230 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

Fast Algorithm for Robust Template Matching
With M-Estimators

Jiun-Hung Chen, Chu-Song Chen, and Yong-Sheng Chen

Abstract—in this paper, we propose a fast algorithm for [11], [12], [14], [23], [31]-[33], [36]. The basic idea of the
speeding up the process of template matching that uses M-esti- M-estimator technique is to limit the influence of outliers in
mators for dealing with outliers. We propose a particular image e matching error. In principle, the effects of the outlier can be

hierarchy called the p-pyramid that can be exploited to generate - - .
a list of ascending lower bounds of the minimal matching errors suppressed with the M-estimator technique and therefore better

when a nondecreasing robust error measure is adopted. Then, €stimations are obtained.

the set of lower bounds can be used to prune the search of the A typical procedure for finding solutions with M-estimators
p-pyramid, and a fast algorithm is thereby developed in this s the iterative-reweight procedure [30]. In each iteration of this
paper. This fast algorithm ensures finding the global minimum of - 5 5cequre, a weighted least-square problem is solved and then
the robust template matching problem in which a nondecreasing - . ) . .
M-estimator serves as an error measure. Experimental results the weights are adjusted fqrthe ne_xt |terat|on for.further refine-
demonstrate the effectiveness of our method. ment. Hence, When applylng the Itel’atlve-reWEIght procedure
for robust template matching, in each iteration, another template
matching problem must be solved based on a weighted SSD
error measure, in addition to which, multiple iterations are also
necessary. Therefore, the computation of robust error measures
. INTRODUCTION is very time-consuming, although more accurate results can be

INDING a pattern or template in a signal is an importanqbtained by adopting a robust error measure instead of nonrobust
F problem for signal and image processing. This so-callépest In the past, many methods have been proposed to speed
template matchingan be applied to many applications suchthe matching process where the simple SAD or SSD criterion
as image and video coding, pattern recognition, and visu@|used. However, to our knowledge, no method has been ad-
tracking. It is usually assumed in template matching that tiéessed for speeding up the process of template matching where
signal segments of interests do not change their appearar@4ist error measures are used. In this paper, we propose a fast
very much. Hence, template matching based on the critefgthod for solving this problem. We will present this method by
such as thesum of absolute differendSAD) or thesum of assuming thatatwo-dimensio_nal (2-D) signal (e.g.,an im.age) is
squared differencéSSD) is commonly adopted. The popularitWSEd- I\.levertheless! our algorithm can be easily generalized for
of using template matching for applications of signal or imagdyd-dimensional signal € N'*.
processing is mainly due to its ease of implementation togethefOn the other hand, there are already many methods for

with the many fast algorithms that can be used to speed up #Reeding up the process of template matching where nonrobust
matching process for various applications [1], [7], [8], [13]€"TOr measures are used. These methods can be divided into

[15], [22], [25], [26], [28], [29], [35], [39]. two classes. The methods in the first class only find a local

In a cluttered environment, however, some outliers su®pinimum while the ones in the second class definitely find
as impulse noises or partial occlusions may occur durif@® global minimum. In principle, almost all the methods in
the matching processes. In this situation, the SAD and Sdff$ first class formulate the template maiching as a search
criteria are no longer suitable for template matching becaud@blem and find a solution by adopting the greedy strategy.
they treat the outliers and inliers evenly when calculating tffex@mples include the three-step search algorithm [22], the
error measures. One possible remedy for this weakness igfgdient-descent based method [29] and others [1], 8], [13],
use a robust criterion instead of SAD or SSD. For this, tHé5], [28], [35], [39]. The genetic algorithm-based methods [8],
M-estimator technique [2], [16], [30], [38] is one of the most28] or the simulated annealing-based method [35] may have
popular methods to solve the problem of robust parameﬁi?'ances of finding the global minimum if their parameters are

estimation and has been applied in many studies [3]_[§ﬁt appropriately to the given problems, but can not ensure that
it will always be found. In essence, since these methods do
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unnecessary searching branches. The successive eliminatereF, ., is an/N x N image block with its upper-left point

algorithm proposed by Li and Salari [26] eliminates impossibleeing (u, v) in the imageF’, and the number of search sites is

sites successively during the searching process by using loW& + 1) x (2W + 1).

bounds derived from the triangle inequality. Their method can

guarantee obtaining the global minimum, as does the full seaféh P-Feasible

(FS) method, and it is more efficient. In [25], Lee and Chen ex- To simplify the notation of the robust error measures, we de-

tended thisidea by using a block-sum-pyramid structure, wherfirge

set of ascending lower bounds can be derived and serve as useful

guidelinesto prunethe search process. However, the performance 7o () = p(z, o) ~ forallz € RT U {0} 3)

?fthew me.thod.depenQS on the search order. Recently,ﬂ}aaqzn and abbreviate, (z) to ber(z) for the cases without ambiguity

urther refined it by using a winner-update strategy [7], which IS :

not only irrelevant to the search order but is also faster. n the.fo_l!owmg. oo .
Similar to those methods that ensure finding the global min- Def|'n|t|o.n.1 [p—.FgasmIe]. A robust.error measgr'e(-) IS

. . . ~feasible if it satisfies both the following two conditions.

imum but using nonrobust error measures introduced above ﬂ], ) i ) o

[25], [26], the method developed in this paper also adopts an in-1) 7(-) is nondecreasing, i.ea;, > a; implies r(a;) >

equality in a particular image hierarchy to speed up the template-  7(a2) for allay, a; € R* U {0}.

matching process with robust error measures. In essence, a s& FOr each pair of nonnegative valugs,, a»), the fol-

of ascending lower bounds of the minimal matching errorcanbe ~ 10Wing inequality with respect to the,-norm holds:

generated with our method as long as the robust error measure i§ a1, as € RT U {0}, 7(a1) + 7(a2) > 7(||lall,) (4)

nondecreasing. This set of lower bounds can then serve as useful \yherea = [0, a,]7 is a 2-D vector, andlal|, = (Ja1 [P+

guidelines for pruning the redundant branches of the searching |,,»)1/» s the L,-norm ofa, p € [1 oo]. In particular,

process. In addition, our method can ensure finding the global ||| . = max(|ay|, |as]).

minimum, as the FS method does for robust template matching. g, e properties associated with théeasible defined above
This paper is organized as follows. Section Il introduces the. investigated in the following.

image hierarchy used in this work and the associated ascending,roperty 1: Every nondecreasing(-) is cc-feasible.

lower bpund |I§t. Section 'III presents the search str.ategles and Proof: This property can be easily derived according to

our main algorithm. Section IV shows some experimental e definitions.

sults. Finally, some discussion and conclusions are givenin SeCProperty 2: If a robust error measure(-)

! i is p-feasible, that
tions V and VI, respectively.

implies it is alsog-feasible for ally € [p o).
Proof. See Appendix A.

Il. PROBLEM FORMULATION, P-PYRAMID, If a p-feasible robust error measure is used as the matching
AND FUNDAMENTAL INEQUALITY criterion, an ascending lower bound list of the matching errors
A. Problem Formulation can be obtained by constructing an image pyramid with respect

. . . . to theL,-norm, as described in the following.
We denotel(i, j) as the intensity at positiofi, j) in an P g

imagel. Assume thaf; and/; areN x N images. The sum ¢ p-pyramid and Fundamental Inequality
of robust differences (SRD) between two imadesand I, is

. on + H
defined as follows: Assume thatV = 2™ (n € NT). For eachV x N image

blockI = F, , (-W < u,v < W) that is contained in
SRD, , (I, I,) = Z p(|11 (i, §) — Ix(i, §)|, o) (1) the imageF’, a p-pyramid of I is defined as a set of images
0<i, j<N—1 {[0’1), ey Im—l,p7 Im,,p7 ey [n,p}, where/™? = [ and
the size off™ 7 is2™ x 2™ (0 < m < n,m € Nt U {0}).
wherep(:, -): R* U {0} x BT — R* U {0} is a robust error 1m.» js referred to as the image on the lexebf thep-pyramid.
measure (or a robust loss function) [2], [16], [38], ands @ | evel 0 and levet are called the highest and the lowest levels of
parameter controlling the shapef, -).2 Typically, the robust the -pyramid, respectively. Given an imag&-? on the level

error measurey(-, -), is selected according to how it reduces thg, the imagel™1» on the levelm — 1 is constructed using
influences of outliers. Given an image templétevhose size is the following equation:

N x N and an imagé” whose size i$2W + N) x (2W + N),

the robust template matching problem is defined as finding the m=hr(, j) = HIZTHP ®)
position @*, v*) with the minimum SRD among all possiblewhere
search positions in the imagde I;’?}P = [I™P(2i,25) I™P(2,2j+1) I™P(2i+1,2§)
(u',v*) = arg_wmin_ SRD, ¢ (I, Fu,v) I™P(2i+1,2j+1)]" ando < i, j <2m ' —1.
-7 Accordingly, the pyramids from level to level O can be con-
A A ew > structed iteratively. Totally2W + 1) x (2W + 1) p-pyramids

0<i, jSN—1 are constructed from the image Fig. 1 shows an illustration of

p(|I(is §) = Flit+u, j+v)[,0)  (2)  the pyramids constructed from a one—dimensional (1-D) signal.
2Some common robust error measures will be introduced in Section II-E. in FOllowing the notions shown in (1), we define the SRD
particular, ifp(«, o) = «* (or x) for all 7, then (1) becomes SSD (or SAD). betweenl; and I on the levelm by SROF(Iy, I) =
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SRD, , (177, I;*?) for m = 0,1, ..., n. Furthermore,  Premid! Pymmid2 Pyramid3 Pyamid4 Pyramid3 ...
we denote SRP(I1, I;) = SRD, ,(I1, I») if a fixed o is
considered [where(-) is defined in (3)]. Then, it can be shown
that the following fundamental inequality holds for the imag
hierarchy defined above. .
Theorem 1: Given a robust error measur¢-) that isp-fea- I'C
sible, then for alll1, I,

SRD, (177, I3°7)
>SRD, (4717, 3 7"7) > - > sRO, (107, 197). PO

u u+l u+2 ut3 utd u+s u+6 u+7
(6) Fig. 1. p-pyramid constructed from a 1-D signal where each elementin higher
Proof: See Appendix B. levels is composed of its two son elements. piygyramids are depicted in solid
. . . or dashed lines. The three black nodes are the ones that are shared between two
Hence, given a image template and an image block o .-migs.

Fu. . (W < u,v < W), aset of ascending lower bounds,

SRD:"™(Fy, v, 1), m = 0, 1,...,n can be obtained ac- ,nints fromitslower neighbor level, as shownin (5). We refer toit

cordln.g to Theorem 1. . ) .asthe 2-2 downsamplinginthis case. Ingeneral, we canusae
Notice that the number of robust differences involved iBownsampling instead of 2—2 downsampling foralln € N+

the computayonmof ew"j‘Ch lower bound SRQ(FU,Z? 1) and the associategpyramid can be reconstructed in a similar

(0 <'m < n)is2™ x 2™, which is smaller thaa™ x 2%, the \\ay as well. Similarly;n downsampling can be used for a 1-D

number of robust differences required forSRX(Fu, ., It).  signal andn—n—k downsampling can be used for a three—dimen-
Therefore, the lower bounds can be computed more efﬂmenQ%nm (3-D) signal, and so on, wheres N

than the sum of robust differences with respect to the original

image. In particular, the higher are the levels in a pyramid, ”f_f?, Characterization of°-Feasible Robust Error Measures
faster are the computations of the associated lower bounds.

In fact, the ratio of the required number of the computations !N Section11-C, we have shown that ipafeasible robust error

of the robust differences on the level to that required for measure is selected for template matching, then we can con-
the leveln is 1/4"=™. Accordingly, even when all of the struct an ascending lower bound list associated with a particular

lower bounds are computed, the required time is less thigh2ge hierarchy: the-pyramid. Before introducing the search
Zn—l (1/47=™) < 1/3 of that required for the levet, the procedure that exploits the series of lower bounds in detail, we
origiﬁgl image block. Such an ascending lower bouﬁd list i’ﬂ;ustrate an important issue about whether such a lower-bound

the matching error can be used for speeding up the match ,,Fércan be constructed. In particular, the following problem is

process by incorporating it into a systematic search strategy,\'\é thy of being addressed.

introduced in Section III. “Given a robust error measure-), under what condi-
Remark 1 [Efficient Construction of the-Pyramids of an  tion can it be ensured that we can always find@[1 oo

Image]: A p-pyramid of each image block can be constructed Such thatr(-) is p-feasible?”

independently by using (5). However, it is very time-con- In this paper, we tackle this problem in consideration of the

suming if each pyramid is constructed independently. Blass of nondecreasing robust error measures. In fact, Property

fact, the p-pyramids can be constructed more efficiently byt has shown that if a robust error measure is nondecreasing, itis

considering the computation and storage redundancies betweerieasible. Therefore, when the-pyramids are built for both

neighboring image blocks when constructing and storing tiiee template and the image blocks, an ascending lower bound

p-pyramids. We introduce this method by using an example, kg$ can then be constructed according to Theorem 1. Hence, it

shown in Fig. 1. Considering nodé in the first level image ensures that every nondecreasing robust error measgHfeds

of Pyramid 1, as shown in Fig. 1, one can observe that nosiéle for some because = oo is a trivial solution? In addition

A is also contained in Pyramid 3. Similarly, node B (or C) i$0p = oo, let us further investigate the othewalues that allow

shared by Pyramids 2 and 4 (or Pyramids 3 and 5). Hencegifobust error measure to peeasible. Given a nondecreasing

each pyramid is constructed independently according to (Bppust error measure(-), letl’,, which is thefeasible seaisso-

the values of nodes A, B, and C will be computed twice: on¢#ated withr, be defined as the set of values allowing) to be

for each pyramid. In our work, to remove this redundangy-feasible:l’; = {p € [1 oo] | 7 is p-feasiblg. By considering

and to save computation and storage of thgyramids for all the maximal lower bound df -, the following property can be

the image blocks, the method illustrated in Fig. 1 is adoptederived.

That is, I', the image containing every node of the first-level Property 3: Given ar(-) that is nondecreasing, there exists

images of all the pyramids, is first constructed based/®n a discriminative valug’ such that () is p-feasible for allp €

Similarly, I° can be constructed based bh After 1Y andI' (p’ oo] and is notp-feasible for allp € [1 p’), wherep’ is the

are constructed, all the pyramids are then available, as showaximal lower bound of ., which is the feasible set associated

in Fig. 1. More details about efficient construction of pyramidwith .

can be found in [7]. 3 . :
R k 2 [Eree Samplinalinthe above description. apartic- How to construct a list of ascending lower bounds for the general class of
emark 2 [ pling]: Vi Iption, apartiC-rqpyst error measures that are not necessary to be nondecreasing remains an

ular level of thep-pyramid is built with thel,-norm of the 2< 2 open problem.
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Tukey's estimator py(...)

Proof: This property can be derived directly from Proper 2™ Hobers estimatorpy(.)

1000
ties 1 and 2. 1 - -
Hence, the feasible set associated with a robust error meas -
can be clearly specified with its discriminative valpleby fur- 25 0
ther identifying the following two conditions: isp’-feasible or %% % ;% = Nw o, W m
T is notp’-feasible. Ifr is p’-feasible, thel, = [p’ oo]; oth- | GemnandMccimes estimatorpy(.) ® Pl

erwise,I'; = (p’ oo]. After specifying the feasible set, anothere )
problem worth consideration is the following. j‘; © /
20

“Which p contained in the feasible set associated with a .2}

nondecreasing robust error measure is a better choice fo %% % ;% @ % &% g % E %
speeding up the process of robust template matching?” s Lorenzians sstimaorp..) 500 tnmmed mean estmlor g
We investigate the above problem from the implementati(‘: — g
pointofview. In practice, to simplifythe computation, itisbettertc 00
selecpasintegersinstead offloating-pointnumbers. Whisne- o5 1000
strictedtobeinganinteger, thefeasible setassociatedyijttan %~ s w0 , w = 2% % ®m W ™

then be uniquely specified By = {n € N* U {oo}|n > n/,
/ + I — ! ; . Fig. 2. Shapes of commonly used M-estimators with threshotd 70. (a)

n e N . J {O?}}’ Whe'.re” . [p'].In p?.rtICUIar’ we calt () The shape of, . (b) The shape of.. (c) The shape gf;. (d) The shape qf, .

to ber_m.mmaln -f_eaS|bIe|n this case, and’ is also referrc_ed t0 as (e) The shape of. (f) The shape ofr.

theminimal feasible valuef 7(-). Note that the smaller is, the

less is the computational overhead of fhgnormforn € N+,

Therefore. a better choice ois thereforer — 1 4 Property 5. Each member of Tukey’s estimatai,, is min-

imal 2-feasible.
Proof: See [6].
Another popular class of the robust error measure is the one
proposed by Geman and McClure [12] [see Fig. 2(c)] as shown
In the following, we will give a study of the minimal feasiblebelow, which was also adopted in [3], [4], [23], and [31]

E. Minimal Feasible Value of Commonly Used Robust Error
Measures

values for some commonly used robust error measures. An in- 9

teresting phenomenon shown below is that almost all commonly pa(r, o) = % 9)

used nondecreasing robust error measures are minimal 1-fea- reto

sible or minimal 2-feasible. Property 6: Each member of Geman and McClures’ estima-
Given a robust error measure(-, -), we define torsH, is minimal 2-feasible.

H, = {p(-,0)lc € R*}. The Huber's estimatop, (-, -) Proof: See [6].

[see Fig. 2(a)] has least squares behaviors for small residuesihe above three robust error measures are popular, and we
and the more robust least-absolute-values behavior for lafygve shown that all members of theif,s have the minimal

residues [14], [19], [31], [33]: feasible value as 2. In addition, the following three robust error
) measures are also investigated.
’"_7 ifr <o The robust functiom,(-, -) [36] [see Fig. 2(d)] uses simple
p1(r, o) = 2 (7) truncations to remove outliers, as shown in the following:
o (r — g) , otherwise. .
2 r, ifr<o
, I pa(r; o) = {0 otherwise (10)
Property 4: Each member of Huber’s estimatdis, is min- ’ '
imal 2-feasible. Another two robust error measures investigated here are Loren-
Proof: See Appendix C. tizian's estimatomp;(+, -) [19] [see Fig. 2(e)] and the trimmed
The Tukey's estimatom.(-, -) [see Fig. 2(b)] has zero mean M-estimatops(-, ) [31] [see Fig. 2(f)]:
weights for the large residues and thus improves the outlier L 5
rejection properties [4], [5], [11], [14], [19], [31] ps(r, o) = log <1 4 5 (ﬁ) > (11)
g
2 2\ 3 2
%[1—(1—(1)”7 ifr <o % ifr <o
g
pa(r, o) = (8) ps(r, o) = o2 (12)
2 .
%, otherwise. 9 otherwise.

Property 7: i) Each member ofi,,, is minimal 1-feasible. ii)
Each member ofi,, is minimal 2-feasible. iii) Each member

4Although the computation of thes-norm is also simple since only the abso-Of H,, is minimal 2-feasible.
lute values and theax(-, -) operations are involved, we find that in practice its Proof: See [6].

speedup performance is usually worse because the lower bounds associated wi . L .
anco-pyramid are usually nottight enough. An example is given in Section IV-A. F{Iotme that all the minimal feasible values of the Commonly

5In robust statistics, the weight is defined to be an value proportional to tl"@ed nondecr_easmg _rObUSt error measures investigated above
derivatives ofp. are 1 or 2, which are indeed small values.

The shape of the functiom (-, -) is shown in Fig. 2(b).
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In the following, we investigate an M-estimator that is na ______,____._-_-,—::-;‘:t?”"“ _________________
nondecreasing (the triweight M-estimajex(-, -)) [32]: Layer 0 I { """" 1 """ { 1 """" 1
r?, ifr<o

0, otherwise.

Layer n ¢ ¢ L4 . ' .

Since each member éf,, is not nondecreasing, the process c , . - .

. . v -W-W v ww
template matching can not be speeded up with our approac —
p7 1S selected to be the robust error measure. Search Tree

Finally, we investigate the nondecreasing error measure e . . : .
+. Fig. 3. Search strategies introduced in Section Ill-A. Li and Salari method
shown as follows, wherg € Nt:

[26] only searches the layer 0 and layerof the tree in a depth-first order.

Lee and Chen method [25] searches the entire tree in a depth-first order. Both

P8(7"7 0‘) =k, (14) methods prune the search branches by comparing the current reference value
with the error associated with the vertex. Cle¢al.method [7] uses the uniform

cost search [34] (the branch-and-bound strategy) for the entire tree to prune the

Property 8: Each member off ,, is minimal k-feasible. unnecessary search branches.

Proof. The proof is trivial.

Whenk = 1 (or k = 2), ps becomes the SAD .(O.r SSD) €Ol he above procedure can be repeated iteratively. Remember
measure. The SAD and SSD are therefore minimal 1-feasiple.. o computation complexity of SBB(F .., I,) is 1/47

and minimal 2-feasible, respectively. Hence, our method C8Pthat required for SRD(F,' ., I;), and thus, such an early

also be used _to speed up the template matching process Wfﬂ?ﬁ?p—out effect saves considerable computation time.
SAD or SSD is used as the error measure.

Lee and Chen [25] extended the idea of [26], using not
only the highest and the lowest levels, but all the levels of
Ill. SEARCH STRATEGY AND THE MAIN ALGORITHM the pyramids. First, the error SRDF_yw. _y, I,) is also

A. Search Strategy computed as a reference value Then, once we begin to

/ / i
Once an ascending lower bound list of the matching errorrgatCh I and F,:,, for some (u’, v') depicted above, not

. P . .
available for every search positign, v), many search strate—Only is SRLM?(Fw, v, 1) computed, but a setpof increasingly
ies [7], [25], [26] can be used to speed up the process of {grger lower bounds SR (Fur,or, 1), SROX? (B, 1),

9 ' ’ b b P §RD§’P(F“/,“/, I), ... are also computed in turn if necessary.

bust template matching in our work. A brief review of theS(E‘)henCe some SR (F, o, It) (i = 0,1,...,n) is larger

search strategies is given below. Without loss of generality, t
. . . an the current reference valugwe have no need to compute
p-pyramid serves as the pyramidal structure for describing the

h P R
methods. We refer tp-pyramid as pyramidin the following. ﬁjzttr;ii?\therrc?cigs)s g;ﬁ[' \‘r/\;’é’détgl;ogljm_ ! —E;ﬁbe’ :Le’rriri]r?attzz
Consider a templaté& and a set of image blocks, ,(—W < 9p v, v’ '

u, v < W) to be matched, wherd andF, , are both\V x N We can then jump to another matchlng process betvﬂeand_
’ the next image block of’, .- in the row-major order. This

Images. Assume that the associggegyramids have been Con'method can be treated as using a depth-first search procedure

vy — <wu,v< - . . .
structed forl, and all of thefy, ,, =W < u, v < W, respec in visiting the search tree as shown in Fig. 3, and pruning the

tively. . ;
In [26], only the highest level and the lowest level of the pyr search branches once the computed error associated with the

. . ree vertex is larger than the current reference value.
mids were used. The search order of the matching proces 9

Si
fixed and, without loss of generality, assume that the matchin ]S-Qecently, Cheret al. [7] extended the above method by

) . egplomng the uniform cost search [34] in the tree instead of the
process starts frond_y, _y and the search is performed in . . . .
. D . depth-first search so that the search order is not fixed. First, the
a row-major order. First, the error SRF_w, _w, I;) is

smallest value among all the errors of the highestlevel is found as
computed as a reference valueThen, assume thdw’, v’) g 9

is the next site to be visited in the matching order. We try to SRO"? (F,- 4+, I;) = min (the elements o)

find out whether the robust error measure SRB, ., I;)

is smaller thanr. We do not compute SRDF,: ., ;) WhereA = {SROY?(FLy,w, I), SROP?(Fw, w1, Ib),
directly. Instead, we first compute SRB(F, ., I,), which --- SRD}?(Fiw,w, 1)} is referred to as thective list, and

is the error associated with the highest levels of the pyramitis”. v*) isreferred to as the temporary winner. Then, the error of
of I, and F, .. If SRD?(F, ., I,) is larger than the thetemporarywinnerinits nextlower layer SRO(F,- -, I)
current reference value, we do not have to further computeis computed. Next, the active list is updated by replacing
SRD,(F, ., I;) because SRD?(F, ., I;) is a lower SRO (Fys e, It) With SRDL P (Fye o, 1o):

bound of SRR(Fy v, It). Therefore, garly in the process, we , AU {SRDL? (e ye, I)I\ {SROV? (Fye e, 1)} |

can jump out of the process of matchifgand F,- ,» and go TN _ T ’
on to match the next image block in the row-major order. On where®\” is the set difference

the other hand, if SRD? (¥, ., I,) is smaller than the current e the new minimal value among the elements in the new
reference_ val_ue«, we must compute_ SRDBF, ., I;) and active list can be found as

compare it withr. If SRD;(Fy ., I;) is smaller tharr, the ‘

current reference value, theris replaced by SRR Fy/ o1, I3). SRD;? (Fum;, It) = min (the elements o)
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where i is now either 0 or 1, and a new temporary winneof robust template matching more efficient in practice. This is

(u*, v*) is obtained. Repeat the above procedure of alternatélgcause the outliers contained in the template are included in the

updating the active list and finding the minimal value of thaighest level image, although they may not be included in some

elements contained in it. Then, the minimal matching error caniddle level images. Some experimental results for the speedup

be found whenu*, v*) reaches the lowest level. In generalyersus different combinations of the starting levels and outlier

this method can prune more unnecessary branches becausedtigs are shown in Section IV.

uniform cost search strategy is used. In practice, some standard methods [30], [38], [40] can be
Once thep-pyramids have been constructed for the templatesed to estimate an appropriate value for the parameiar

and image blocks using the method introduced in this papesbust estimation. For example, the “median absolute deviation”

it can be incorporated into any of the search strategies intswale estimate, which is related to the median of the absolute

duced above in order to speed up the process of robust templatieies of the residuals, is given by

matching. In this work, the search strategy developed in [7] is

adopted because the experimental results in [7] show that better & = 1.4826 [1 +

speedup performance can be obtained compared with other ap-

proaches for nonrobust template matching.

)

(n—p)

where the constant 1.4826 is a finite sample correction factor,
is the size of the data set,is the dimension of the parameter

} median |1 (15)

B. Main Algorithm vector, andr; is the residual error.
The algorithm of our approach using the uniform cost search
for fast robust template matching is given in the following. IV. EXPERIMENTAL RESULTS

In this section, we present the results of three different exper-
iments, including signal matching, face template matching, and

o B . o .
Step1) Initially, setA = {SRDV?(F_y. _yw, I;), SRD motion estimation.

(F_w, —w+1, It), ..., SRO?(Fyw.w, I)}.
Step 2) Findu*, v*) suchthat SRB?(F,- ,-, I;) is the min-

) . A. Signal Matchin
imum among all the elements . 9 g

Step 3)i « 0. In this experiment, we perform a simulation of searching a
Step 4) While (i # n) particular 1-D pattern along a 8192-point input signal, ranging
4.1) Compute SRD ' ?(F,- o, I). from 0 to 255, which is synthesized using a linear regression

4.2) A — AJSRD™¥(F,. oo, [)\{SRDZ(Fye e, I,)}. model. Four such input signals are used for this experiment,
4.3) Find (u*, v*, JT-) such that SRDP(Fu:.'v*- 1) is the @and one of them is shown in Fig. 4(a). We first randomly ex-

minimum among all the elements i tract a 512-point partial segment, which is called titue iden-

4.4) i — j. tity signal,from an input signal. A 512-point test signal can then
end While be generated by adding both Gaussian noise and some outliers
Step 5) Outputu*, v*). to the true identity signal, as shown in Fig. 4(b)—(d), respec-

tively. The outlier ratio (i.e., the ratio of the number of outlier
points to the length of a test signal, 512) varies from 0 to 0.15.

The above algorithm applies the “uniform cost searchlhen, the test signal is used as a template and we try to find its
[34] to the tree illustrated in Fig. 3, which guarantees tmatching segment in the input signal from which the test signal
find the global minimum solution as demonstrated in ths extracted. In fact, this experiment simulates stereo matching
following. When the algorithm goes to step 5, we know thdt.e., matching along a scan-line or epi-polar line) in computer
SRD?(Fy« +, It) is the minimum among all the elementsvision [20]. Here, the SRD is used as the matching criterion.
contained inA. In addition, from Theorem 1, the matchingFor each input signal and each outlier ratio, we first randomly
error computed for any two images on the lewé$ not smaller generate 30 test signals and then find their matching segment
than that for the other levels. Assume tiat= {SRO"F in the input signal. The simple-truncation function (10) is used
(Fawew, 1), SROY WP (Flyy g, Iy), ..., SROXY™P in this experiment as a robust error measure to suppress the ef-
(Fw,w, It)}. Then, SRDYP(F; ;, I;) > SRDO 7P (F; ;, I;) fects of outliers. If the matching segment is not equal to its true
> SROP(Fy« 4+, I;) for all SRO°P(F; ;, I;) € A, or identity signal, a miss occurs. Otherwise, a hit occurs. In this ex-
equivalently, for all-W < 4,5 < W, which shows that periment, high average hit ratios ranging from 99.7% to 99.8%
SRD?(F,« .+, I1) is the global minimal on the level. are achieved for all outlier ratios tested, which indicates that the

In fact, instead of from the highest to the lowest levels (i.eM-estimator is very useful for suppressing the outlier effects.
from level 0 to leveh), the search process can also be performéa the following, we focus on the main issue of this paper, the
from an arbitrary middle level, say. (0 < m < n), to the speedup of robusttemplate matching, by comparing the efficien-
lowest leveln. This can simply be achieved by replacing eacties of our method with respect to those of the FS method.
SRDY? with SRO™” in the Steps 1 and 2 of the main algorithm  First, we investigate the advantage of our method for the re-
and further modifying Step 3 to be = m. However, in our duction of the major operations involved in the SRD computa-
experience, it is better to select the starting level based on tiens. We define aobust operatiorio be the computation of the
ratio of outliers. In particular, we find that starting from a middleobust error measurg(-, -), and computing(-, -) n times is
level (instead of the highest level) usually makes the proceberefore referred to as thatrobust operations are performed.
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pmosmomsmmmeeeTTos a operation count ratio vs. outlier ratio (1-pyramid)
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| noises that serve as | g // f—“ —— start from level 8
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Fig. 4. (a) One of the synthetic input signals. (b)—(d) Process of generatin e ~< - start from level 1
i ! | - - start from level 0
test signal from an input signal.
0 . .
0 0.05 ) . 0.1 0.15
The robust operation is generally the most critical part for ob- outler atio
taining an SRD. The efficiency improvement with our method @
is evaluated by comparing the following two ratios: 1) the rati time consumption ratio vs. ouier ratio (1-pyramid)

of robust operations involved in our method to that in the F
method, and 2) the ratio of the execution time with our methc |
to that with the FS method. These two ratios are referred to
the operation count raticand thetime consumption ratiose- Iy ’ P SN
spectively. Evaluation of the efficiency improvement based ¢ /
the operation count ratios is machine independent, but some
ditional computational overheads such as the construction of1
p-pyramids and the switching among the search braches can

I
3
T
1

nsumption ratio

be reflected by the operation count ratios. On the other har 8 T
evaluation based on the time consumption ratios includes all t = Eoay N A s |
overheads, but is machine dependent. In this experiment, b //O M

the operation count ratios and time consumption ratios are co %7~ ~°" "~ ° i
puted for evaluations and comparisons. In the setting of thise | —sertomievas ||
periment, there are a total of ten levels (level O to level 9) intk o e e
pyramid because the length of the test signal (512) isequélto. ‘ , Lo statfromlevel S
Remember that our algorithm can start from any of the midd ~ ° 005 ierratio 01 015
levels, as described in Section IV. Therefore, we also compare ()

the speedup effect when the matching processes start from d|f-
ferent initial levels in this experiment. tem 'IS Comparisons between our method and the FS method for robust
plate matching in the signal matching experiment. Note that simple
Since the simple truncation function is minimal 1-feasiblesuncation and the 1-pyramid are used in this experiment. (a) Operation count
the 1-pyramid is constructed for robust template matching wiffio versus outlier ratio. (b) Time consumption ratio versus outlier ratio.
our method. The operation count ratios using 1-pyramid are
shown in Fig. 5(a). From Fig. 5(a), the operation count ratimage are required to be computed in the search process. On
varies overall from 0.1 to 0.48 when the outlier ratio variethe other hand, when starting from a low level image, the
from 0 to 0.15 if the middle value of the operation count ratidewer bounds may not be tight enough to prune the search
serves as a representative for each outlier ratio. This shdwanches. Another interesting phenomenon is that the best
that our method can successively reduce the number of #tarting level becomes lower as the outlier ratio increases.
major operations required for robust template matching, andFig. 5(b) shows the time-consumption ratios taking into ac-
the smaller the outlier ratio, the more reductions are achievedunt not only the major operations but all the computational
An interesting phenomenon is that the best starting level (i.eyerheads such as pyramid constructions and controlling pro-
the starting level associated with the smallest operation cowstsses of search. The test was performed on a PC with the Vi-
ratio) for each outlier ratio is a middle level. For examplesual C++ language, and the middle levels, 5, 6, 7, and 8 were
when the outlier ratio lies in [0 0.02], the best starting level igsed as the starting levels, respectively. From Fig. 5(b), the time
5, whereas when the outlier ratios are increased to be witliansumption ratio varies overall from 0.4 to 0.6 when the outlier
[0.04 0.08] and [0.1 0.15], the associated best starting levedgio varies from 0 to 0.15, indicating that our method can also
become 6 and 7, respectively. The reason for this is thatrease the efficiency of robust template matching in practice.
the outliers are easily to be included in the accumulatidgimilarly, the best starting level becomes lower when the out-
process for building a high level image in the pyramid, ankkr ratio increases, and the best time-consumption ratio varies
thus, almost all the lower bounds with respect to a high leviebm 0.2 to 0.4. Hence, ipriori knowledge about the outlier
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TABLE | g Ao R it ooy Ao ity iy
COMPARISONS OFAVERAGE TIME-CONSUMPTION RATIO (tc¢) AND AVERAGE 3 2
OPERATION COUNT RATIOS (0oc¢) OF OUR METHOD WHEN 1-PYRAMID, _:
2-PYRAMID, AND co-PYRAMID ARE USED e
1-pyramid 2-pyramid oo- pyramid =
oc tc oc tc oc tc -

start from level 8 0.5 | 0.755 0.5 0.716 | 0.506 | 0.696
start from level 7| 0.25 | 0.441 | 0.256 | 0.436 | 0.291 | 0.468
start from level 6 0.13 | 0.268 | 0.142 | 0.297 | 0.259 | 0474
start from level 5| 0.102 | 0.250 | 0.139 | 0.331 | 0.314 | 0.629
start from level 8| 0.5 | 0.735 | 0.501 0.715 | 0.525 | 0.692
start from level 7| 0.25 | 0.419 | 0.269 | 0.443 | 0.392 | 0.595
Start from level 6| 0.159 | 0.292 | 0.246 | 0.449 | 0.462 | 0.76
start from level 5| 0.22 | 0.458 | 0.309 | 0.619 | 0.536 | 0.951

start from level 8| 0.5 | 0.714 | 0.507 | 0.707 | 0.588 | 0.753 Fig. 6. (@) Part of a face-only database used in this paper, showing 100 images
start from level 7| 0.255 | 0.381 | 0.353 | 0.541 | 0.588 | 0.828 from ten people with ten images for each person. (b) Contaminated images of
start from lovel 6| 0.365 | 0.582 | 0.470 | 0.758 | 0.730 | 1.081 a person with different outlier ratios. From left to right and top to bottom, the

outlier ratios are set from 0 to 0.1.
Istart from level 5| 0.429 | 0.737 | 0.533 | 0.904 | 0.796 | 1.234

A

0~0.4

(b)

outlier ratio | outlier ratio | oy ier ratio
0.5~0.9

0.10~0.15

the contaminated images of a person with different outlier

ratio of the template matching problem to be solved is given [gi0S- Such an experimental setup is similar to that shown in

advance, this can serve as a guideline to choose the best (B4 Put in our case, the templates are polluted with outliers.
better) starting level. Given a test image, we match it with the 900 images contained

Notice that the simple truncation is minimal 1-feasible, and it the database and find the most similar one with the least sum
i therefore alsg-feasible for allp € [1 oc]. In the following, of robust differences. The person with respect to the most sim-

different p-pyramids (1-pyramid, 2-pyramid, ang-pyramid) ilar image is then served as the recognized one. The matching
are, respectively, constructed to compare their efficiencies wHefPeriment is performed for all of the 100 test images, and the
they are incorporated into our method. Their average operatfffrage recognition rate (i.e., the hit ratlo? is recorded. ,
count and time consumption ratios are summarized in Table I,FoUr different robust estimators (Huber's estimator, Tukey’s
showing that the speedup performance degrades when eithe@pimator, Geman's and McClure's estimator, and the trimmed

2-pyramid or theso-pyramid is used. This matches our clainfn€an M-estimator) are used in this experiment. Based on (15),

above that the closer jsto its minimal feasible value, the betterN® Parameter used in these estimators was determined by

speedup is achieved when thgyramid is used. performing several random matches to estimat@ian;|r;| in
A summary of the above experimental results is given pdvance. The agsociated 2-pyramids are constructed_ based on
what follows. First, the hit ratio is high when the techniquf€Se robust estimators to speed up the corresponding robust

of robust template matching is used, confirming that the SRBMPlate matching processes. First, we compare the recognition
can suppress the affection of outliers. Second, from both tRgfformances of template matching, using the above four ro-
operation count and the time consumption ratios, our methBgSt €stimators to that using the SSD criterion. Figs. 7(a), 8(a),
is more efficient than the FS method. The amount of speedd®): @nd 10(a) show the comparison results for Huber's esti-
achieved depends on many issues such as outlier ratios, stal‘ﬁ]rj’gor' Tukey's estimator, Geman's, and McClure’s estimator

levels, and the-pyramid being used. In practice, the startin the trimmed mean M-estimator, respectively. From these
level should be selected according to the outlier ratio. If dIgUres, the hit ratios obtained using SRD are generally better
estimation of the outlier is available in advance, the begla” those obtained using SSD, no matter which estimators are

starting level can be chosen according to the correspondifRfd- In particular, the hit ratios obtained by using Tukey's es-
simulation results. As for which-pyramid is suitable to be timator and Geman and McClure’s estimators consistently per-

adopted in our method for a given robust error measure, it/RM better than those using SSD in all experiments, no matter
suggested that the closeris to its minimal feasible value, which outlier r_atlos are tested. ThIS ob_servatlon also confirms
the more speedup is achieved. that the M-estl_mator can deal with outliers better.

In the following, we present the speedup performances of our
method. In particular, we focus on the time consumption ratios
in this experiment. Since the pyramids of the images contained

We perform face template matching experiments in ia the database are constructed offline for this application, the
face-only database [27], which can be used for the applicatippramid-construction time for the images contained the data-
of finding a particular person in a database. We use 100@se is not included in the time consumption ratio in this ex-
images of 100 persons, where each person has ten images. paciment. However, note that the pyramid construction time of
image size is normalized to 64 64, as shown in Fig. 6(a). For the test image has remained to be included in the computation
each person, we randomly select one of his (or her) images &ditime consumption ratios. The time-consumption ratios of the
testing, with remaining nine for training. All test images arabove four robust estimators are shown in Figs. 7(b), 8(b), 9(b),
contaminated by pepper-and-salt noise that is used as outliars] 10(b), respectively. From these figures, it can be seen that
with the outlier ratios varying from 0 to 0.15. Fig. 6(b) showsur method can increase the efficiencies for the face template

B. Face Template Matching
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hit ratio comparison between Huber's M-estimator and SSD time consumption ratio vs. outlier ratio with Huber's M-estimator
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Fig. 9. Comparisons between the SSD and the SRD using Geman'’s and McClure’s estimator. (a) Hit ratio versus outlier ratio. (b) Time consumgtsus ratio v
outlier ratio.

matching for different kinds of robust estimators. In essencg, Motion Estimation

the smaller is the outlier ratio, the better speedup is achieved.

In particular, the speed performances depend on what kind ofnthe lastexperiment, we use our method for robust motion es-
robust estimators are used. For example, the speedup peffionation in a sequence of images. Each image in the sequence is
mances are better when Huber’'s estimator, Tukey’s estimatsggmented intoasetofblocks, and wetryto find the motion vector
and the trimmed mean M-estimator are used, than that wheneach block. Assume that oneimageinthe sequenceis polluted
Geman’s and McClure’s estimator is used. A possible reasaith outliers, and the robust template matching technique is used
for this is that the lower bounds derived for the former estim#&sr motion estimation when outliers occur. The salesman image
tors are tighter than those for the latter. sequenceisusedasatestsequence where eachframeisof size 352
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hit ratio comparison between the trimmed mean M-estimator and SSD time consumption ratio vs. outlier ratio with the trimmed mean M-estimator
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Fig. 10. Comparisons between the SSD and the SRD using the trimmed mean M-estimator. (a) Hit ratio versus outlier ratio. (b) Time consumptsus ratio ver
outlier ratio.

is thus possible by tightening the lower bounds for a particular
error measure, although the improved set of lower bounds may
not be able to be used for other error measures. To achieve this
goal, we can take advantage of the specific mathematical form
of each of the error measures and derive new theoretical bounds
and pyramid structures. Such an improvement remains an open
problem and to be investigated in the future.

Our main algorithm was presented to tackle the matching
problem with translation. When dealing with a problem with
rotation or scaling, a useful strategy is to generate a set of tem-
lﬁ'lates by rotating and scaling the pattern to be matched in ad-
vance [21], [37]. In this case, p-pyramid can be produced
for each template and our algorithm can then be applied for
x 288. Two different block sizes (16 16 and 32« 32) and their gpeeding up the matching process with these templates. Such a
correspondingsearchranges (abouttwice aslarge asthe blockgtg@ransforming/prestoring process is suitable for applications
[—16, 16]x [-16, 16] and {-32, 32] x [-32, 32]) are tested in where offline processing is allowed, such as the face-matching
this experiment. Given a pair of two consecutive frames, wheggsk shown in the experimental results of this paper. Another
one s polluted as shown in Fig. 11, we use the simple truncatigRy for dealing with rotation (or illumination variation) is to
(10) as the robust error measure for robust template matchingt rotationally invariant (or lighting-invariant) features such as
find the motion vectors. The time-consumption ratios (that CORtoment invariants [10]. By this way, the templates need to be
sider allthe computational overheads) and the operation countigsprocessed to extract their invariant feature vectors. To our
tios are shown in Fig. 12, respectively. The experimental resuigst knowledge, however, there is no analysis about the sensi-
show that our method can also improve the efficiency for robugfities of the invariant vectors to outliers, and thus it is possible
motion estimation. that they are not robust enough for matching with outliers. Nev-

ertheless, when the noise model is Gaussian and a common SSD

V. DISCUSSION measure is applied for matching the feature vectors, our method

can also be used to speed up the matching process by building
e 2-pyramids associated with the invariant feature vectors in

our method improves if the outlier ratio gets smaller. In fac&dvancé.ln addition, another widely used way for dealing with

the tlme-consumpnon rat.|o may gxceed a value_ of one in Olimination variation is to perform histogram equalization [18].
experiment when the outlier ratio is too large, which means thatAnother issue from the experimental results is that the best
our method cannot speed up the matching process in this 38,

. S o o & ting level becomes lower as the outlier ratio gets smaller.
However, since the estimation problem is itself more difficult tﬁﬁg\' to determine the best (or a better) starting level irman

ig:'\]/eb :fr(:artaetggs\l\(/jgzrll';he Q%tllc%rrrzan:gnlf:;c;céslac:??(;t;)usrtrt];ih(% ic way when the outlier ratio and a particular robust error
Ing wi u Pidasure are given also remains an open problem. In the mean-

matching when M-estimators are used. . L time, the best starting level can be determined through a simula-
One possible means to allow large outlier ratios is to malf|

. s {on process by taking some training examples from the problem
the lower bounds tighter. In fact, the set of ascending low P y g g P P

. ] . . be solved.
bounds (accompanied with the minimal feasible value and the
p-pyramid structure) d?r'ved in this paper is generally ava'l'5Notethatextraction of moment invariants can itself be speeded up with some
able for all nondecreasing robust error measures. Improvemether fast algorithms [9].

m o :

Fig. 11. Example of a pair of two consecutive frames for motion estimatio

(a) Previous frame. (b) Current frame. Notice that the outlier ratio in (b) is 10

From the experimental results, the efficiency improvement
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operation count ratio vs. outlier ratio 16x16 time consumption ratio vs. outlier ratio 16x16
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Fig. 12. (a) Operation count ratio versus outlier ratio when the block sizexs 1. (b) Time-consumption ratio versus outlier ratio when the block size is 16
16. (c) Operation count ratio versus outlier ratio when the block size s 32. (d) Time-consumption ratio versus outlier ratio when the block size is 32.

VI. CONCLUSIONS our algorithmk times but continuously execute the best-search
procedure shown in Section IlI-B unfil leaf nodes have been

In this paper, we have developed a systematic method t@ainputed. Hence, the robusnearest neighbor problem can be
can be used to speed up the process of robust template matcBiged in a unique procedure. Moreover, our method can also be
when the error function is nondecreasing. We proposed tfiged for improving the matching efficiency if a suboptimal or
p-feasible related theory in Section Il, which serves as a bagigproximate solution is allowed to be generated instead of the
for constructing a hierarchical structure, thepyramid. This = solution with the minimal matching error. This can be achieved
pyramid can then be used to generate a set of ascending log{e(ising a middle level, instead of the lowest level, as being the
bounds of the minimal matching error. As long as the err@éyel containing the leaf nodes.
function is nondecreasing, there exisgs making this function 1o our knowledge, this is the first approach proposed to speed
p-feasible. We have also shown that the smaller,ithe more yp the process of robust template matching. The method pro-
efficient is the associated fast algorithm. In addition, maryosed in this paper gives a generally useful scenario for solving
commonly used nondecreasing robust estimators are minirgak type of problem. Our method also provides some signifi-
2-feasible or minimal 1-feasible, as shown in Section II-E.  cant research directions that can be further studied, including

By exploiting the property that the computations of the lowahe investigations of tighter lower bounds, the generalizations
bounds generated with our method are more efficient than tfeeinclude the error measures that are not nondecreasing, and
computation of the matching errors directly, some fast seargie analytical decisions for best starting levels.
strategies can thus be used to speed up the matching process, as
shown in Section IlI-A. In this paper, the uniform cost search APPENDIX A
strategy is adopted, and the experimental results show that our PROOF OFPROPERTY 2

method can successfully increase the matching efficienciesproof_ If a robust error measure(-) is p-feasible, to prove
: : p- ,

when outiiers exist. that 7(-) is alsog-feasible for ally € [p o] is equivalent to
A characteristic of our method is that it is easily generalized . . geas ¢ € Ip oofIs €q
roving thatr(-) satisfies the following inequality for al} €

as not finding only the site with the minimal matching error b
a series of sites having tikeminimal matching errors. To com-
pute thek minimal matching errors, we do not need to perform¥ ay, a; € R U {0}, 7(a1) + 7(a2) > 7(||a|lq)- (A.1)
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We first introduce three lemmas before proving (A.1) for all

q € [p oo]. Assume thak = [z; x»]" € R2. In addition,
we denoteB |, = {x | [|x[|la < 1}, to be the unit ball with
respect to thd., norm.
Lemma 1:If « € [1 oo] andx € By, thenl > |z1| > 0
andl > |zs| > 0.
Proof. The proof is trivial.

Lemma2:If a, 8 € [1 co] andf > «, thenB”_”a - BH-Hﬁ'

Proof: We prove this lemma by considering the following

two casesa < anda = f.
Case 1& < fB): Vx € By,
(Jz2]* + oo /™ < 1
= 0 < (Jog|* + |22|*) <11
=0< (|$1|/i + |Jz‘2|ﬂ)
= (lza|" 1| + |a2] "~ ||z2|*)
< (Jaa]* + |22]”) < 1
= 0< (lnn)? +|22) " <1
=>x€B),-

Case 2(a = 3): This case is trivial.

From the above two casesf 8 € [1 oc], andf > «, then
Bjj. S By,

Lemma 3:If a, 3 € [1 oo, andBy |,
Ixllo > [xlls.

Proof: See [17, p. 282].

From Lemmas 2 and 3, we know thatdaf 5 € [1 oo] and
a < 3, thenVx, ||x|lo > ||x||s. Sincer(-) is p-feasible and
IIx|l, > |Ix||; for all ¢ € [p o], then (A.1) holds for al €
[p oo]. Hencer(+) is alsog-feasible for ally € [p oo].

C B||_||ﬂ, thenV x,

APPENDIX B
PROOF OFTHEOREM 1

Proof: Given a robust error measuré€-) that is p-feasible
forallm € {0,1,..., n—1}

SRO™7(1h, 1)

- ¥ - (‘Im“ P(i, §) — ITLP(, 7)‘)
0<1i J<2777Jr1

_ (Ierl P (2i, 2j) — IWL+1 P(2L 2‘/)‘)
0<L,_]<2m

T(‘I’““’P@@ 27 +1) — I"TVP(24, 25 + 1 D
(‘Im“ P20+ 1, 25) — ITEP(26 + 1, 2§) D
yr (‘I{”“’P(zz 1,25+ 1)

IR P2i 41, 25 + 1)‘)}

> 3 {T((\II”“”’(%2.7')—15"“*(2@2j)\p

0<i, j<2m

py\1/p
| E i 24 1) - e 24+ 1)]) )

p
yr ((‘I{”“"”(% +1,25) - P20 4 1, 2j)‘
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v ‘1{"“7?(214 1,2 +1)

—IyTNP(2i 41,25 + 1)

p>1/p>}
> D,

p
{T ((\11““”’(2@ 2j) - 147 (2i, 29)
0<i, j<2m

p
|2, 25+ 1) — IP(2, 2 + 1)

p
R 1, 2)) - P20 1, 29)

7))

{ <‘(Im“”’(2b 2§)° + I7" 7 (26, 2 + 1)P

+ ’I{n+l’p(2i+ 1,2 +1)

—ITRP(2i 41,25 4+ 1)

>

0<4, j<2m

1/p

PP, 2+ IR+ 1, 2+ 1))

= (P (2, 247 + I (24, 25+ 1)
+ IR (25 4 1, 25)P

1/
FIPTLP(2i 41, 25 + 1)1’) pD }
= SRD"*(1y, I»)

where the first two inequalities are based on constraint (4), and
the last inequality is derived from both the triangle inequality
and the fact that(-) is nondecreasing.

APPENDIX C
PROOF OFPROPERTY4

Assume that(-) belongs toH,, . To prove thatr(-) is min-
imal 2-feasible is equivalent to showing that) is 2-feasible
but not 1-feasible. Since it is trivial that(-) is both nonde-
creasing and not 1-feasible, we focus on the proof of the fact
that7(a1) + 7(a2) > 7(||all2) for all a1, as € R U {0}.
Without loss of generality, assume thaK a» < a1 < ||a||2,
and consider the following four cases:

» Case 1o > ||alla > a1 > ag > 0):

pi(ar, o) + pi(az, o) = pi((lallz, o)

I S SR
2 2 2
e Case 2(||a||2 >0 >a1 > ay > 0):
pi(at, o) + pi(az, o) = pi(llall2, o)
3 a3 :
:?+?—0m+7- (C.2)

Since

(af 4 a3) + 0?

5 >oy/a?+a3 >0

according to the arithmetic—geometric inequality, (CG2).

“Given two vectora andb, ||a — b||, > |||a]l, — |[b]|,|-
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* Case J||a]l2 > a1 > 0 > az > 0):

pi(a1, o) + p1(az, o) — pi(|lall2, o)

2
:Jal—l—%—o\/a%—f—a%. (C.3)
a2\ 2 2
(oal—{—??) —<m/a%+a%>

4
a

2 — o2a?
4

2 a3
= a5 U(a1—0)+Z >0

Since

= Ualag +

and both two termsa; + (a3/2) ando/a? + a3 are non-neg-

ative, (C.3)>0.
* Case4|al]ls > a1 > a2 > o > 0):

pi(a1, o) + p1(az, o) — pi(|lall2, o)

:a<a1—|—a2— \Ja? +a3 — %) (C.4)
(0,1—|-a2— %)2— <\/a%+a§>

Since
2

o2
= 2a1a9 — 0ay — oas + T
o2
:al(ag—a)—i-az(al—a)-i-z >0

and both two terms; + a» — (0/2) and/a? + a2 are non-

negative, then (C.4»0.
The union of the above four cases shows #tat ) +7(a2) >
7(||lal|2) for all a1, az € RT U {0}.
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