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Fuzzy Kernel Perceptron
Jiun-Hung Chen and Chu-Song Chen

Abstract—A new learning method, the fuzzy kernel perceptron
(FKP), in which the fuzzy perceptron (FP) and the Mercer kernels
are incorporated, is proposed in this paper. The proposed method
first maps the input data into a high-dimensional feature space
using some implicit mapping functions. Then, the FP is adopted
to find a linear separating hyperplane in the high-dimensional fea-
ture space. Compared with the FP, the FKP is more suitable for
solving the linearly nonseparable problems. In addition, it is also
more efficient than the kernel perceptron (KP). Experimental re-
sults show that the FKP has better classification performance than
FP, KP, and the support vector machine (SVM).

Index Terms—Classification, fuzzy perceptron (FP),
kernel-based method, Mercer kernel, supervised learning,
support vector machine (SVM).

I. INTRODUCTION

COVER’S theorem [2] on the separability of patterns states
that a complex pattern classification problem projected

into a high-dimensional feature space nonlinearly is more likely
to be linearly separable than that in a low-dimensional space.
However, the computations involved in a high-dimensional fea-
ture space are very time-consuming. Mercer kernels [19] have
recently been adopted to make this idea practical. Mercer ker-
nels induce implicit nonlinear mapping functions from input
spaces to high-dimensional feature spaces. In addition, the inner
product of any two feature vectors in the high-dimensional space
can be computed by using the kernel function of the two asso-
ciated input vectors in the low-dimensional space. Such a tech-
nique was adopted in many studies such as support vector ma-
chine (SVM) [19], kernel principal component analysis (PCA)
[18] and others [5], [12], [13].

SVM [19] is a classification and regression tool. It first maps
the input data into a high-dimensional feature space using some
kernel functions. Then, a linear separating hyperplane with
the maximal margin between its closet positive and negative
examples in the mapped space is found. Generally, the learning
process of the SVM is formulated as solving a constrained
quadratic optimization problem that minimizes a weighted sum
of two terms, where the first term is related to the reciprocal of
the margin described above and the second is the sum of the
classification errors. Although this optimization problem can
be solved by quadratic programming techniques, it is typically
a large dense quadratic programming one while the amount of
associated data is large. Some research works have focused on
the ways for solving this optimization problem efficiently and
effectively [15], [8], [10]. As a powerful kernel-based learning
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algorithm, SVM has been successfully applied to handwritten
digit recognition problems [19], face detection [14], object
recognition [16], and others.1

The kernel-based concept has also been adopted for unsuper-
vised learning. PCA [6], which finds a set of orthogonal axes
that captures most variations of the data set, can be used to re-
duce the dimensionality of the data set, such that each datum is
represented as a linear combination of its projections onto these
axes with least quadratic errors. However, PCA cannot be used
to extract nonlinear features and the kernel PCA [18] is proposed
to overcome this drawback. The kernel PCA also maps data into
some high-dimensional feature space induced by a kernel func-
tion in advance, and the standard PCA is then performed on the
high-dimensional feature space. Hence, nonlinear structures ex-
isting in the data set can be better extracted with kernel PCA.

This paper focuses on supervised learning. In particular,
the fuzzy perceptron (FP) proposed by Keller and Hunt [9],
[11] is adopted as a basic learning tool. As an iterative re-
finement scheme, perceptron [11] is an efficient method for
learning a linear classifier from training examples. Although
the learning rule of the perceptron is simple, it fails to converge
for linearly nonseparable cases. The FP solves the above
convergence problem using the fuzzy theory so that vectors
of high uncertainty have less influence on the training results.
In this paper, the FP is extended to become the fuzzy kernel
perceptron (FKP) with the help of Mercer kernels. There are
two advantages of such an extension from both the analytical
and the experimental points of views. First, better classification
accuracy is achieved for linearly nonseparable cases. Second,
faster convergence property is also obtained. In addition, the
performance of the FKP is compared with that of the SVM
in this paper. Experimental results show that, by choosing
appropriate models or parameters for both FKP and SVM, the
FKP consistently outperforms the SVM in either synthetic or
real data sets.

The remainder of this paper is organized as follows. Sec-
tion I-A gives the formulation of our problem. Section II reviews
the concept of the FP. Then, in Section III, the FP is generalized
to the FKP. Some experimental results are shown in Section IV.
Finally, conclusions and discussion are presented in Section V.

A. Problem Formulation

Consider a two-class classification problem. Let
, be a set

of -dimensional input vectors, and its associated label set
is , .
The subsets of examples and

are referred to as the sets of

1Many other applications that use the SVM for learning can be found in
http://clopinet.com/isabelle/Projects/SVM/applist.html.
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positive and negative examples. Let and be the
respective number of positive and negative examples with

, respectively. For each , its augmented input
vector is denoted by , where

is the value of the th component of , and is also
called the unaugmented vector of. Given a linear separating
hyperplane , its associated classifier

is defined by

if

otherwise.
(1)

for each augmented input vector,, where is the sign
function. A pattern is classified correctly by if

. If there exists a linear separating hyperplane that classifies
correctly all the patterns in a two-class classification problem,
the problem is called linearly separable.

II. FUZZY PERCEPTRON

This section reviews the FP, which plays an important role in
the derivation of the FKP. The membership function

describes the degree that a given datumbelongs to class
. Since this paper focuses on 2-class classification problems,

it is assumed that for ,
where and are the associate degrees thatbe-
longs to positive and negative classes, respectively.

Keller and Hunt [9] suggested the following way for as-
signing fuzzy membership values such that a fuzzy 2-partition
is formed. Given an

(2)
Given an

(3)
In the above, is the distance between vectorand the

mean of the positive class

(4)

is the distance between vectorand the mean of the
negative class

(5)

is the distance between the two means of each class

(6)

Note that is the 2-norm and is a constant controlling the
rate at which memberships decrease toward 0.5. Given a two-
class classification problem, the FP learns iteratively a linear
separating hyperplane as follows. Given an augmented input

vector at time step with its unaugmented vector being
, the FP adapts its linear separating hyperplane

by

(7)

where is a learning rate and is a positive constant control-
ling the fuzziness. Hence, the fuzzier the training example, the
smaller its influence on the weight adaptation is. An interesting
property of the FP is that it retains the property (associated with
the standard perceptron) of finding a separating hyperplane in a
finite number of iterations in the linearly separable case. Note
that by setting to one, (7) degenerates
to the standard perceptron learning rule.

A drawback of the standard perceptron is that it will not ter-
minate in finite times if the classification problem is not linearly
separable. Note that a common way for dealing with the termi-
nation problem in the standard perceptron is to force it to stop
by setting the number of maximal iterations allowed. Hence, the
behavior of the standard perceptron can be very erratic in the
linearly nonseparable case. On the other hand, the FP provides
an elegant way to deal with the problem about termination. In
the FP, a training example isvery fuzzyif its membership value
falls within the following region: ,
(where is a selected constant). An additional terminating con-
dition of the FP is that if the misclassifications are all caused by
the very fuzzy training examples, then the learning algorithm of
the FP should terminate. The parameteris better to be selected
when the training examples with the membership values outside

are linearly separable. Note that it is ensured
that the FP will terminate in finite times in this case. Therefore,
the FP provides a more reasonable stopping criterion using the
fuzziness of the training examples.

In practice, the parametercan be determined by trying a set
of different values and then selecting the one associated with
the largest correct ratio of classification (if the training process
is allowed to be off-line). On the other hand,can also be de-
termined according the data distribution [9]

(8)

where is a positive constant controlling the area in which the
separating hyperplane can lie, and the left side of (8) is obtained
by setting in (2).

III. FUZZY KERNEL PERCEPTRON

From the Mercer theorem [19], it is known that a Mercer
kernel induces an implicit function that projects nonlinearly
the original input vectors into a very high-dimensional feature
space. In addition, the value obtained from a Mercer kernel as-
sociated with any two vectors in the low-dimensional space can
be interpreted as the inner product of the mapped vectors in the
high-dimensional feature space. For example, two commonly
adopted Mercer kernels are the polynomial kernel and
the radial basis kernel as shown in the following:

(9)
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(10)

where and are two vectors in the low-dimensional space,
and and are two constants.

The main idea of the FKP is described below. Our method
projects nonlinearly the input data into a high-dimensional fea-
ture space. From Cover’s theorem, projecting into a high-di-
mensional feature space is assumed to make linearly nonsep-
arable problems more likely be linearly separable. In view of
this assumption, the perceptron is a good choice for classifica-
tion in the high-dimensional feature space because it provides
a simple and efficient way to deal with the linearly separable
problem. Compared with the SVM, the kernel perceptron can be
more easily implemented by the associated simple learning rule.
However, it is not guaranteed that all problems cast from the
input space to a high-dimensional feature space are linearly sep-
arable. Hence, it is also important to handle the convergence for
the possible cases that are linearly nonseparable in high-dimen-
sional feature spaces. Therefore, the FP is adopted, as a better
choice than the perceptron, to solve the corresponding classi-
fication problem in the high-dimensional feature space in this
paper.

However, direct computation in the high-dimensional feature
space is very time-consuming. Therefore, the Mercer kernels
are used to make it practical. In the following, the projection of
a training example in the high-dimensional feature space is
denoted by . The augmented vector of is denoted by .
In particular, and are also called theimageand theaug-
mented imageof , respectively, and is called thepreimage
of both and . Given an FKP with the Mercer kernel, the
corresponding learning rule of the FKP in the high-dimensional
feature space is

for (11)

From (11), it is realized that is a linear combination
of the augmented images and . More
specifically, can be expressed by

for (12)

where is a coefficient associated with the training example
. When some augmented image is presented at time

step , its associated coefficient is obtained by

for (13)

Let , where is a random number and
is a feature vector whose preimage is selected randomly
in the low-dimensional space. To compute , the
following equation is used:

(14)

Hence, the learned classifier of the FKP at time stepis the
following.

1) If

if

otherwise.
(15)

2) If

if

otherwise.

(16)

During the learning process, it is also required to compute
the fuzzy memberships and . The set
of the latest images
is used to estimate the fuzzy memberships in our method.
According to (2) and (3), the assignment of fuzzy membership
values and can be obtained by computing

, and in the high-dimensional feature
space. Let and and

and , respectively. The
means of the images of the positive examples and the
negative examples in the feature spaces are denoted by

and , respectively

where and is the number of positive and negative
elements contained in and , respectively, at time
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with . Consider that is the
distance between vector and

(17)

where is the distance between vector and

(18)

is the distance between and

(19)

If a fixed set of training examples,
, is

used, then an alternative way is to compute the values of
, and in (17)–(19), respectively, in

advance, and use them throughout the learning process.
Algorithm 1 shows the detailed learning procedure of the FKP
if the training examples contained inare fed into it iteratively.
In particular, a special case of the FKP, obtained by setting

to one, is called the kernel perceptron
(KP) in this paper. The concept of KP can be found in [3] and

[5]. They mainly focused on transforming the perceptron into a
kernel-based version, converting the online learning algorithm
of the KP to a batch learning one, or analyzing theoretical error
bounds. However, they did not consider the important issue
about how to terminate the KP when it is used for a nonlinear
separable problem in high-dimensional feature spaces. In this
paper, by using the FKP, this issue is well considered. After
the training is finished, is called arepresentation vectorif

. All the representation vectors and
nonzero s, together with and , are then recorded
for the learned classifier since only nonzeros have to be
involved in run-time decision.

As we know, the learning process of SVM is formulated as
solving a large-scale constrained optimization problem, which
requires very tricky and sophisticated optimization techniques.
On the other hand, the learning process of FKP (or KP) is sim-
pler than that of SVM since very regular operations are per-
formed. Such a simple learning rule makes it more suitable for
hardware implementations, and, thus, also endows it with much
more potential for real-time applications.

IV. EXPERIMENTAL RESULTS

In this section, some experimental results are presented to
show the effectiveness of the FKP. First, a linear nonseparable
problem was used for comparing the FKP with the FP and the
KP, respectively, under the situation that a series of random trials
were performed. Then, real-world problems were used to com-
pare the FKP with the SVM, where model/parameter selections
were taken into account.

Algorithm 1 FKP learning algorithm [Input:
, ; Output:

]

0. Initialize and randomly.
1. Set . Let . Setrun .
2. Let ,

,
,
, and

.
3. Compute

.
4. Compute

.
5. Compute .
6. Compute by substituting

into (2) and (3) .
7. repeat
7.1. Set , and set to be a random permuta-

tion from 1 to .
7.2. for do
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7.2.1. Obtain the classification result by

if

otherwise.

7.2.2. if then
7.2.2.1.

7.2.2.2. if then set
end if

end if
end for

7.3. setrun run 1
until run and

The testing data of the former experiment is a synthetic
two-spiral two-dimensional (2-D) point set [4] downloaded
from the CMU learning benchmark archive,2 and those of the
latter include two real data sets, ionosphere and sonar [1], both
of which were commonly used machine learning benchmarks.3

Some properties of these three data sets are listed in Table I. The
former experiment was done on an ASUS Ultra 1 workstation,
and the latter on a Sun UltraSparcIIi workstation.

The input data points of the two-spiral problem are shown in
Fig. 1(a). They are partitioned into a training set and a testing
set as shown in Fig. 1(b) and (c), respectively. The radial basis
functions with was used in this experiment. The initial
augmented image was obtained by setting each compo-
nent of as a random number between zero and one, under
the situation that . The parameters , and the
maximum loop were 0.4, 1.05, 0.007, 0.05, and 2500, respec-
tively. Fifty tests were performed by choosing randomly
for FP, KP, and FKP, respectively. The average training time and
average correct ratios for both training and testing data sets are
shown in Table II, where the average correct ratio for the training
(testing) data set is the ratio of the number of training (testing)
examples that are correctly classified to the number of training
(testing) examples. According to the experimental results listed
in this table, the FKP considerably outperforms the FP for both
the training and testing sets. It is because the FKP performs
better when dealing with the linearly nonseparable problems.
Compared with the KP, the FKP also has better correct ratio and
training efficiency. It reveals that the convergence problems for

2http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/
bench/cmu/.

3These real data sets were downloaded from http://
www.ics.uci.edu/~mlearn/MLRepository.html. Many comparisons of
results using these data sets can be found in http://www.phys.uni.torun.pl/
kmk/projects/datasets.html.

TABLE I
PROPERTIES OF THETHREE DATA SETS USED IN OUR EXPERIMENTS

(a)

(b)

(c)

Fig. 1. (a) Input examples. (b) Training examples. (c) Testing examples. The
symbols+ and� are used for different classes.

the linearly nonseparable cases in the high-dimensional space
were handled more effectively by using the FKP.

A more detailed list of the results of all the 50 tests in this
experiment is shown in Fig. 2. In particular, an additional test
with the SVM, where the same kernel function (or equivalently,
the same model [13]) was adopted, is also shown in Fig. 2. In
this figure, each of the correct ratios of the above 50 random
tests are shown with different lines. Unlike that of the SVM, the
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TABLE II
AVERAGE CORRECTRATIOS AND AVERAGE TRAINING TIMES FORBOTH THE

TRAINING AND TESTING SETS OFFKP, KP,AND FP

(a)

(b)

Fig. 2. (a) Correct ratios of FKP of the 50 random trials. (b) Correct ratios of
KP of the 50 random trials.

classification performances of both the FKP and the KP depend
further on the initial configurations even when the same kernel
function is used. As seen in Fig. 2(a) and (b), both the FKP and
the KP outperform the SVM in some random trials. Fig. 3(a)
and (b) show the classifying boundaries of the FKP and the KP
with the largest correct ratios for the training set among the 50
tests, respectively, and the classifying boundary of the SVM is
shown in Fig. 3(c). The correct ratios of the FKP, the KP, and
the SVM (associated with this figure) for the training sets are
98%, 96.9%, and 93.9%, respectively, while those of the testing
sets are 79.2%, 84%, and 79.2%, respectively.

Furthermore, to investigate the sensitivities of the parame-
ters , the performance of the FKP around the center

(0.4,1.05,0.007,0.05) is shown in Fig. 4. In this
analysis, the average of the training and testing correct ratios
( ) is chosen to be the performance measure. In addition,
for each , 50 trials were run and the largest

(a)

(b)

(c)

Fig. 3. (a) Classifying boundary of the FKP with the largest correct ratio for the
training set among 50 experiments. (b) Classifying boundary of the KP with the
largest correct ratio for the training set among 50 experiments. (c) Classifying
boundary of the SVM.

observed in these 50 trials is recorded in this analysis. If the
largest variation in average correct ratios among the chosen re-
gion is considered for sensitivity analyses, then the learning rate

is the most sensitive parameter andis the next sensitive one
according to our tests because their correct ratios vary more than
those of the others. In addition, from Fig. 4, the classification
results associated with (0.4,1.05,0.007,0.05) is
a good choice but can still be improved with further investiga-
tions, which will be considered later through a model/parameter
selection process.

An important issue inherent in the above observations is that
the FKP can outperform the SVM if appropriate initial condi-
tions are set. In fact, the choice of the kernel also has crucial
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(a) (b)

(c) (d)

Fig. 4. Sensitivity analyses of the introduced parameters(f; m; �; �) in the FKP around the center(f; m; �; �) = (0.4,1.05,0.007,0.05). (a) ASR versusf
with the other three parameters fixed. (b) ASR versusm with the other three parameters fixed. (c) ASR versus� with the other three parameters fixed. (d) ASR
versus� with the other three parameters fixed.

effects on the performances for any kernel-based methods [13].
In the second experiment, the performance of FKP is compared
with that of the SVM where real data sets were used. Unlike the
previous experiment, appropriate kernel function and learning
parameters (including and initial weights) have been
investigated through a so-calledmodel (or parameter) selec-
tion process[17], [13], [7] in this experiment, instead of being
given randomly. Tenfold cross validation [17] combined with
the performance measure was used to select a good model
for SVM. That is, the parameters with the largest average
over an investigated parameter space were chosen and used for
the subsequent comparisons.

To make the comparisons between the FKP and the SVM fair,
the kernel function was selected according to the performance
of the SVM. In this experiment, the radial basis kernel was also
adopted. Hence, the kernel parameterand the cost parameter

[19] were required to be chosen for SVM. The parameter
space investigated in this experiment for bothand were

and , respec-
tively. The model-selection process computed exhaustively the

s associated with all the combinations of the values ()
contained in the spaces defined above for the SVM. The inves-

tigation results are shown in Fig. 5. Finally, the best ( ),
that is, associated with the largest ASR, was selected
for the ionosphere and the sonar problems, which turned out to
be (0.45,10) and (0.15,100), respectively.

After selecting a proper model for the SVM, the radial basis
kernel function with the same was used for the FKP in the
subsequent tests for comparison purpose. The maximum loop
of the FKP was fixed to be 30 000 and a parameter-selection
process was further performed for finding appropriate values
for the parameters , , , and of the FKP. The ranges of

, , and were sampled within , and
, respectively, and there are totally 18 720 sample

points. For each combination of , 50 initial aug-
mented images, , were tried for classification, where
was obtained by setting each component of as a random
number between zero and one under the situation that .
The combination associated with the best

among the above trials was chosen as the parameter set
for FKP.

The performance comparisons between the FKP and the
SVM on both ionosphere and sonar data sets are summarized
in Tables III and IV, respectively. From these tables, both
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(a) (b)

(c) (d)

Fig. 5. Model selection process for SVM over two different real data sets. The black dots show the positions of the best parameters. (a)ASR versus the parameters
(; C) for the ionosphere problem. (b) Level-curve diagram of (a). (c)ASR versus the parameter (; C) for the sonar problem. (d) Level-curve diagram of (c).

TABLE III
PERFORMANCECOMPARISONBETWEEN THEFKP AND THE SVM ON THE

IONOSPHEREDATA SET

TABLE IV
PERFORMANCECOMPARISON BETWEEN THE FKP AND THE SVM

ON THE SONAR DATA SET

methods achieve 100% correct ratios for the training sets after
model/parameter selections. However, the FKP has better
testing correct ratios (Both tests show that the testing correct
ratio of the FKP is at least 3.5% higher than that of the SVM.)
Compared with those of SVM, the training times of the FKP
are faster on the sonar data set but slower on the ionosphere

data set. As for the number of support/representation vectors,
the FKP has fewer vectors on the ionosphere data set but more
vectors on the sonar data set. The parameters
associated with the results shown in the Tables III and IV
are and for
the ionosphere and sonar data sets, respectively. Finally, by
using the same tenfold cross validation and model/parameter
selection process introduced above, Fig. 6 and Table V show a
renewed result of the spiral problem (which was done on the
same UltraSparcIIi Sun workstation). In this case, the FKP
also has better classification performance than the SVM did.
From Fig. 6, it can be observed that the FKP has learned a
more suitable extrapolation than the SVM did if the data are
expected to be extrapolated as a spiral shape.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a new learning method, the FKP,
for training a 2-classifier. Training with the FKP is equivalent to
training with the FP, except that the training vectors are first pro-
jected into a high-dimensional space. It is well known that the
projection is likely to make a linearly nonseparable problem be-
come linearly separable in the high-dimensional space. Hence,
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(a) (b)

(c) (d)

Fig. 6. (a) Example of a tenfold training set for the spiral problem. (b) Example of a tenfold testing set for the spiral problem. (c) Classifying boundary of the FKP.
(d) Classifying boundary of the SVM. In particular, note the regions marked with outward arrows. These regions show that the FKP has learned a more suitable
extrapolation from the same limited data set than the SVM did if the data are expected to be extrapolated as a spiral shape.

TABLE V
PERFORMANCECOMPARISON BETWEEN THE FKP AND THE SVM

ON THE SPIRAL DATASET

the perceptron seems to be a good choice for solving such a lin-
early separable problem in the high-dimensional space because
its learning rule is simple. However, it is also possible that the
problem resulted via such a projection is still linearly nonsepa-
rable in the high-dimensional space, and the perceptron may fail
toconverge in thiscase.Therefore, theFPservesasabetterchoice
for training a classifier in the high-dimensional space because the
convergence problem is tackled more appropriately in FP by con-
sidering the fuzzy memberships of the training vectors. We have
found that the operations involved in the FP can be replaced by
some linear combinations of the inner products of the training
vectors, which allows us to use the Mercer kernel to realize the
FKP in the low-dimensional space. Such a generalization also al-
lows it to deal with linearly nonseparable problems better.

Our experimental results show that the FKP has better average
performance, both in convergence speed and in correct classifi-
cation rate, than the KP. In addition, the FKP outperforms the FP
in the average correct ratios for both the training and testing sets.
Compared with the SVM, the FKP is also superior to the SVM
for both the spiral and the real data sets tested in our experiments

under the situation that appropriate models (or parameters) have
been selected for both SVM and FKP.

How to speed up the training process of the FKP, particu-
larly with a general-purpose computer, such that it can achieve
real-time performance is important for on-line applications and
merits further investigation.
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