), which follows from the definition of \((\geq)\) as a fold. Theorem 2 is thus applicable and we get:

\[
\langle \mu X :: ([\text{zero}, \text{succ}] \cdot (id + X) \cdot [\text{top}, (+y)]^0) \uplus (\geq) \rangle \subseteq ([\text{zero}, (+y)]^0 \uplus (\geq)).
\]
Denote \((+y)^\circ\), a partial function that applies only to input no less than \(y\), by \((−y)\), and note that \(zero \cdot T = zero\). By (12), the left hand side simplifies to \((\mu X :: (zero \cup (suc \cdot X \cdot (−y))) \upharpoonright (≥)))\). It is a recursive definition where, in every step, we may choose to simply return 0 or, if possible, subtract \(y\) from the input and add 1 to the recursively computed result.

We have yet to simplify \((zero \cup (suc \cdot X \cdot (−y))))\). For an intuition, note that since the result, if any, of \(suc \cdot Y\) for any \(Y\) is strictly larger than 0, to maximise the output, we shall just choose the right branch whenever possible, that is, when the input is no less than \(y\). For a formal calculation, let \(Y = suc \cdot X \cdot (−y)\).

By (23) the term to simplify expands to:

\[
\begin{align*}
(zero \upharpoonright (≥) \cap (≥)/(suc \cdot Y)^\circ) \cup
((suc \cdot Y) \upharpoonright (≥) \cap (≥)/zero^\circ).
\end{align*}
\]

It can be shown, however, that for all \(Y\) and \(Z\), \(Z \subseteq suc \cdot Y\) implies \(Z \cdot zero^\circ \subseteq (≥)\). Also, for all \(Z\), \(Z \subseteq zero\) implies \(Z \cdot Y^\circ \cdot suc^\circ \subseteq (≥)\) only if \(Z \cdot Y^\circ\) is the empty relation. Therefore, \((zero \cup Y) \upharpoonright (≥)\) simplifies to \(((≥) \rightarrow suc \cdot X \cdot (−y), zero)\), that is, we perform \(suc \cdot X \cdot (−y)\) only if the input is in the domain of \((−y)\). Otherwise we return 0. This results in the usual program for division:

\[
x \div y \mid x \geq y = 1 + ((x - y) \div y)
\]

\[
\mid \text{otherwise} = 0.
\]

7 Case study: scheduling as a Galois Connection

As our closing case study, we will be looking at a more complex problem related to task scheduling. The full detail cannot be covered in this report, and we will be proceeding in a less formal manner, sketching only an outline of the development.

Let \(A\) be a set of tasks, and let \(g :: PA \leftarrow A\) such that for each \(x \in A\), \(g x\) is the set of tasks that have to wait for \(x\) to complete before commencing, while the spans, time need by each task, is given by a function \(N \leftarrow A\) where \(N\) models discrete time intervals (eg. days, months). Dependencies in \(g\) form an acyclic graph, known as a Gantt graph, coined after Henry Gantt (1861-1919) who introduced them.

A time schedule associating starting times to tasks (optimal or not), is also modelled by a function of type \(N \leftarrow A\). In summary, we introduce the following types:

\[
\begin{align*}
Gantt & = A \leftarrow PA, \\
Spans & = N \leftarrow A, \\
Schedule & = N \leftarrow A.
\end{align*}
\]

The types \(Spans\) and \(Schedule\) will be refined later. We use variables \(sp\) for \(Spans\), \(sh\) for \(Schedule\), \(x, y\) etc. for tasks, and \(s, t\) for time.

Given \(g :: Gantt\), the goal is to calculate a function \(bsch_g :: Schedule \leftarrow Spans\) that computes the “best” schedule for the tasks — “best” in the sense that tasks start as early as possible. Take, for instance, \(A = \{a, b, c, d\}\), for task spans \(sp = \)
the best schedule will be $bsch_g sp = \{(0, a), (1, b), (20, c), (0, d)\}$.

How do we specify $bsch_g$? Note that “best” means smallest and that $bsch_g sp$ should be monotonic in both arguments: more dependencies in g and/or longer tasks in sp can only defer tasks start-up times into the future. This suggests specifying $bsch_g$ as adjoint of a Galois connection between schedules and spans. Let $\text{lazy}_g :: \text{Spans} \to \text{Schedule}$ be a function that, given a schedule, computes for each task the maximum time it is allowed to take (hence the name).

$$\text{lazy}_g \, \text{sh} \, \geq \, \text{sp} \equiv \text{sh} \geq \text{bsch}_g \, \text{sp},$$

where (\geq) denotes (\geq) lifted to functions: $f \geq h \equiv \forall x : x \in A : f \, x \geq h \, x$.

The function lazy_g appears to be easier to define than $bsch_g$. In the definition below, $(t \mapsto x) \uplus \text{sh}$ denotes a function sh, whose domain does not include x, extended with a mapping from x to t.

$$\begin{align*}
\text{lazy}_g \, \emptyset &= \emptyset \\
\text{lazy}_g \, ((t \mapsto x) \uplus \text{sh}) &\mid g \, x \subseteq \text{dom} \, \text{sh} = (s \mapsto x) \uplus \text{sp} \\
\text{where} \quad \text{sp} &= \text{lazy}_g \, \text{sh} \\
&\quad s = \cap \{\text{sh} \, y \mid y \in g \, x\} - t.
\end{align*}$$

The \cap operator in the non-empty case takes the minimum of a set, thus the span allowed for each task x is the difference between the earliest scheduled time among tasks that follow x and t, the time scheduled for x. The non-deterministic pattern $(t \mapsto x) \uplus \text{sh}$ does not explicitly specify an order in which tasks are picked.

However, the guard $g \, x \subseteq \text{dom} \, \text{sh}$, needed because we want to look up all the y’s in sh, implicitly enforces the topological order — x is processed before all tasks that depend on it. Equivalently, we could have treated the schedule as a list of pairs sorted in topological order: $\text{Schedule} = \text{Spans} = \{[\mathbb{N}, A]\}$. One may thus drop the domain check and come up with the following definition for lazy_g:

$$\begin{align*}
\text{lazy}_g \, \emptyset &= \emptyset \\
\text{lazy}_g \, ((t, x) : \text{sh}) &= (s, x) : \text{lazy}_g \, \text{sh} \\
\text{where} \quad s &= \cap \{\text{sh} \, y \mid y \in g \, x\} - t.
\end{align*}$$

For brevity we still use the syntax $\text{sh} \, y$ for looking up.

To calculate $bsch_g = ((\text{lazy}_g)^c, (\geq)) | (\leq)$, we have to construct the converse of lazy_g. Consider, in $s = \cap \{\text{sh} \, y \mid y \in g \, x\} - t$, what t could be given s and x.

If $g \, x$ is empty, $s = \infty$, and t could be any finite value. With $g \, x$ non-empty, we have $t = \cap \{\text{sh} \, y \mid y \in g \, x\} - s$. However, $t :: \mathbb{N}$ must be non-negative. So we are putting an constraint on sh: $\cap \{\text{sh} \, y \mid y \in G \, x\}$ must be no smaller than s. That gives us a very non-deterministic program for $(\text{lazy}_g)^c$: we go through the graph in topological order until we reach a task say y, for which $g \, y$ is empty, guess a possible time to schedule it, and go back to some task x that must be done before y. If y is scheduled late enough that x can finish, that’s fine. Otherwise this trial fails and we backtrack.

We can refine $(\text{lazy}_g)^c$ to a more deterministic program that explicitly pass the constraint $\cap \{\text{sh} \, y \mid y \in g \, x\} \geq s$ down through the recursive calls, so that
the choice of \(t \) for when \(g x = \{ \} \) is guaranteed to be late enough. We use an extra argument, a mapping from tasks to time, that records the earliest time each task must be scheduled. Initially it is all zero, meaning that there is no constraint yet:

\[
(lazy_g)^0 sp = sche_g (sp, \{(z,0) \mid z \in \text{dom } sp\}).
\]

In point-free style, let \(\text{init } sp = (sh, \{(z,0) \mid z \in \text{dom } sp\}) \), we have \((lazy g)^0 = sche_g \cdot \text{init} \). The main computation happens in \(sche \), the name suggesting that it returns a scheduling, but not always the best one. It can be defined as:

\[
\begin{align*}
sche_g ([\], _) &= [] \\
sche_g ((s,x) : sp,c) &= (t,x) : sche_g (sp,c') \\
\text{where } t &= \text{if } \text{null } (g x) \text{ then } (\text{something no less than } c x) \text{ else } c x \\
c' y &= \text{if } y \notin g x \text{ then } c y \text{ else } (t + s) \sqcup (c y).
\end{align*}
\]

This is an unfold, that is, converse of a fold, on lists. In each step, the next task in topological order is scheduled, and the constraint set \(c \) is updated to \(c' \) to schedule the rest of the tasks.

Now that we have \(bsch_g = (sche_g \cdot \text{init} \cdot (\ge)) \upharpoonright (\le) \), the next steps are to fuse \((\ge)\) into \(sche_g \cdot \text{init} \) to form an unfold, and to promote \((\le)\) into the unfold. Fusing \((\ge)\) with \(sche_g \) merely makes the value of \(t \) more non-deterministic: we are left with only \(t \ge c x \). To promote \((\le)\) we need a theorem related to Theorem 2 that needs a stronger antecedent.

Theorem 3. Let \(H = (\{h\} \cdot (T)^\circ \} \) and \(M = H \upharpoonright R \), we have \(\langle \mu H . h \cdot F X . (T^\circ \upharpoonright Q) \rangle \subseteq M \) if \(h \) is monotonic on \(R \) and \(h \cdot F H \cdot Q^\circ \subseteq R^\circ \cdot h \cdot F H \).

While Theorem 2 potentially makes recursive calls on all possible values suggested by \(T^\circ \) and picks a optimal one by \(R \), Theorem 3 allows us to decide earlier on a value returned by \(T^\circ \) using \((Q)\), if we are sure that a better value under \(Q \) always leads to a better result under \(R \).

Application of Theorem 3 confines the value of \(t \) to the smallest possible: \(c x \). The development concludes with the following program:

\[
\begin{align*}
bsch_g ([\], _) &= [] \\
bsch_g ((s,x) : sp,c) &= (t,x) : bsch_g (sp,c') \\
\text{where } c' y &= \text{if } y \notin g x \text{ then } c y \text{ else } (c x + s) \sqcup (c y).
\end{align*}
\]

8 Conclusions and future work

Poor scalability is often pointed out as the main problem of the mathematics of program construction. By contrast, Galois connections are a well-known example of mathematical device which scales up from trivial to complex problem domains. The research programme which embodies this report starts from the conjecture that the latter could help the former to scale up.
In this context, “programming from Galois connections” is proposed as a way of calculating programs from specifications which take the form of Galois connections. This (emerging) discipline is beneficial in several respects. First, the specification of a “hard” operation as adjoint of a Galois connection provides early insight on the properties of the adjoint being sought, well before the actual implementation is derived. This is granted by the rich algebra of Galois connections, which compose which each other in several ways (thus growing larger and larger) and offer a powerful framework for reasoning about suprema without making these explicit in the calculations.

It should be noted that Galois connections are ubiquitous in mathematics and computer science [15]. In the latter case, they have been shown to offer a powerful way to structure the allegory calculus of Freyd and Ščedrov [10, 6], of which Tarski’s relation algebra may in retrospect be seen as an instance [21]. Several examples of such Galois connections are given in the current report (see eg. [1, 2, 17] for a detailed account). At the other side of the spectrum, they have even been proposed (together with the principle of indirect equality) as the building block of a new brand of theorem provers [20].

In this context, the main contribution of the current report is to be found in the proposed process of deriving, using the algebra of programming [6], the algorithmic implementation of Galois adjoints, expressed in closed formulæ which record what is “easy” and “hard” to implement. However, instead of resorting to explicit, point-level suprema, as is usual in textbooks, a new relational combinator (named shrinking) is proposed which expresses such formulæ at pointfree level.

Thanks to the rich algebra of this combinator, already sketched in [9], one is able to express and generalize previous results on dynamic and greedy programming by Bird and de Moor [6], in a way which dispenses with the heavy artillery of power-allegories [10]. As a side effect, such results become accessible to a wider audience and easier to apply.

The whole division example provides a measure of progress: the verification of a given algorithm against the given Galois connection (3), carried out in [20], now gives place to its construction from the connection itself.

So much for pros. Future work is concerned with a number of cons, namely the fact that not every problem casts into a Galois connection. The typical counter-example arises from the (false) lower adjoint being an embedding (or even the identity) and lacking monotonicity. Still calculations can proceed, but more work and experience is required before concluding. Functions arising in bioinformatics (eg, in finding sections of DNA dense with mutations) such as the shortest maximally-dense prefix (two superlatives!) [7] remain a challenge.

Still on the negative side, we feel that the conceptual economy of the overall approach is still unmatched by the effort needed to carry out particular examples. A body of knowlege around these results needs to be developed, structured in corollaries, special cases, etc. The general result concerning checking monotonicity in the side conditions of Theorems 1 and 2 given in appendix C is an example of what is required.
Last but not least, we find that the shrinking combinator has a lot more to offer to algorithmic refinement, in particular with respect to its two-dimensional factorization: either increasing definition or reducing non-determinism [19]. As discussed in Section 4.1, $R \upharpoonright id$ captures the largest deterministic fragment of a specification R, that is, that part of R which cannot be further refined. So, in a sense, all effort should go into refining the complement of $R \upharpoonright id$ with respect to R. Embodying this intuition in the greedy and dynamic programming theorems is clearly a matter of future research.

Acknowledgements. Special thanks go to Roland Backhouse for spotting the Galois connection of take, which triggered talk [18] and interesting discussions at IFIP WG2.1 thereupon. Previous joint work in the field of one of the authors with Paulo Silva is also acknowledged. Thanks are also due to Jeremy Gibbons for his comments on an earlier draft of this report.

This research was partly supported by the MONDRIAN Project funded by the Portuguese NSF under contract PTDC/EIA-CCO/108302/2008.

References

A Checking for deterministic fragments of specifications

The aim is to prove (26):

\[X \subseteq S \mid \text{id} \equiv S \cdot \text{dom} \ X = X \land X \cdot X^\circ \subseteq \text{id}. \]

We reason:

\[
S \cdot \text{dom} \ X = X \land X \cdot X^\circ \subseteq \text{id} \\
\equiv \quad \{ \text{ replacing } X^\circ \text{ by } (S \cdot \text{dom}X)^\circ \} \\
S \cdot \text{dom} \ X = X \land X \cdot \text{dom} \ X \cdot S^\circ \subseteq \text{id} \\
\equiv \quad \{ \ X \cdot \text{dom} \ X = X \ \} \\
S \cdot \text{dom} \ X = X \land X \cdot S^\circ \subseteq \text{id} \\
\equiv \quad \{ \ X \subseteq S \cdot \text{dom} \ X \equiv X \subseteq S \ \} \\
S \cdot \text{dom} \ X \subseteq X \land X \subseteq S \land X \cdot S^\circ \subseteq \text{id} \\
\equiv \quad \{ \text{ claim: } X \cdot S^\circ \subseteq \text{id} \Rightarrow S \cdot \text{dom} \ X \subseteq X, \text{ see below } \} \\
X \subseteq S \land X \cdot S^\circ \subseteq \text{id} \\
\equiv \quad \{ \text{ universal property of (|) } \} \\
X \subseteq S \mid \text{id}.
\]

The claim is proved below:

\[
X \cdot S^\circ \subseteq \text{id} \\
\equiv S \cdot X^\circ \subseteq \text{id} \\
\Rightarrow \quad \{ \text{ monotonicity of (\cdot) } \} \\
S \cdot X^\circ \cdot X \subseteq X \\
\Rightarrow \quad \{ \text{ dom } X \subseteq X^\circ \cdot X \ \} \\
S \cdot \text{dom} \ X \subseteq X.
\]
B Proofs of theorems

Proof of Theorem 1.

\[\begin{align*}
\langle S \ | \ R \rangle & \subseteq \langle S \rangle \ | \ R \\
\equiv & \quad \{ \text{universal property of } (|) \} \\
\langle S \ | \ R \rangle & \subseteq \langle S \rangle \quad \land \quad \langle S \ | \ R \rangle \cdot \langle S \rangle^\circ \subseteq R \\
\equiv & \quad \{ \text{monotonicity of } [\] \text{ and } X \mapsto R \subseteq R \} \\
\langle S \ | \ R \rangle \cdot \langle S \rangle^\circ & \subseteq R \\
\equiv & \quad \{ \text{hylo-}\text{morphism: } \langle R \rangle \cdot \langle S \rangle^\circ = \langle \mu X :: R \cdot F \cdot S^\circ \rangle \} \\
\langle \mu X :: (S \ | \ R) \cdot F \cdot S^\circ \rangle & \subseteq R \\
\leftarrow & \quad \{ \text{least prefix point} \} \\
\langle S \ | \ R \rangle \cdot \mathcal{F}(S)^\circ & \subseteq R \\
\leftarrow & \quad \{ \text{monotonic condition: } S \cdot \mathcal{F} \cdot S^\circ \subseteq R \circ S \} \\
\langle S \ | \ R \rangle \cdot S^\circ \cdot R & \subseteq R \\
\leftarrow & \quad \{ \text{since } S \mid R \subseteq R \cdot S^\circ \} \\
\langle R \cdot S^\circ \rangle \cdot \mathcal{F}(S)^\circ \cdot R & \subseteq R \\
\leftarrow & \quad \{ \text{division: } R \cdot S \subseteq R \} \\
R \cdot R & \subseteq R \\
\equiv & \quad \{ R \text{ transitive} \} \\
\text{true.}
\end{align*} \]

\[\square \]

Proof of Theorem 2

\[\begin{align*}
\langle \mu X :: (h \cdot F \cdot X \cdot T^\circ) \mid R \rangle & \subseteq M \\
\leftarrow & \quad \{ \text{least prefix point} \} \\
(h \cdot \mathcal{F}(M) \cdot T^\circ) \mid R & \subseteq M \\
\equiv & \quad \{ \text{universal property of } (|) \} \\
(h \cdot \mathcal{F}(M) \cdot T^\circ) \mid R & \subseteq H \land \\
((h \cdot \mathcal{F}(M) \cdot T^\circ) \mid R) \cdot H^\circ & \subseteq R.
\end{align*} \]

The two proof obligation are proved separately. For the first one we reason:

\[\begin{align*}
(h \cdot \mathcal{F}(H \mid R) \cdot T^\circ) \mid R \\
\subseteq & \quad \{ X \mapsto R \subseteq X \} \\
\end{align*} \]
\[h \cdot F(H \mid R) \cdot T^\circ \]
\[\subseteq \{ X \mid R \subseteq X, \text{ F relator } \} \]
\[h \cdot F H \cdot T^\circ \]
\[\subseteq \{ H = \langle h \rangle \cdot \langle T \rangle^\circ, \text{ hylomorphism } \} \]
\[H. \]

For the second proof obligation we reason:
\[((h \cdot FM \cdot T^\circ) \mid R) \cdot H^\circ \]
\[\subseteq \{ \text{ since } X \mid R \subseteq R/X^\circ \} \]
\[(R/(T \cdot FM^\circ \cdot h^\circ)) \cdot H^\circ \]
\[\subseteq \{ \text{ see below } \} \]
\[((R \cdot h \cdot FM)/T) \cdot H^\circ \]
\[\subseteq \{ H^\circ = T \cdot FH^\circ \cdot h^\circ, \text{ division } \} \]
\[R \cdot h \cdot FM \cdot FH^\circ \cdot h^\circ \]
\[\subseteq \{ \text{ since } M = H \mid R \text{ and } X \mid R \subseteq R/X^\circ \} \]
\[R \cdot h \cdot F(R/H^\circ) \cdot FH^\circ \cdot h^\circ \]
\[\subseteq \{ \text{ functor, division } \} \]
\[R \cdot h \cdot FR \cdot h^\circ \]
\[\subseteq \{ \text{ monotonicity condition: } h \cdot FR \subseteq R \cdot h \} \]
\[R \cdot R \cdot h \cdot h^\circ \]
\[\subseteq \{ h \text{ simple: } h \cdot h^\circ \subseteq id \} \]
\[R \cdot R \]
\[\subseteq \{ S \text{ transitive } \} \]
\[R. \]

What remains is to show:
\[R/(T \cdot FM^\circ \cdot h^\circ) \subseteq (R \cdot h \cdot FM)/T, \]
under the given condition \(\text{dom } T \subseteq \text{dom } FM \). We use an indirect inclusion:
\[X \subseteq R/(T \cdot FM^\circ \cdot h^\circ) \]
\[\equiv X \cdot T \cdot FM^\circ \cdot h^\circ \subseteq R \]
\[\equiv \{ \text{ function shunting } \} \]
\[X \cdot T \cdot FM^\circ \subseteq R \cdot h \]
\[\Rightarrow \{ (\cdot) \text{ monotonic } \} \]
\[X \cdot T \cdot F(M^\circ \cdot M) \subseteq R \cdot h \cdot FM \]
\[\Rightarrow \{ \text{ since } \text{dom } X \subseteq X^\circ \cdot X \} \]
\[X \cdot T \cdot \text{dom } FM \subseteq R \cdot h \cdot FM \]
\[
\Rightarrow \{ \text{assumption: } \text{dom } T \subseteq \text{dom } FM \}
\]
\[
X \cdot T \cdot \text{dom } T \subseteq R \cdot h \cdot FM
\]
\[
\equiv \{ \text{ } T \cdot \text{dom } T = T \}
\]
\[
X \cdot T \subseteq R \cdot h \cdot FM
\]
\[
\equiv X \subseteq (R \cdot h \cdot FM)/T.
\]
\[
\square
\]

Proof of Theorem 3

Proof. Recall \(H = ([h] \cdot ([T]^\circ)} and \(M = H \upharpoonright R \). The aim is to prove \(\langle \mu X :: h \cdot FX \cdot (T^\circ \upharpoonright Q) \rangle \subseteq M \). We reason:

\[
\langle \mu X :: h \cdot FX \cdot (T^\circ \upharpoonright Q) \rangle \subseteq M
\]
\[
\Leftarrow \{ \text{least fixed point} \}
\]
\[
h \cdot FM \cdot (T^\circ \upharpoonright Q) \subseteq M
\]
\[
\{ \text{universal property of } (\{ \}) \}
\]
\[
h \cdot FM \cdot (T^\circ \upharpoonright Q) \subseteq H \land h \cdot FM \cdot (T^\circ \upharpoonright Q) \cdot H^\circ \subseteq R.
\]

The first requirement is easy and omitted here. For the second, we reason:

\[
h \cdot FM \cdot (T^\circ \upharpoonright Q) \cdot H^\circ
\]
\[
\subseteq \{ \text{since } S \cdot Q \subseteq Q/S^\circ \}
\]
\[
h \cdot FM \cdot (Q/T) \cdot H^\circ
\]
\[
= h \cdot FM \cdot (Q/T) \cdot T \cdot FH^\circ \cdot h^\circ
\]
\[
\subseteq h \cdot FM \cdot Q \cdot FH^\circ \cdot h^\circ
\]
\[
\subseteq \{ \text{assumption: } h \cdot FH \cdot Q^\circ \subseteq R^\circ \cdot h \cdot FH \}
\]
\[
h \cdot FM \cdot FH^\circ \cdot h^\circ \cdot R
\]
\[
\subseteq \{ \text{since } (H \upharpoonright R) \cdot H^\circ \subseteq R \}
\]
\[
h \cdot FR \cdot h^\circ \cdot R
\]
\[
\subseteq \{ \text{monotonicity: } h \cdot FR \subseteq R \cdot h \}
\]
\[
R \cdot h \cdot h^\circ \cdot R
\]
\[
\subseteq \{ h \text{ simple} \}
\]
\[
R \cdot R
\]
\[
\subseteq R.
\]
\[
\square
\]

C Handling monotonicity

Let \(R = ([I] \) where \(in \subseteq I \). Then it is always true that \(in \cdot FR \subseteq R \cdot in \).

\(in \cdot FR \subseteq R \cdot in \)
\[\equiv \quad \{ \text{fold cancellation} \} \quad \text{in} \cdot FR \subseteq I \cdot FR\]
\[\Leftarrow \quad \{ \text{monotonicity} \} \quad \text{in} \subseteq I.\]

Thus, for instance, let \(in = [\text{zero, suc}] \), we have
\[\text{in} \cdot (id + (\geq)) \subseteq (\geq) \cdot \text{in},\]
since \((\geq) = ([\top, \text{suc}])\) and \(\text{zero} \subseteq \top\). Similarly for
\[\text{in} \cdot (id + (\leq)) \subseteq (\leq) \cdot \text{in},\]
since \((\leq) = ([\text{zero, zero } \cup \text{suc}])\) and \(\text{suc} \subseteq \text{zero } \cup \text{suc}\).