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Fast Algorithm for Robust Template Matching
With M-Estimators

Jiun-Hung Chen, Chu-Song Chen, and Yong-Sheng Chen

Abstract—In this paper, we propose a fast algorithm for
speeding up the process of template matching that uses M-esti-
mators for dealing with outliers. We propose a particular image
hierarchy called the -pyramid that can be exploited to generate
a list of ascending lower bounds of the minimal matching errors
when a nondecreasing robust error measure is adopted. Then,
the set of lower bounds can be used to prune the search of the

-pyramid, and a fast algorithm is thereby developed in this
paper. This fast algorithm ensures finding the global minimum of
the robust template matching problem in which a nondecreasing
M-estimator serves as an error measure. Experimental results
demonstrate the effectiveness of our method.

Index Terms—Fast algorithm, M-estimator, robust template
matching, template matching.

I. INTRODUCTION

F INDING a pattern or template in a signal is an important
problem for signal and image processing. This so-called

template matchingcan be applied to many applications such
as image and video coding, pattern recognition, and visual
tracking. It is usually assumed in template matching that the
signal segments of interests do not change their appearances
very much. Hence, template matching based on the criteria
such as thesum of absolute difference(SAD) or thesum of
squared difference(SSD) is commonly adopted. The popularity
of using template matching for applications of signal or image
processing is mainly due to its ease of implementation together
with the many fast algorithms that can be used to speed up the
matching process for various applications [1], [7], [8], [13],
[15], [22], [25], [26], [28], [29], [35], [39].

In a cluttered environment, however, some outliers such
as impulse noises or partial occlusions may occur during
the matching processes. In this situation, the SAD and SSD
criteria are no longer suitable for template matching because
they treat the outliers and inliers evenly when calculating the
error measures. One possible remedy for this weakness is to
use a robust criterion instead of SAD or SSD. For this, the
M-estimator technique [2], [16], [30], [38] is one of the most
popular methods to solve the problem of robust parameter
estimation and has been applied in many studies [3]–[5],
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[11], [12], [14], [23], [31]–[33], [36]. The basic idea of the
M-estimator technique is to limit the influence of outliers in
the matching error. In principle, the effects of the outlier can be
suppressed with the M-estimator technique and therefore better
estimations are obtained.

A typical procedure for finding solutions with M-estimators
is the iterative-reweight procedure [30]. In each iteration of this
procedure, a weighted least-square problem is solved and then
the weights are adjusted for the next iteration for further refine-
ment. Hence, when applying the iterative-reweight procedure
for robust template matching, in each iteration, another template
matching problem must be solved based on a weighted SSD
error measure, in addition to which, multiple iterations are also
necessary. Therefore, the computation of robust error measures
is very time-consuming, although more accurate results can be
obtained by adopting a robust error measure instead of nonrobust
ones.1 In the past, many methods have been proposed to speed
up the matching process where the simple SAD or SSD criterion
is used. However, to our knowledge, no method has been ad-
dressed for speeding up the process of template matching where
robust error measures are used. In this paper, we propose a fast
method for solving this problem. We will present this method by
assuming that a two-dimensional (2-D) signal (e.g., an image) is
used. Nevertheless, our algorithm can be easily generalized for
any -dimensional signal .

On the other hand, there are already many methods for
speeding up the process of template matching where nonrobust
error measures are used. These methods can be divided into
two classes. The methods in the first class only find a local
minimum while the ones in the second class definitely find
the global minimum. In principle, almost all the methods in
the first class formulate the template matching as a search
problem and find a solution by adopting the greedy strategy.
Examples include the three-step search algorithm [22], the
gradient-descent based method [29] and others [1], [8], [13],
[15], [28], [35], [39]. The genetic algorithm-based methods [8],
[28] or the simulated annealing-based method [35] may have
chances of finding the global minimum if their parameters are
set appropriately to the given problems, but can not ensure that
it will always be found. In essence, since these methods do
not guarantee finding the global minimum, they are generally
faster than those ensuring the global optimality.

The methods in the second class guarantee finding the global
minimum, and the main idea of this class is basically prune
and search [7], [25], [26]. Hence, the main issue of this class of
approaches is on how to design the search strategies for pruning

1Another problem of the iterative-reweight procedure is that it can not defi-
nitely find the global optimum.
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unnecessary searching branches. The successive elimination
algorithm proposed by Li and Salari [26] eliminates impossible
sites successively during the searching process by using lower
bounds derived from the triangle inequality. Their method can
guarantee obtaining the global minimum, as does the full search
(FS) method, and it is more efficient. In [25], Lee and Chen ex-
tended this idea by using a block-sum-pyramid structure, where a
set of ascending lower bounds can be derived and serve as useful
guidelines toprunethesearchprocess.However, theperformance
of their method depends on the search order. Recently, Chenet al.
further refined it by using a winner-update strategy [7], which is
not only irrelevant to the search order but is also faster.

Similar to those methods that ensure finding the global min-
imum but using nonrobust error measures introduced above [7],
[25], [26], the method developed in this paper also adopts an in-
equality in a particular image hierarchy to speed up the template-
matching process with robust error measures. In essence, a set
of ascending lower bounds of the minimal matching error can be
generated with our method as long as the robust error measure is
nondecreasing. This set of lower bounds can then serve as useful
guidelines for pruning the redundant branches of the searching
process. In addition, our method can ensure finding the global
minimum, as the FS method does for robust template matching.

This paper is organized as follows. Section II introduces the
image hierarchy used in this work and the associated ascending
lower bound list. Section III presents the search strategies and
our main algorithm. Section IV shows some experimental re-
sults. Finally, some discussion and conclusions are given in Sec-
tions V and VI, respectively.

II. PROBLEM FORMULATION, -PYRAMID ,
AND FUNDAMENTAL INEQUALITY

A. Problem Formulation

We denote as the intensity at position in an
image . Assume that and are images. The sum
of robust differences (SRD) between two imagesand is
defined as follows:

SRD (1)

where : is a robust error
measure (or a robust loss function) [2], [16], [38], andis a
parameter controlling the shape of .2 Typically, the robust
error measure, , is selected according to how it reduces the
influences of outliers. Given an image templatewhose size is

and an image whose size is ,
the robust template matching problem is defined as finding the
position ( , ) with the minimum SRD among all possible
search positions in the image

SRD

(2)

2Some common robust error measures will be introduced in Section II-E. In
particular, if�(x; �) = x (or x) for all �, then (1) becomes SSD (or SAD).

where is an image block with its upper-left point
being in the image , and the number of search sites is

.

B. P-Feasible

To simplify the notation of the robust error measures, we de-
fine

for all (3)

and abbreviate to be for the cases without ambiguity
in the following.

Definition 1 [ -Feasible]: A robust error measure is
-feasible if it satisfies both the following two conditions.

1) is nondecreasing, i.e., implies
for all .

2) For each pair of nonnegative values , the fol-
lowing inequality with respect to the -norm holds:

(4)

where is a 2-D vector, and
is the -norm of , . In particular,

.
Some properties associated with the-feasible defined above

are investigated in the following.
Property 1: Every nondecreasing is -feasible.

Proof: This property can be easily derived according to
the definitions.

Property 2: If a robust error measure is -feasible, that
implies it is also -feasible for all .

Proof: See Appendix A.
If a -feasible robust error measure is used as the matching

criterion, an ascending lower bound list of the matching errors
can be obtained by constructing an image pyramid with respect
to the -norm, as described in the following.

C. -Pyramid and Fundamental Inequality

Assume that . For each image
block that is contained in
the image , a -pyramid of is defined as a set of images

, where and
the size of is .

is referred to as the image on the levelof the -pyramid.
Level 0 and level are called the highest and the lowest levels of
the -pyramid, respectively. Given an image on the level

, the image on the level is constructed using
the following equation:

(5)

where

and

Accordingly, the pyramids from level to level 0 can be con-
structed iteratively. Totally, -pyramids
are constructed from the image. Fig. 1 shows an illustration of
the pyramids constructed from a one–dimensional (1-D) signal.

Following the notions shown in (1), we define the SRD
between and on the level by SRD
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SRD for . Furthermore,
we denote SRD SRD if a fixed is
considered [where is defined in (3)]. Then, it can be shown
that the following fundamental inequality holds for the image
hierarchy defined above.

Theorem 1: Given a robust error measure that is -fea-
sible, then for all , ,

SRD

SRD SRD

(6)

Proof: See Appendix B.
Hence, given a image template and an image block

, a set of ascending lower bounds,
SRD , can be obtained ac-
cording to Theorem 1.

Notice that the number of robust differences involved in
the computation of each lower bound SRD

is , which is smaller than , the
number of robust differences required forSRD .
Therefore, the lower bounds can be computed more efficiently
than the sum of robust differences with respect to the original
image. In particular, the higher are the levels in a pyramid, the
faster are the computations of the associated lower bounds.
In fact, the ratio of the required number of the computations
of the robust differences on the level to that required for
the level is . Accordingly, even when all of the
lower bounds are computed, the required time is less than

of that required for the level , the
original image block. Such an ascending lower bound list of
the matching error can be used for speeding up the matching
process by incorporating it into a systematic search strategy, as
introduced in Section III.

Remark 1 [Efficient Construction of the-Pyramids of an
Image]: A -pyramid of each image block can be constructed
independently by using (5). However, it is very time-con-
suming if each pyramid is constructed independently. In
fact, the -pyramids can be constructed more efficiently by
considering the computation and storage redundancies between
neighboring image blocks when constructing and storing the
-pyramids. We introduce this method by using an example, as

shown in Fig. 1. Considering node in the first level image
of Pyramid 1, as shown in Fig. 1, one can observe that node

is also contained in Pyramid 3. Similarly, node B (or C) is
shared by Pyramids 2 and 4 (or Pyramids 3 and 5). Hence, if
each pyramid is constructed independently according to (5),
the values of nodes A, B, and C will be computed twice: once
for each pyramid. In our work, to remove this redundancy
and to save computation and storage of the-pyramids for all
the image blocks, the method illustrated in Fig. 1 is adopted.
That is, , the image containing every node of the first-level
images of all the pyramids, is first constructed based on.
Similarly, can be constructed based on. After and
are constructed, all the pyramids are then available, as shown
in Fig. 1. More details about efficient construction of pyramids
can be found in [7].

Remark 2 [Free Sampling]:In theabovedescription,apartic-
ular level of the -pyramid is built with the -norm of the 2 2

Fig. 1. p-pyramid constructed from a 1-D signal where each element in higher
levels is composed of its two son elements. Fivep-pyramids are depicted in solid
or dashed lines. The three black nodes are the ones that are shared between two
pyramids.

points from its lowerneighbor level, as shown in (5).We refer to it
as the 2–2downsampling in thiscase. In general,wecan use–
downsampling instead of 2–2 downsampling for all, ,
and the associated-pyramid can be reconstructed in a similar
way as well. Similarly, downsampling can be used for a 1-D
signal and – – downsampling can be used for a three–dimen-
sional (3-D) signal, and so on, where .

D. Characterization of -Feasible Robust Error Measures

In Section II-C, we have shown that if a-feasible robust error
measure is selected for template matching, then we can con-
struct an ascending lower bound list associated with a particular
image hierarchy: the-pyramid. Before introducing the search
procedure that exploits the series of lower bounds in detail, we
illustrate an important issue about whether such a lower-bound
list can be constructed. In particular, the following problem is
worthy of being addressed.

“Given a robust error measure , under what condi-
tion can it be ensured that we can always find a
such that is -feasible?”
In this paper, we tackle this problem in consideration of the

class of nondecreasing robust error measures. In fact, Property
1 has shown that if a robust error measure is nondecreasing, it is

-feasible. Therefore, when the-pyramids are built for both
the template and the image blocks, an ascending lower bound
list can then be constructed according to Theorem 1. Hence, it
ensures that every nondecreasing robust error measure is-fea-
sible for some because is a trivial solution.3 In addition
to , let us further investigate the othervalues that allow
a robust error measure to be-feasible. Given a nondecreasing
robust error measure, , let , which is thefeasible setasso-
ciated with , be defined as the set of values allowing to be
-feasible: is -feasible . By considering

the maximal lower bound of , the following property can be
derived.

Property 3: Given a that is nondecreasing, there exists
a discriminative value such that is -feasible for all

and is not -feasible for all , where is the
maximal lower bound of , which is the feasible set associated
with .

3How to construct a list of ascending lower bounds for the general class of
robust error measures that are not necessary to be nondecreasing remains an
open problem.
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Proof: This property can be derived directly from Proper-
ties 1 and 2.

Hence, the feasible set associated with a robust error measure
can be clearly specified with its discriminative valueby fur-
ther identifying the following two conditions: is -feasible or

is not -feasible. If is -feasible, then ; oth-
erwise, . After specifying the feasible set, another
problem worth consideration is the following.

“Which contained in the feasible set associated with a
nondecreasing robust error measure is a better choice for
speeding up the process of robust template matching?”
We investigate the above problem from the implementation

pointofview.Inpractice,tosimplifythecomputation, it isbetterto
select asintegersinsteadoffloating-pointnumbers.Whenisre-
strictedtobeinganinteger,thefeasiblesetassociatedwithcan
then be uniquely specified by ,

, where . In particular, we call
to beminimal -feasiblein this case, and is also referred to as
theminimal feasible valueof . Note that the smaller is, the
less is the computational overhead of the-norm for .
Therefore, a better choice ofis therefore .4

E. Minimal Feasible Value of Commonly Used Robust Error
Measures

In the following, we will give a study of the minimal feasible
values for some commonly used robust error measures. An in-
teresting phenomenon shown below is that almost all commonly
used nondecreasing robust error measures are minimal 1-fea-
sible or minimal 2-feasible.

Given a robust error measure , we define
. The Huber’s estimator

[see Fig. 2(a)] has least squares behaviors for small residues,
and the more robust least-absolute-values behavior for large
residues [14], [19], [31], [33]:

if

otherwise.
(7)

Property 4: Each member of Huber’s estimators is min-
imal 2-feasible.

Proof: See Appendix C.
The Tukey’s estimator [see Fig. 2(b)] has zero

weights5 for the large residues and thus improves the outlier
rejection properties [4], [5], [11], [14], [19], [31]

if

otherwise.

(8)

The shape of the function is shown in Fig. 2(b).

4Although the computation of the1-norm is also simple since only the abso-
lute values and themax(�; �) operations are involved, we find that in practice its
speedup performance is usually worse because the lower bounds associated with
an1-pyramid are usually not tight enough. An example is given in Section IV-A.

5In robust statistics, the weight is defined to be an value proportional to the
derivatives of�.

Fig. 2. Shapes of commonly used M-estimators with threshold� = 70. (a)
The shape of� . (b) The shape of� . (c) The shape of� . (d) The shape of� .
(e) The shape of� . (f) The shape of� .

Property 5: Each member of Tukey’s estimators is min-
imal 2-feasible.

Proof: See [6].
Another popular class of the robust error measure is the one

proposed by Geman and McClure [12] [see Fig. 2(c)] as shown
below, which was also adopted in [3], [4], [23], and [31]

(9)

Property 6: Each member of Geman and McClures’ estima-
tors is minimal 2-feasible.

Proof: See [6].
The above three robust error measures are popular, and we

have shown that all members of their s have the minimal
feasible value as 2. In addition, the following three robust error
measures are also investigated.

The robust function [36] [see Fig. 2(d)] uses simple
truncations to remove outliers, as shown in the following:

if
otherwise.

(10)

Another two robust error measures investigated here are Loren-
tizian’s estimator [19] [see Fig. 2(e)] and the trimmed
mean M-estimator [31] [see Fig. 2(f)]:

(11)

if

otherwise.

(12)

Property 7: i) Each member of is minimal 1-feasible. ii)
Each member of is minimal 2-feasible. iii) Each member
of is minimal 2-feasible.

Proof: See [6].
Notice that all the minimal feasible values of the commonly

used nondecreasing robust error measures investigated above
are 1 or 2, which are indeed small values.
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In the following, we investigate an M-estimator that is not
nondecreasing (the triweight M-estimator ) [32]:

if
if
otherwise.

(13)

Since each member of is not nondecreasing, the process of
template matching can not be speeded up with our approach if

is selected to be the robust error measure.
Finally, we investigate the nondecreasing error measure

shown as follows, where :

(14)

Property 8: Each member of is minimal -feasible.
Proof: The proof is trivial.

When (or ), becomes the SAD (or SSD) error
measure. The SAD and SSD are therefore minimal 1-feasible
and minimal 2-feasible, respectively. Hence, our method can
also be used to speed up the template matching process where
SAD or SSD is used as the error measure.

III. SEARCH STRATEGY AND THE MAIN ALGORITHM

A. Search Strategy

Once an ascending lower bound list of the matching error is
available for every search position , many search strate-
gies [7], [25], [26] can be used to speed up the process of ro-
bust template matching in our work. A brief review of these
search strategies is given below. Without loss of generality, the
-pyramid serves as the pyramidal structure for describing these

methods. We refer to-pyramidaspyramid in the following.
Consider a template and a set of image blocks

to be matched, where and are both
images. Assume that the associated-pyramids have been con-
structed for and all of the , , respec-
tively.

In [26], only the highest level and the lowest level of the pyra-
mids were used. The search order of the matching process is
fixed and, without loss of generality, assume that the matching
process starts from and the search is performed in
a row-major order. First, the error SRD is
computed as a reference value. Then, assume that
is the next site to be visited in the matching order. We try to
find out whether the robust error measure SRD
is smaller than . We do not compute SRD
directly. Instead, we first compute SRD , which
is the error associated with the highest levels of the pyramids
of and . If SRD is larger than the
current reference value, we do not have to further compute
SRD because SRD is a lower
bound of SRD . Therefore, early in the process, we
can jump out of the process of matchingand and go
on to match the next image block in the row-major order. On
the other hand, if SRD is smaller than the current
reference value , we must compute SRD and
compare it with . If SRD is smaller than , the
current reference value, thenis replaced by SRD .

Fig. 3. Search strategies introduced in Section III-A. Li and Salari method
[26] only searches the layer 0 and layern of the tree in a depth-first order.
Lee and Chen method [25] searches the entire tree in a depth-first order. Both
methods prune the search branches by comparing the current reference value
with the error associated with the vertex. Chenet al.method [7] uses the uniform
cost search [34] (the branch-and-bound strategy) for the entire tree to prune the
unnecessary search branches.

The above procedure can be repeated iteratively. Remember
that the computation complexity of SRD is
of that required for SRD , and thus, such an early
jump-out effect saves considerable computation time.

Lee and Chen [25] extended the idea of [26], using not
only the highest and the lowest levels, but all the levels of
the pyramids. First, the error SRD is also
computed as a reference value. Then, once we begin to
match and for some depicted above, not
only is SRD computed, but a set of increasingly
larger lower bounds SRD , SRD ,
SRD are also computed in turn if necessary.
Once some SRD is larger
than the current reference value, we have no need to compute
all the other SRD for , and the
matching process between and can be terminated.
We can then jump to another matching process betweenand
the next image block of in the row-major order. This
method can be treated as using a depth-first search procedure
in visiting the search tree as shown in Fig. 3, and pruning the
search branches once the computed error associated with the
tree vertex is larger than the current reference value.

Recently, Chenet al. [7] extended the above method by
exploiting the uniform cost search [34] in the tree instead of the
depth-first search so that the search order is not fixed. First, the
smallest value among all the errors of the highest level is found as

SRD the elements of

where SRD SRD
SRD is referred to as theactive list,and

is referred to as the temporary winner. Then, the error of
the temporary winner in its next lower layer SRD
is computed. Next, the active list is updated by replacing
SRD with SRD :

SRD SRD

where is the set difference

Then, the new minimal value among the elements in the new
active list can be found as

SRD the elements of
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where is now either 0 or 1, and a new temporary winner
is obtained. Repeat the above procedure of alternately

updating the active list and finding the minimal value of the
elements contained in it. Then, the minimal matching error can
be found when reaches the lowest level. In general,
this method can prune more unnecessary branches because the
uniform cost search strategy is used.

Once the -pyramids have been constructed for the template
and image blocks using the method introduced in this paper,
it can be incorporated into any of the search strategies intro-
duced above in order to speed up the process of robust template
matching. In this work, the search strategy developed in [7] is
adopted because the experimental results in [7] show that better
speedup performance can be obtained compared with other ap-
proaches for nonrobust template matching.

B. Main Algorithm

The algorithm of our approach using the uniform cost search
for fast robust template matching is given in the following.

Step 1) Initially, set SRD , SRD
SRD .

Step 2) Find such that SRD is the min-
imum among all the elements in.

Step 3) .
Step 4) While

4.1) Compute SRD .
4.2) SRD SRD
4.3) Find such that SRD is the
minimum among all the elements in.
4.4) .

end While
Step 5) Output .

The above algorithm applies the “uniform cost search”
[34] to the tree illustrated in Fig. 3, which guarantees to
find the global minimum solution as demonstrated in the
following. When the algorithm goes to step 5, we know that
SRD is the minimum among all the elements
contained in . In addition, from Theorem 1, the matching
error computed for any two images on the levelis not smaller
than that for the other levels. Assume that SRD

, SRD SRD
. Then, SRD SRD

SRD for all SRD , or
equivalently, for all , which shows that
SRD is the global minimal on the level.

In fact, instead of from the highest to the lowest levels (i.e.,
from level 0 to level ), the search process can also be performed
from an arbitrary middle level, say , to the
lowest level . This can simply be achieved by replacing each
SRD with SRD in the Steps 1 and 2 of the main algorithm
and further modifying Step 3 to be . However, in our
experience, it is better to select the starting level based on the
ratio of outliers. In particular, we find that starting from a middle
level (instead of the highest level) usually makes the process

of robust template matching more efficient in practice. This is
because the outliers contained in the template are included in the
highest level image, although they may not be included in some
middle level images. Some experimental results for the speedup
versus different combinations of the starting levels and outlier
ratios are shown in Section IV.

In practice, some standard methods [30], [38], [40] can be
used to estimate an appropriate value for the parameterin
robust estimation. For example, the “median absolute deviation”
scale estimate, which is related to the median of the absolute
values of the residuals, is given by

(15)

where the constant 1.4826 is a finite sample correction factor,
is the size of the data set,is the dimension of the parameter
vector, and is the residual error.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of three different exper-
iments, including signal matching, face template matching, and
motion estimation.

A. Signal Matching

In this experiment, we perform a simulation of searching a
particular 1-D pattern along a 8192-point input signal, ranging
from 0 to 255, which is synthesized using a linear regression
model. Four such input signals are used for this experiment,
and one of them is shown in Fig. 4(a). We first randomly ex-
tract a 512-point partial segment, which is called thetrue iden-
tity signal,from an input signal. A 512-point test signal can then
be generated by adding both Gaussian noise and some outliers
to the true identity signal, as shown in Fig. 4(b)–(d), respec-
tively. The outlier ratio (i.e., the ratio of the number of outlier
points to the length of a test signal, 512) varies from 0 to 0.15.
Then, the test signal is used as a template and we try to find its
matching segment in the input signal from which the test signal
is extracted. In fact, this experiment simulates stereo matching
(i.e., matching along a scan-line or epi-polar line) in computer
vision [20]. Here, the SRD is used as the matching criterion.
For each input signal and each outlier ratio, we first randomly
generate 30 test signals and then find their matching segment
in the input signal. The simple-truncation function (10) is used
in this experiment as a robust error measure to suppress the ef-
fects of outliers. If the matching segment is not equal to its true
identity signal, a miss occurs. Otherwise, a hit occurs. In this ex-
periment, high average hit ratios ranging from 99.7% to 99.8%
are achieved for all outlier ratios tested, which indicates that the
M-estimator is very useful for suppressing the outlier effects.
In the following, we focus on the main issue of this paper, the
speedup of robust template matching, by comparing the efficien-
cies of our method with respect to those of the FS method.

First, we investigate the advantage of our method for the re-
duction of the major operations involved in the SRD computa-
tions. We define arobust operationto be the computation of the
robust error measure , and computing times is
therefore referred to as thatrobust operations are performed.
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Fig. 4. (a) One of the synthetic input signals. (b)–(d) Process of generating a
test signal from an input signal.

The robust operation is generally the most critical part for ob-
taining an SRD. The efficiency improvement with our method
is evaluated by comparing the following two ratios: 1) the ratio
of robust operations involved in our method to that in the FS
method, and 2) the ratio of the execution time with our method
to that with the FS method. These two ratios are referred to as
the operation count ratioand thetime consumption ratio,re-
spectively. Evaluation of the efficiency improvement based on
the operation count ratios is machine independent, but some ad-
ditional computational overheads such as the construction of the
-pyramids and the switching among the search braches can not

be reflected by the operation count ratios. On the other hand,
evaluation based on the time consumption ratios includes all the
overheads, but is machine dependent. In this experiment, both
the operation count ratios and time consumption ratios are com-
puted for evaluations and comparisons. In the setting of this ex-
periment, there are a total of ten levels (level 0 to level 9) in the
pyramid because the length of the test signal (512) is equal to 2.
Remember that our algorithm can start from any of the middle
levels, as described in Section IV. Therefore, we also compare
the speedup effect when the matching processes start from dif-
ferent initial levels in this experiment.

Since the simple truncation function is minimal 1-feasible,
the 1-pyramid is constructed for robust template matching with
our method. The operation count ratios using 1-pyramid are
shown in Fig. 5(a). From Fig. 5(a), the operation count ratio
varies overall from 0.1 to 0.48 when the outlier ratio varies
from 0 to 0.15 if the middle value of the operation count ratios
serves as a representative for each outlier ratio. This shows
that our method can successively reduce the number of the
major operations required for robust template matching, and
the smaller the outlier ratio, the more reductions are achieved.
An interesting phenomenon is that the best starting level (i.e.,
the starting level associated with the smallest operation count
ratio) for each outlier ratio is a middle level. For example,
when the outlier ratio lies in [0 0.02], the best starting level is
5, whereas when the outlier ratios are increased to be within
[0.04 0.08] and [0.1 0.15], the associated best starting levels
become 6 and 7, respectively. The reason for this is that
the outliers are easily to be included in the accumulation
process for building a high level image in the pyramid, and
thus, almost all the lower bounds with respect to a high level

(a)

(b)

Fig. 5. Comparisons between our method and the FS method for robust
template matching in the signal matching experiment. Note that simple
truncation and the 1-pyramid are used in this experiment. (a) Operation count
ratio versus outlier ratio. (b) Time consumption ratio versus outlier ratio.

image are required to be computed in the search process. On
the other hand, when starting from a low level image, the
lower bounds may not be tight enough to prune the search
branches. Another interesting phenomenon is that the best
starting level becomes lower as the outlier ratio increases.

Fig. 5(b) shows the time-consumption ratios taking into ac-
count not only the major operations but all the computational
overheads such as pyramid constructions and controlling pro-
cesses of search. The test was performed on a PC with the Vi-
sual C++ language, and the middle levels, 5, 6, 7, and 8 were
used as the starting levels, respectively. From Fig. 5(b), the time
consumption ratio varies overall from 0.4 to 0.6 when the outlier
ratio varies from 0 to 0.15, indicating that our method can also
increase the efficiency of robust template matching in practice.
Similarly, the best starting level becomes lower when the out-
lier ratio increases, and the best time-consumption ratio varies
from 0.2 to 0.4. Hence, ifpriori knowledge about the outlier
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TABLE I
COMPARISONS OFAVERAGE TIME-CONSUMPTIONRATIO (tc) AND AVERAGE

OPERATION COUNT RATIOS (oc) OF OUR METHOD WHEN 1-PYRAMID ,
2-PYRAMID , AND 1-PYRAMID ARE USED

ratio of the template matching problem to be solved is given in
advance, this can serve as a guideline to choose the best (or a
better) starting level.

Notice that the simple truncation is minimal 1-feasible, and it
is therefore also-feasible for all . In the following,
different -pyramids (1-pyramid, 2-pyramid, and -pyramid)
are, respectively, constructed to compare their efficiencies when
they are incorporated into our method. Their average operation
count and time consumption ratios are summarized in Table I,
showing that the speedup performance degrades when either the
2-pyramid or the -pyramid is used. This matches our claim
above that the closer isto its minimal feasible value, the better
speedup is achieved when the-pyramid is used.

A summary of the above experimental results is given in
what follows. First, the hit ratio is high when the technique
of robust template matching is used, confirming that the SRD
can suppress the affection of outliers. Second, from both the
operation count and the time consumption ratios, our method
is more efficient than the FS method. The amount of speedup
achieved depends on many issues such as outlier ratios, starting
levels, and the -pyramid being used. In practice, the starting
level should be selected according to the outlier ratio. If an
estimation of the outlier is available in advance, the best
starting level can be chosen according to the corresponding
simulation results. As for which-pyramid is suitable to be
adopted in our method for a given robust error measure, it is
suggested that the closer is to its minimal feasible value,
the more speedup is achieved.

B. Face Template Matching

We perform face template matching experiments in a
face-only database [27], which can be used for the application
of finding a particular person in a database. We use 1000
images of 100 persons, where each person has ten images. Each
image size is normalized to 64 64, as shown in Fig. 6(a). For
each person, we randomly select one of his (or her) images for
testing, with remaining nine for training. All test images are
contaminated by pepper-and-salt noise that is used as outliers,
with the outlier ratios varying from 0 to 0.15. Fig. 6(b) shows

(a) (b)

Fig. 6. (a) Part of a face-only database used in this paper, showing 100 images
from ten people with ten images for each person. (b) Contaminated images of
a person with different outlier ratios. From left to right and top to bottom, the
outlier ratios are set from 0 to 0.1.

the contaminated images of a person with different outlier
ratios. Such an experimental setup is similar to that shown in
[24], but in our case, the templates are polluted with outliers.
Given a test image, we match it with the 900 images contained
in the database and find the most similar one with the least sum
of robust differences. The person with respect to the most sim-
ilar image is then served as the recognized one. The matching
experiment is performed for all of the 100 test images, and the
average recognition rate (i.e., the hit ratio) is recorded.

Four different robust estimators (Huber’s estimator, Tukey’s
estimator, Geman’s and McClure’s estimator, and the trimmed
mean M-estimator) are used in this experiment. Based on (15),
the parameter used in these estimators was determined by
performing several random matches to estimate in
advance. The associated 2-pyramids are constructed based on
these robust estimators to speed up the corresponding robust
template matching processes. First, we compare the recognition
performances of template matching, using the above four ro-
bust estimators to that using the SSD criterion. Figs. 7(a), 8(a),
9(a), and 10(a) show the comparison results for Huber’s esti-
mator, Tukey’s estimator, Geman’s, and McClure’s estimator
and the trimmed mean M-estimator, respectively. From these
figures, the hit ratios obtained using SRD are generally better
than those obtained using SSD, no matter which estimators are
used. In particular, the hit ratios obtained by using Tukey’s es-
timator and Geman and McClure’s estimators consistently per-
form better than those using SSD in all experiments, no matter
which outlier ratios are tested. This observation also confirms
that the M-estimator can deal with outliers better.

In the following, we present the speedup performances of our
method. In particular, we focus on the time consumption ratios
in this experiment. Since the pyramids of the images contained
in the database are constructed offline for this application, the
pyramid-construction time for the images contained the data-
base is not included in the time consumption ratio in this ex-
periment. However, note that the pyramid construction time of
the test image has remained to be included in the computation
of time consumption ratios. The time-consumption ratios of the
above four robust estimators are shown in Figs. 7(b), 8(b), 9(b),
and 10(b), respectively. From these figures, it can be seen that
our method can increase the efficiencies for the face template
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(a) (b)

Fig. 7. Comparisons between the SSD and SRD using Huber’s estimator. (a) Hit ratio versus outlier ratio. (b) Time consumption ratio versus outlier ratio.

(a) (b)

Fig. 8. Comparisons between the SSD and the SRD using Tukey’s estimator. (a) Hit ratio versus outlier ratio. (b) Time consumption ratio versus outlierratio.

(a) (b)

Fig. 9. Comparisons between the SSD and the SRD using Geman’s and McClure’s estimator. (a) Hit ratio versus outlier ratio. (b) Time consumption ratio versus
outlier ratio.

matching for different kinds of robust estimators. In essence,
the smaller is the outlier ratio, the better speedup is achieved.
In particular, the speed performances depend on what kind of
robust estimators are used. For example, the speedup perfor-
mances are better when Huber’s estimator, Tukey’s estimator,
and the trimmed mean M-estimator are used, than that when
Geman’s and McClure’s estimator is used. A possible reason
for this is that the lower bounds derived for the former estima-
tors are tighter than those for the latter.

C. Motion Estimation

In the lastexperiment,we useour method for robustmotiones-
timation in a sequence of images. Each image in the sequence is
segmentedintoasetofblocks,andwetry to find themotionvector
foreachblock. Assume thatone image in the sequence is polluted
with outliers, and the robust template matching technique is used
for motion estimation when outliers occur. The salesman image
sequence isusedasatestsequencewhereeachframeisofsize352
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(a) (b)

Fig. 10. Comparisons between the SSD and the SRD using the trimmed mean M-estimator. (a) Hit ratio versus outlier ratio. (b) Time consumption ratio versus
outlier ratio.

(a) (b)

Fig. 11. Example of a pair of two consecutive frames for motion estimation.
(a) Previous frame. (b) Current frame. Notice that the outlier ratio in (b) is 10%.

288. Two different block sizes (16 16 and 32 32) and their
correspondingsearchranges(abouttwiceaslargeastheblocksize
[ 16, 16] [ 16, 16] and [ 32, 32] [ 32, 32]) are tested in
this experiment. Given a pair of two consecutive frames, where
one is polluted as shown in Fig. 11, we use the simple truncation
(10) as the robust error measure for robust template matching to
find the motion vectors. The time-consumption ratios (that con-
siderall thecomputationaloverheads)and theoperationcount ra-
tios are shown in Fig. 12, respectively. The experimental results
show that our method can also improve the efficiency for robust
motion estimation.

V. DISCUSSION

From the experimental results, the efficiency improvement of
our method improves if the outlier ratio gets smaller. In fact,
the time-consumption ratio may exceed a value of one in our
experiment when the outlier ratio is too large, which means that
our method cannot speed up the matching process in this case.
However, since the estimation problem is itself more difficult to
solve accurately when the outlier ratio is too large, our method
can be treated as dealing with common cases of robust template
matching when M-estimators are used.

One possible means to allow large outlier ratios is to make
the lower bounds tighter. In fact, the set of ascending lower
bounds (accompanied with the minimal feasible value and the
-pyramid structure) derived in this paper is generally avail-

able for all nondecreasing robust error measures. Improvement

is thus possible by tightening the lower bounds for a particular
error measure, although the improved set of lower bounds may
not be able to be used for other error measures. To achieve this
goal, we can take advantage of the specific mathematical form
of each of the error measures and derive new theoretical bounds
and pyramid structures. Such an improvement remains an open
problem and to be investigated in the future.

Our main algorithm was presented to tackle the matching
problem with translation. When dealing with a problem with
rotation or scaling, a useful strategy is to generate a set of tem-
plates by rotating and scaling the pattern to be matched in ad-
vance [21], [37]. In this case, a-pyramid can be produced
for each template and our algorithm can then be applied for
speeding up the matching process with these templates. Such a
pretransforming/prestoring process is suitable for applications
where offline processing is allowed, such as the face-matching
task shown in the experimental results of this paper. Another
way for dealing with rotation (or illumination variation) is to
use rotationally invariant (or lighting-invariant) features such as
moment invariants [10]. By this way, the templates need to be
preprocessed to extract their invariant feature vectors. To our
best knowledge, however, there is no analysis about the sensi-
tivities of the invariant vectors to outliers, and thus it is possible
that they are not robust enough for matching with outliers. Nev-
ertheless, when the noise model is Gaussian and a common SSD
measure is applied for matching the feature vectors, our method
can also be used to speed up the matching process by building
the 2-pyramids associated with the invariant feature vectors in
advance.6 In addition, another widely used way for dealing with
illumination variation is to perform histogram equalization [18].

Another issue from the experimental results is that the best
starting level becomes lower as the outlier ratio gets smaller.
How to determine the best (or a better) starting level in anan-
alytic way when the outlier ratio and a particular robust error
measure are given also remains an open problem. In the mean-
time, the best starting level can be determined through a simula-
tion process by taking some training examples from the problem
to be solved.

6Note that extraction of moment invariants can itself be speeded up with some
other fast algorithms [9].



240 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

(a) (b)

(c) (d)

Fig. 12. (a) Operation count ratio versus outlier ratio when the block size is 16� 16. (b) Time-consumption ratio versus outlier ratio when the block size is 16�

16. (c) Operation count ratio versus outlier ratio when the block size is 32� 32. (d) Time-consumption ratio versus outlier ratio when the block size is 32� 32.

VI. CONCLUSIONS

In this paper, we have developed a systematic method that
can be used to speed up the process of robust template matching
when the error function is nondecreasing. We proposed the
-feasible related theory in Section II, which serves as a basis

for constructing a hierarchical structure, the-pyramid. This
pyramid can then be used to generate a set of ascending lower
bounds of the minimal matching error. As long as the error
function is nondecreasing, there exists amaking this function
-feasible. We have also shown that the smaller is, the more

efficient is the associated fast algorithm. In addition, many
commonly used nondecreasing robust estimators are minimal
2-feasible or minimal 1-feasible, as shown in Section II-E.

By exploiting the property that the computations of the lower
bounds generated with our method are more efficient than the
computation of the matching errors directly, some fast search
strategies can thus be used to speed up the matching process, as
shown in Section III-A. In this paper, the uniform cost search
strategy is adopted, and the experimental results show that our
method can successfully increase the matching efficiencies
when outliers exist.

A characteristic of our method is that it is easily generalized
as not finding only the site with the minimal matching error but
a series of sites having theminimal matching errors. To com-
pute the minimal matching errors, we do not need to perform

our algorithm times but continuously execute the best-search
procedure shown in Section III-B until leaf nodes have been
computed. Hence, the robust-nearest neighbor problem can be
solved in a unique procedure. Moreover, our method can also be
used for improving the matching efficiency if a suboptimal or
approximate solution is allowed to be generated instead of the
solution with the minimal matching error. This can be achieved
by using a middle level, instead of the lowest level, as being the
level containing the leaf nodes.

To our knowledge, this is the first approach proposed to speed
up the process of robust template matching. The method pro-
posed in this paper gives a generally useful scenario for solving
this type of problem. Our method also provides some signifi-
cant research directions that can be further studied, including
the investigations of tighter lower bounds, the generalizations
to include the error measures that are not nondecreasing, and
the analytical decisions for best starting levels.

APPENDIX A
PROOF OFPROPERTY2

Proof: If a robust error measure is -feasible, to prove
that is also -feasible for all is equivalent to
proving that satisfies the following inequality for all

:

(A.1)
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We first introduce three lemmas before proving (A.1) for all
. Assume that . In addition,

we denote , to be the unit ball with
respect to the norm.

Lemma 1: If and , then
and .

Proof: The proof is trivial.
Lemma 2: If and , then .

Proof: We prove this lemma by considering the following
two cases: and .

Case 1 ( ):

Case 2 : This case is trivial.
From the above two cases, if, , and , then

.
Lemma 3: If , , and , then ,

.
Proof: See [17, p. 282].

From Lemmas 2 and 3, we know that if, and
, then , . Since is -feasible and

for all , then (A.1) holds for all
. Hence, is also -feasible for all .

APPENDIX B
PROOF OFTHEOREM 1

Proof: Given a robust error measure that is -feasible
for all

SRD

SRD

where the first two inequalities are based on constraint (4), and
the last inequality is derived from both the triangle inequality7

and the fact that is nondecreasing.

APPENDIX C
PROOF OFPROPERTY4

Assume that belongs to . To prove that is min-
imal 2-feasible is equivalent to showing that is 2-feasible
but not 1-feasible. Since it is trivial that is both nonde-
creasing and not 1-feasible, we focus on the proof of the fact
that for all , .
Without loss of generality, assume that ,
and consider the following four cases:

• Case 1 :

(C.1)

• Case 2 :

(C.2)

Since

according to the arithmetic–geometric inequality, (C.2)0.

7Given two vectorsa andb, ka� bk � jkak � kbk j.
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• Case 3 :

(C.3)

Since

and both two terms and are non-neg-
ative, (C.3) 0.

• Case 4 :

(C.4)

Since

and both two terms and are non-
negative, then (C.4) 0.

The union of the above four cases shows that
for all , .
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