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system is stable and robust, with all the system parameters
remaining constant throughout all the experiments on a diverse
test set. The system detected 92 percent of characters with a
height greater than 10 pixels.
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to Fast Automatic Registration of
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Abstract—In this paper, we propose a new method, the RANSAC-based
DARCES method, which can solve the pattially overlapping 3D registration
problem without any initial estimation. For the noiseless case, the basic algorithm
of our method can guarantee that the solution it finds is the true one, and its lime
complexity can be shown to be relatively low. An axira characteristic is that our
method can be used even for the case that there are no local features in the 3D
data sets.

Index Terms—Computer vision, range data, range image, registration,
3D imaging.
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1 INTRODUCTION

REGISTRATION of two partially overlapping range images taken
from different views is an important task in 3D computer vision. In
the past, a popular type of approach to solving the 3D registration
problem has been the iferative approach [1], [6]. However, the
drawbacks are that 1) they require a good initial estimate to
prevent the iterative process from being trapped in a local
minimum and 2) there is no guarantee of getting the correct
solution even for the noiseless case, Many approaches have
modified the two approaches proposed in [1] and [6] to obtain
more reliable correspondence in each iteration [8], [11].

Another popular type of method is the feature-based approach

[10], [7], [9]. Feature-based approaches have the advantage that
they do not require initial estimates of the rigid-motion para-
meters. Their drawbacks are mainly that 1) they can not solve the
problem in which the 3D data sets contain no prominent/salient
local features and 2) a large percentage of the computation time is
usually spent on preprocessing, which includes extraction of
invariant features [7], [10] and organization of the extracted
feature-primitives {e.g., sorting [7]). In addition, Blais and Levine
expressed the 3D registration task as an optimization problem [2].
The very-fast-simulated-reannealing technique was used to find

the global minimum of the error function.
Qur geal in this paper is to solve the 3D registration problem in

a fast and reliable manner, We propose a new methed—the data-
aligned rigidity-constrained exhaustive search (DARCES), which can
check all possible data-alignments of two given 3D data sets in an
efficient way while requiring no preprocessing and no initial
estimates of the 3D rigid-motion parameters. Furthermore, to solve
the parttally overlapping 3D registration problem, the random
sample consensus (RANSAC) scheme is integrated into the DARCES
procedure.
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Scehe surface

Scene surface

Fig. 1. {a) Selaction of the reference points in the scene surlace. (b) Selection of at
least three conirof points from these reference points.

2 FuLLY-ConTAINED CASE—DARCES

Let two data sets, namely, the scene data set and the maodel data set,
be given. In this section, we first consider a simpler 3D registration
problem where the shape of the scene data set is fully contained in
the shape of the madel data set. In the beginning, we have to select
some reference points from the scene surface, as shown in Fig. 1a.
For example, we can perform a uniform sampling from the
indexing grids of the range images to select the reference points or
we can use all the data points contained in the scene data set as the
reference points (but this will be less efficient). In the subsequent
processing, a set of (at least three) control points is selected from
these reference points, as shown in Fig. 1b,

2.1 Using Three Control Points

In this section, we will only consider the case where three control
points are used. In the following, we call the three selected control
points in the scene data set the primary point 5, the secondary point
S5, and the auxiliary point S, respectively.

First, in the model data set, consider the possible corresponding
positions of the primary point S,. Without using feature attributes,
every 3D point contained in the model data set can be the possible
correspondence of the primary point, Hence, the primaty point
will be hypothesized as corresponding to each of the n,, points in
the model data set, where n,, is the number of model points.

Suppose 5, is hypothesized as corresponding to a model point
M,. Then, in the model data set, we will try to find some candidate
points corresponding to the secondary point 5. Assume that the
distance between S; and S, is d,. The corresponding model point
of £, must lie on the surface of a sphere C; whose center is M, and
radius is dy,. Thatis, €, = {p = (z,1,2) | |p — Mp|| = dps}. In other
words, once a corresponding model point of the primary point 5;
is hypothesized, the search for M,, the candidate model point
corresponding to the secondary point S5, can be limited to a small
range, which is the surface of a sphere with radius 4, as shown in
Fig. 2.

After a corresponding model point of the secondary point S,

has also been hypothesized, we can then consider the constrained
search range of the auxiliary point 5, Assume that S, and S,

dp =55
(a) {b)

Fig. 2. (&) The triangle formead by the three control points selected from the scene
data set. (b} The search region of the sacondary control point in the model data set
is restricted to the surface of a sphere.
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Fig. 3. The search region of the auxiliary control point in the medel data set is
restricted to the contour of a 3D circle.

respectively, now correspond to the model points A, and M,. The
candidates of M,, the corresponding model points of the auxiliary
scene data point S, can be found within a limited search range
determined by M,, M, and d, where d, is the distance between
Sy and S, and S is the orthogonal profection of S, onto the line
segment S,5;, as shown in Fig. 3. It is easy to see that the
candidates of M, have to lie on the circle €, centered at M, with
radius d,,, where M, is the 3D position corresponding to 5. That
is, O = {p= (z,1,2) | |p — M,|| = dy and p}, is perpendicular to
M),

After all three control points are successfully aligned on the
model surface, a unique rigid-transformation, namely T, can be
determined by using the three point correspondence pairs:
(S, Mp), (8a, M,), and (S,, M,). We then verify 7, by using all
the reference points. With the rigid-transformation of T, all the
reference points, S, 5r,,..., 5, , can be brought to new positions
8,280,055, - We count the number of occurrences, namely, No,
when §;, is successfully aligned on the model sutface (ie., the
distance between S, and the model surface is smaller than a
threshold) for all 4,4 = 1,2,...,n,. Here, N, is called the overlapping
number of the transformation T,. For each possible three-peint
correspondence, an overlapping number can be computed. Finally,
the rigid-transformation with the largest overlapping number is

selected as the solution of our registration task.

In principle, the three control points form a triangle. If a smaller
triangle is employed when selecting the three control points, a
faster search speed can be achieved. However, if the triangle is
selected to be too small, the computed rigid transformation will be
very sensitive to noise. Hence, how to determine an acceptable
minimal trigngle for the DARCES procedure is an important issue.
To simplify the determination process, we assume that the three
selected control points form a regular triangle as shown in Fig. 4.
Let the average position error of the data points (including both the
data acquisition error of the range-finder and the error caused by
limit image resolution) be ¢ and let ¢ be the center of the triangle.
For a scene point P whose distance to ¢ is ¢, the alignment error
caused by e will be enlarged to an z. It can be found that z is
V/3te/d. Here, we define the enlarge ratio as h = z/¢t. If we want the
enlarged ratio to be smaller than a threshold H, d should be larger

M,

Fig. 4. Darivation of the smallest triangle.
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Fig. 5. (a) The 2D circular region of the projection of the 3D sphere onto the index plane and the search of M, is performad in a squared search region containing this
circle. (b} The 2D ellipse of the projection of the 3D ¢ircle onto the index plane. (¢} The search is performed in the intersection of the two squared regions.

than dy.i, = v3e/H, where dn, refers to the edge length of the
acceptable minimal triangle. For example, assume that e = 1.0 mm
and that we hope to keep the enlarge ratio smaller than I = 0.1.
Then, dmin = 17.32 mm. In our work, the size of the triangle is fixed
to a small constant, which is determined by means of the above-
mentioned theoretical analysis, Thus, the time required for search
can be significantly reduced.

Let ny be the equivalent number of pixels (in the index plane)
for an edge segment of length dyy, in the 3D space. The time
complexity of the DARCES method using three control points can
be shown to be

Olnim (nd® + ng(na + 1)) = O+ nd® + N+ R+ 1),

where n,, is the number of the model data points and n, is the
number of the reference points chosen from the scene data points.'

In general, the DARCES method can already provide the
registration result accurate to a considerable extent. An ICP-based
method [11] is used in our work for further refinement. For
implementation purposes, direct searches in the 3D space on the
surface of a sphere or on the boundary of a circle may not be trivial.
Hence, we can exploit the fact that a range image can be treated as
the projection of the 3D points onto an index plane. Assume that the
index planes of the scene data set and the model data set are Pg
and Py, respectively. To search M, in the model data set, the 3D
sphere C; is projected onto Py and, thus, forms a 2D circular
region on Py, as shown in Fig. ba. To simplify the implementation,
a square search region is used instead of a 2D circular region in our
work. For each 3D point corresponding to the tessellation of the
square search region, its distance to M is computed. Those 3D
points whoese distances are approximately d,, are then recorded as
the matching candidates of the second control point, To search M,,
one method is to project the 3D circle C, onto Py, thus forming a
2D ellipse on Pis, as shown in Fig. 5b. The search can then be
restricted to the 3D points corresponding to the boundary of the 2D
ellipse on the indexing plane. However, indexing the boundary of
a 2D ellipse is also not an easy task. In our work, to make the
implementation easier, we do not use the projection of the 3D circle
C,; instead, the projections of two other 3D spheres (Cp, and Cy;)
are used, as shown in Fig, 5¢, where Cy, is the sphere whose center
is M, and whose radius is 3;.57;, and C, is the sphere whose center
is M, and whose radius is 5.5, respectively. The intersection of
the two corresponding square regions of the two spheres C;, and

1. Details of the complexity analysis can be found in [5].

C.. on the index plane is then used as the search region of the
matching candidates of the awdliary control point, as shown in
Fig. 5c.

2.2 Using More than Three Control Points

In this section, we consider the case where more than three control
points are used. Let the n. (n. > 3) control points selected from the
scene data set be denoted by S, S, S, (the first three control
points), and Sy, S5,..., 8%, (all the other control points), respec-
tively. Here, the search procedure is similar to the one described in
Section 2.1 for the case of using three control points, except that all
the n, control points (instead of only three control points) have to
find their possible candidates before computing the cverlapping
number—which is a relatively time-consuming process having
complexity of O(n;). That is, once the first three control points, Sy,
S,, and S, are respectively hypothesized as corresponding to the
model points, M,, M,, M,, during the search process, the rigid
transformation 7, computed with those three possible matches will
be used to sequentially transform each of the remaining control
point, S;,4=4,5,...,n,, to a new position, 1,5, and to check if
T.5; satisfies the alignment constraint (Le., if its distance to the
model data set is smalier than a given threshold). As long as any
one of the remaining control points does not satisfy the alignment
constraint, we jump cut immediately and search for another new
set of candidate matches for the control points, By using this early
jump-out strategy, the time for verifying a 7, with all the »,
reference point can be largely saved.

The number of control points . can be chosen to be any
number between 3 and n,. If we use more control points (i.e, a
larger n.), then the probability of “early jump-out” will be higher.
Hence, in the noiseless case, treating all the reference points as the
confrol points (i.e., choosing n. =n,) will be the fastest way for
solving the fully contained problem. In general, if ¢; and ¢ are two

4
d

?\

Fig. 8. An example of salacting 15 control points in the index plane.
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(d) {e)

Fig. 7. () shows four range images grabbed from different view points. (b) and (c) are the results of registration and integration, observed from two different viewing
directions. {d) is the shaded image of the intagrated 3D data set. (e) is the textured mapped image of the integrated 3D data set.

selected sets of control points and 79 and T% are their time
complexities, respectively, then ¢ C ¢ implies that 7™ < T,
Therefore, a lower bound of the complexity can be derived if we
consider the case where n, = n,. Ideally, if early jump-outs always
occur {except for the correct solution) when dealing with the fourth
control point, then the time complexity can be shown to be T% =
O(ny, - nd® + n,) (see [5]), which is a lower beund of the complexity
of the DARCES approach.

3 PARTIALLY OVERLAPPING CASE—RANSAC-BASED
DARCES

While the strategy of using as many control points as possible is
better for solving the fully contained problem, unfortunately, it is
not always better for the partially overlapping 3D registration
problem. In principle, to solve the partially overlapping 3D

registration problem, it is required that all the control points lie
on the overlapping region of the two data sets. However, the more
control points used, the more likely that some of the control points
will fall cutside the overlapping region. Hence, it is an important
issue to choose a good number of control points having good
distribution. In general, determining the optimal number of control
points is a difficult problem. Also, the optimal configuration of the
control points depends on the size and the shape of the
overlapping region of the two data sets and, thus, is quite data
dependent. In our approach, we use a random-selection strategy to
select the first (i.e, the primary) control point, which will be
introduced in the following.

The RANSAC-based DARCES approach starts by randomly
selecting a primary control point from the scene data set.” In our

2. Notice that only the primary control point, 5y, is sclected randomly.
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Fig. 8. (a) and (b) are a pair of fruits observed from different view points. (c) and (d) are their range data. (e) shows the 31 data set registered using the RANSAC-based
DARCES approach. Nolice that, in this case, the twa range data sets contain no good local features. Hence, in general, it is difficult to solve this 3D registraticn problem if
we use a feature-hased method. Nevertheless, using the RANSAC-based DARCES approach, the two data sets can be successfully registered.

approach, the secondary and the auxiliary control points are
selected such that they approximately form an acceptable minimal
triangle. The other control points are selected around the
acceptable minimal triangle such that they gradually form a larger
triangle. For instance, Fig. 6 shows an example in which 15 control
points are selected. Once the control points are selected, the
DARCES procedure is performed to find possible alignments of
these two data sets. If the rigid transformation found by the
DARCES procedure has the overlapping number larger than a
threshold, then that transformation is regarded as the solution of
our 3D registration task; otherwise, we select another primary
point randomly from the scene data set and perform the above
procedure again until it successfully finds a rigid transformation
having a sufficiently large overlapping number.

A statistical analysis of the required number of random trials
can be found [3], which shows that our method can solve the

partially overlapping 3D registration problem with only a few
random trials. The RANSAC-based DARCES procedure described
above is referred to as the basic algorithm of our approach. It can
also be further speeded up by incorporating with a coarse-to-fine
search structure Chowever, not all the possible alignments are
searched in this situation). The coarse-to-fine search strategy we
have adopted is the three-step algorithm, which is popular in the
field of image/video coding. A detailed description of the three-
step algorithm used in our method can be found in [3].

4 EXPERIMENTAL RESULTS

Fig. 7a shows four range data sets of a model head obtained from
different view points. The range images were grabbed using a
stereo range finder similar to that described in [4]. Each of them
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contains roughly 4,200 data points, The RANSAC-based DARCES
method was used to register the data sets contained in the two
range images, which process was referred to as coarse registration.
In this expetiment, 15 control points are used and the three-step
algorithm was also used to further speed up the RANSAC-based
DARCES approach. After that, a modified ICP approach [11] was
used to refine the obtained 3D rigid-transformation, which was
referred to as fine registrationt in our experiment. The registered and
integrated 3D data set is shown in Fig. 7b and Fig. 7c.* Fig, 7d and
Fig. 7e show the shaded and the texture-mapped images of Fig. 7c,
respectively. The CPU time of total registration of the three pairs
formed by the four data sets was 61.98 seconds (using an SGI 0?
workstation), where coarse registration took 58.73 seconds and fine
registration fook 3.25 seconds. Notice that the computation time
was measured for the entire 3D registration task, instead of
treating some procedures as off-line processes (such as the feature-
extraction procedure and the feature-organization procedure in a
feature-based approach). The average registration error of coarse
registration is 1.66 mm, and that of fine registration is 1.45 mm.

In Fig. 8c and Fig, 8d, range images of a pair of fruits are shown
from two different views. Fig. 8c is the right view and Fig. 8d is the
left view. Fach image contains roughly 2,400 data points. Notice
that, in this case, the two range data sets contain ne good local
features. Hence, in general, it is difficult to solve this 3D
registration problem if we use a feature-based method. Never-
theless, using the RANSAC-based DARCES approach, the two
data sets can be successfully registered. Fig. 8e shows the
registered data set, which needed only 3.95 seconds with two
random trials.

5 CONCLUSIONS AND Discussion

Most of the existing techniques for solving the partially over-
lapping 3D registration problem have one of the following
limitations:

1. They cannot ensure a correct solution even for the
noiseless case [1], [6], [8], [11].

2. They require a good initial estimate of the rigid transfor-
mation between the two data sets [1], [6].

3. They can only be used if the data sets contain sufficient
local features [7], [10].

In this paper, we have proposed the RANSAC-based DARCES
approach, which has none of the above three limitations. The basic
algorithm of our approach can guarantee that the solution it finds
is the true one and it can be used for the featureless case while
requiring no initial estimates. Also, our method is faster than most
of the existing methods without using initial estimations. Our
approach simply treats the 3D registration problem as a partial-
matching problem and uses the rigidity constraint among some
preselected control points to restrict the search range used for
matching. Although some approaches have also used rigidity
constraints to facilitate the matching processes [7], [8], our
approach is the first one to show that the 312 registration problem
can be solved in a relatively low-order computation time by
carefully using all of the constraints provided by the rigidity.

In addition, we have shown how the acceptable minimal
triangle formed by the first three control points can be determined
to greatly reduce the computation time. We have also shown that
how additional control points can be used to speed up the search
process. Notice that our method can be easily extended so that
available feature attributes associated with each 3D data point,
(e.g., 3D curvature or image luminance) can be used to reduce the
number of possible cotrespondence. Although the RANSAC-based

3. We implemented the zippering method [11] to integrate the two
overlapping range data sets.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21,

NG, 11, NOVEMBER 1999

DARCES approach is designed to solve the 3D registration
problem, it also has great potential for application in general 3D
object recognition (perhaps through a combination of some
feature-primitive extractions).
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