New Calibration-free Approach for Augmented Reality

Based on Parameterized Cuboid Structure

Chu-Song Chen, Chi-Kuo Yu, Yi-Ping Hung
Institute of Information Science, Academia Sinica, Nankang 115, Taipei, Taiwan

song(@iis.sinica.edu.tw

Abstract

A new method called PCS (parameterized cuboid
structure) is presented for augmented reality. In
particular, our method can insert animated virtual objects
into a static scene, with geometric consistency, and also
allow the user to interactively position and rotate the
virtual objects with respect to a world coordinate system
in a physically (or intuitively) meaning way. Such
capability can not be achieved by using the existing
calibration-free methods.  To achieve this goal, we
develop a new method for estimating camera parameters,
which uses a cuboid structure (or more generally, a
parallelepiped structure) as the reference object. The
reference cuboid structure can be either explicit or
implicit — implicit in the sense that the cuboid structure
can be inferred by human perception even though it does
not appear explicitly in the image. This method can
determine the sizes of the cuboid (or parallelepiped) as
well as the intrinsic and extrinsic parameters of the
camera. To insertt a virtual object into a single un-
calibrated image, some human interaction is unavoidable.
We have implemented an AR authoring system based on
the proposed PCS method which provides an auxiliary
line and a refinement criterion to assist human
interaction. Experimental results have demonstrated that
our method can successfully insert virtual objects into
both static and dynamic scenes with highly convincing
geometric consistency.

1. Introduction

A fundamental problem in augmented reality (AR) is to
insert virtual objects into real images. One of the major
issues in AR is the geometric consistency !. Existing
vision-based approaches for solving the AR problems can
be classified into two types. The first type assumes that
some 3D calibration points can be observed in the image
sequence [1][8] or that the intrinsic camera parameters are

1 Another issue is the photometric consistency, but which is not
the main concern of this paper.

pre-calibrated and a known 3D model 2 of the scene is
given in advance [14]. The major research issues
remained in this type of approaches are tracking and re-
computing the pose of camera.  Another type of
approaches assumes that no prior 3D information is
available [4][9][10][12], and hence is more difficult.
Since approaches of this type do not require the
calibration of camera parameters (either intrinsic or
extrinsic parameters) in advance using a known 3D
calibration object, they are referred to as the calibration-
free approaches in this paper. To solve this type of
problems, one way is to compute the camera parameters
and 3D structures in the Euclidean space directly from the
information contained in the image sequences. In [10],
Ong et al. developed an AR approach by first
reconstructing some unorganized 3D points using the
structure-from-motion method proposed by Tomasi and
Kanade [16] via the assumption that the camera model is
orthographic.  In [4], Faugeras showed some AR
examples realized by using the self-calibration technique
for computing the camera parameters. Another way is to
perform the AR task in the affine or projective space
rather than in the Euclidean space, which is referred to as
the calibration-free augmentation in other spaces
(CFAOS) in this paper [9][12]. However, in the CFAOS
approaches, the virtual objects to be inserted have to be
manually drawn in the both of the first two frames of the
image sequence.

In this paper, we focus on the AR problems without using
prior 3D information such as calibration points or known
3D models. To solve this type of problems, almost all the
existing approaches require to select some reference
points on the real objects appeared in the image sequences
for computing the relative poses that is required for
rendering virtual objects. However, a common drawback
of these approaches is that they can not be applied to
inserting moving virtual objects relative to the static real

2 In this paper, a known 3D model refers to a wire-frame or
curved model whose shape information (including size) is
known.
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objects or static background (“static” relative to the
camera). For example, consider an image sequence
containing a moving truck shown in Fig. 7. This sequence
was captured with a fixed camera and the truck is the only
moving real object. We may want to insert a virtual sedan
on top of the truck with consistent motion (referred to as
problem A) and insert another virtual convertible which
moves to the right relative to the background (referred to
as the problem B), as shown in Fig. 7. To perform the
above AR task, we can treat the truck as a moving
reference object and the ground to be a static reference
object.  Existing calibration-free methods can solve
problem A but can not solve problem B. It is because
that, with those methods, ecither the camera parameters
have to be estimated from the disparities between two or
more images [4][10], or the animated virtual object has to
be manually-drawn in a static scene frame by frame
carefully [9][12]. However, in the above example, the
ground is static in all images of the sequence, and hence
no disparity between images is available for computing
the pose of the ground plane with respect to the camera.

The above drawback of the calibration-free approaches
constrains their application to the AR problem 3. In fact,
it is still hard and tedious to inserting animated or moving
3D virtual object into a single 2D image (or panorama)
since a user may have to carefully manipulate the virtual
object frame by frame in order to generate convincing
results — convincing in the sense that the inserted object
is visually consistent with the real scene in terms of
geometric relation. To overcome this difficulty, we
develop an appropriate way to insert an animated virtual
object into a static scene. In particular, the essential issue
is to develop an effective method for inserting virtual
objects into one single image.

In this paper, we propose a new technique for augmented
reality based on a parameterized cuboid structure (PCS).
The proposed method can be used for inserting virtual
objects not only in one single image but also in a sequence
of images which contains static and/or dynamic scenes.
Our main idea for solving this problem is that, if the user
can identify a cuboid structure in the scene, then the
computer can insert arbitrary virtual objects in the scene
automatically and allows the user to interactively control
the motion of the virtual objects relative to the cuboid
coordinate system, in an intuitively simple and user-
friendly way.

This paper is organized as follows: Section 2 introduces
the PCS method. Section 3 describes how to perform AR
tasks using the PCS method. Some experimental results

3 For example, inserting animated virtual characters into a static
scene is useful for developing more interesting video games.

are shown in Section 4. Finally, Section 5 gives some
conclusions and discussion.

2. Camera Parameter Estimation Based on
PCS

Inserting an animated objects in a single image (or
panorama) requires the estimation of the camera
parameters with respect to some reference objects in the
scene. However, estimation of the camera parameters
from a single image is an ill-posed problem if there is no
additional constraints on the reference objects 4. In this
paper, we use “information a priori less constraining to
obtain” [4] instead of using calibration points with known
coordinates which information is unlikely to have for
many real applications. The basic idea came from the
Fagade system [2] in which a parameterized CAD model
was used. A parameterized CAD model can inherently
provide information about the shape constraints of an
object (such as parallelism, orthogonality of lines, equal
length of line segments etc.). The simplest parameterized
CAD models is the parameterized cuboid structure (PCS)
adopted in this paper. We will show that the camera
parameters can be estimated from 2D image coordinates
of a specific set of six corner points of a 3D
parallelepiped. The idea of using shape constraints for
camera parameter estimation is not new. However, most
existing approaches either assume that the intrinsic
parameters are given in advance [2][5][13][18], or require
more than one images [4], and hence are not suitable for
the purpose of inserting virtual objects into a single un-
calibrated image.

The camera equation used in this paper is

Ap = K[Ry; | 13, 1P (1
of, s ul
0 O
and K=/ [ v 2)

H o 1F

where P is the homogeneous coordinates of a 3D point, p
is the homogeneous coordinates of its 2D image point, K
is the matrix consists of the intrinsic parameters, R and ¢
are rotation and translation with respect to the world
coordinate system, and /1 is the relative depth.

Lemma 1: Given a parallelogram in 3D space with
known image coordinates of four corner points, we can
determine the relative depths of the four corner points.

4 Although the self-calibration methods do not require reference
objects, at least two images have to be used [11].
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pf: Consider the four points {Pq, P3, P4, P,} which forms
a parallelogram as shown in Fig. 1. The camera equations
of the four corner points are

Aopo = K(RF, +1), A p, =K(RP, +1),
Aypy =K(RP, +1), A,p, =K(RP, +1).

Since Py + P, = P; + P, is the property of a parallelogram
for any world coordinate systems, we can derive that

Aopot+ A4ps= A 1pit Ap:

and hence yield the following three homogeneous linear
equations:

w,0 @, -u, w,TA0 D
0

A0S s (R et e o M
S B - IEME BME

where the homogeneous coordinates of the image points
are denoted by p=[u; v; 1]" for i=0,1,2,4. Since the matrix
A is nonsingular iff the three points py, p;, p, are not co-
linear, we have

LA A A =A"Tug vo 17 Ay 3)

That is, the relative depths A4; / Ay, As/ Ay, A2/ Ay can be
computed from the image points using (3). B

Notice that the property of lemma 1 holds without
knowing the intrinsic parameters K. However, only
knowing the relative depths is insufficient for many AR
applications. Before further derivation, some assumptions
should be made because the matrix defined in (2) is too
general to be solved without ambiguity. Often it can be
assumed that there is no skew and that the aspect ratio is
tuned to one, i.e. f,=f, and s=0. This assumption has also
been adopted by many self-calibration approaches [6][11].
Hence, (2) reduces to (4).

0o 0 ul
K=f f g “)
B o 1H

According to our experience, camera parameter estimation
with this assumption is accurate enough for many AR
applications. In our approach, a parameterized
parallelepiped defined by the lengths of its three edges,
{a, b, ¢}, as shown in Fig. 1, is used for camera parameter
estimation.

Property 1: Given a parameterized parallelepiped in 3D
space, if we know the three angles between its adjacent
edges, 6,0, ,0, and the image coordinates of the six
corner points of its two adjacent faces, then we can
determine the rigid motion {R, ¢}, the intrinsic parameters

P (R 1)

I~ D1
Po A pinhole
camera model

&
Lens center

Figure 1. A parallelepiped with edge lengths a, b, c. Assume that
the three angles between its adjacent edges are &y, e Gie-

{f, u, v}, and the size parameters {a, b, c}, by solving a
polynomial equation of at most fourth degree.

pf: see Appendix 1.

It is worth comparing our fundamental method (property
1) to the method using perspective trihedral angle
constraint [18] (referred to as the P3A method). The P3A
method assumes that the angles between three lines
passing through a common point are given and the
intrinsic parameters are known in advance. Then, the
camera pose (i.e., extrinsic parameters) can be
determined. In fact, the P3A problem is equivalent to our
formulation using parameterized parallelepiped if only
four corner points {P,, P, P, P;} are utilized (see Fig. 1).
The closed-form solution of the P3A problem requires to
solve a fifth-degree polynomial equation. Our method is
more powerful because we can solve both the intrinsic and
the extrinsic parameters, but two more corner points {P,
Ps} are required. In addition, our method only needs to
solve a fourth-degree polynomial equation which has
analytic solutions. In the past, Faugeras [3] has also
shown that the knowledge of the angle between two lines
in the scene puts a polynomial constraint of degree 2.
However, that method requires at least two images.

Basically, Property 1 gives general solutions to a class of
camera parameter estimation problems. However, when
putting them into practical use of inserting a virtual object
into a single un-calibrated image, a common problem is
that some control points of the parallelepiped may not be
seen in the images. That is, the parallelepiped structure
may not be completely and explicitly observed in the
image, even though the missing control points can be
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Figure 2. (a) A cuboid with ABFE as the ground plane. (b)
Control points of convex type. (c) Control points of concave type.
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Figure 3. An example of augmenting a virtual object into a single
un-calibrated image using the PCS method. (a) Select the control
points (here the control points of convex type are used). (b) The
computed 3D structure. (c¢) Two instances of augmenting a virtual
teapot on the table surface.

(b)

inferred by human perception based on the image content.
To overcome the above problem, human interaction is
often used. > That is, if a user can manually specify the
six control points of a parallelepiped in the scene, then the
computer can integrate arbitrary animated virtual objects
automatically and allow the user to interactively control
its motion with respect to the world coordinate system
defined by the parallelepiped. This operation is similar to
that of the CFAOS approach [9][12] in which the virtual
objects have to be put in the first two images of an
sequence. However, our method can allow the user to
insert virtual objects directly in the Euclidean space rather
than in other less intuitive spaces. In particular, to have
better human-machine interaction, we choose a special
kind of the parallelepiped in which all the three angles,

e,.6,.6,, are90°.
parallelepiped to a cuboid, and the corresponding method

This choice reduces the general

ac

5 For example, an interaction tool was built in [7] for allowing
users to tour in a single image.

for camera parameter estimation is referred to as the PCS
method in this paper. The reason we choose the cuboid
structure for human-machine interaction is that it is
intuitive to human perception and can be found in many
real scenes (e.g., see Fig. 5(b)). Also, the problem of
solving a general fourth-degree polynomial equation can
be simplified to a problem of solving a linear polynomial
equation when a cuboid structure is used (as described
below).

Property 2: Given a parameterized cuboid in 3D space, if
we know the image coordinates of the six corner points of
its two adjacent faces, then we can determine the rigid
motion {R, ¢}, the intrinsic parameters {f, u, v}, and the
size parameters {a, b, c}, by solving a linear system.

pf: see Appendix 2.

3. Augmented Reality Using PCS Method

We have built a human-machine interactive system which
allows the user to insert virtual objects into a single un-
calibrated image. If the user has specified the six control
points of a cuboid in the image, our system can
automatically compute the 3D cuboid structure (up to a
scale) and the camera parameters, and then a virtual object
can be inserted into the image automatically and a user
can interactively control its motion with respect to the
cuboid coordinate system. Because many applications
require to insert virtual objects moving on a ground plane,
we have adopted two types of control points selected from
a cuboid for more flexible insertion. Fig. 2(b) shows the
control points of convex type and Fig. 2(c) shows the
control points of concave type. In our system, real
cuboids contained in the scene can no doubt be served as
useful reference objects, as shown in Fig. 3. However,
our approach does not require real cuboid structures to
appear in the scene completely and explicitly, as described
in Section 2. An important reason is that we can give the
user good hints to identify the human-drawn structure, as
introduced below.

3.1 Auxiliary Line

In the CFAOS approach [9], epipolar line constraints are
derived to help the user to put virtual objects into the first
two images. In our approach, an auxiliary line can also be
derived, which constrains the position of Ps if the
positions of Py, Py, P,, P3, and P, are given. Remember
that the two faces {P,, P;, P, P,} and {P,, P, Ps, P;} are
both parallelograms and are used to solve the relative
depths of Py P; ..., Ps in the proof of property 1 (in
Appendix 1). The fact that these two parallelograms have
a common point, P, (in addition to P,), generates an
additional constraint that “the same A, should be obtained

by applying lemma 1 to these two parallelograms.”
Suppose that Ps=[us vs 1] has not been determined yet
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while the other five control points have been specified by
the user. Using the parallelogram {P,, P, P, P,} we can
first obtain the relative depths A,,A,,A,via Lemma 1,

and then write the equation related to {P,, P, Ps, P;} as
follows:

@,0 O, -us u;0A,0
O o_gd O
Qoo 2 ~Vs Vs %\5 o (5)

BB B -1 1HME
Re-writing (5) as the following equation:
Ol-A, OO0 -10

0 0_0Q O
o ~ Ay, O ~Us ?\3 E (6)
E’o — A, ﬁ @3 Vs ’

In (6), the necessary and sufficient condition of the
existence of a solution of (A,, A;) is that the three vectors
[1 17", [us -us]", and [vs; -vs] " are linearly dependent.
This property induces that (us vs) should fall within a line,
which is called the auxiliary line in this paper. For
example, Fig. 4 shows some different auxiliary lines
generated by dragging the control point P, to different
image positions. The auxiliary lines can help users to put
the control points more correctly.

3.2 Image Sequence

An image sequence may contain two types of scenes:
dynamic and static. We can use the approach introduced
above to insert a moving virtual object such that its
appearance looks geometrically consistent with respect to
the static scene in an image sequence. To insert virtual
objects whose motion is consistent with a moving object
in a dynamic scene, we have developed a tracking
procedure. First, six corner points of a cuboid structure in
the first frame are selected manually. The size parameters
a, b, ¢ of the cuboid structure can be computed using the
PCS method, and thus the object coordinates (or world
coordinates) of the six corner points are also given.
Assume that the cuboid structure is rigid (i.e., the sizes a,
b, ¢ are not varied), we can then treat the cuboid as a
calibration object and re-calibrate the camera parameters
by keeping tracking the calibration object. To solve the
tracking problem, we formulate an energy function similar
to that proposed in [14]. By minimizing the energy
function we can keep tracking the calibration object and
also re-calibrate the camera parameters simultaneously.

4. Experimental Results

We have implemented our method on a PC and using the
OpenGL software for graphics rendering. We can
manually set some light sources and generates planar
shadows in the environment. Fig. 5 shows an example of

Figure 4 Different auxiliary lines (in which the fifth control
point Ps should be lying on) generated by dragging the control
point P4 to different image positions. The control points of
concave type are used in this example.

computing the 3D structure by selecting the six control
points of concave type. The user can then interactively
move a virtual object to the desired positions and
orientations on an intuitively meaningful ground plane,
and generate a composite view as shown in Fig. 5(c). Fig.
6 shows the result of inserting a moving car into a single
un-calibrated image. The motion of the virtual car was
controlled with a mouse. This functionality can be used to
develop more interesting video games on PC. Fig. 7
shows an example of applying our method to the insertion
in an image sequence. As stated in Section 1, inserting a
virtual object whose motion is relative to a moving real
object (the problem A) can be achieved by using some
existing calibration-free methods. However, inserting a
virtual object whose motion is relative to a static real
object (the problem B) can not be achieved using those
calibration-free methods. Our method can solve both
problems, as demonstrated in Fig. 7.

5. Conclusions and Discussion

The major contribution of this paper is to propose a new
method for estimating the camera parameters associated
with an image, based on a parameterized cuboid structure
(or a parallelepiped structure) seen in the image. The
proposed PCS method can determine the sizes of the
cuboid (or parallelepiped) as well as the intrinsic and
extrinsic parameters of the camera. The PCS method has
been successfully used for inserting virtual objects not
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only in one single image but also in a sequence of images
which contains static and/or dynamic scenes. In
particular, the PCS method can be used for inserting
moving or animated virtual objects into one single un-
calibrated image, which can not be achieved by the
existing methods. The PCS method can also be used for
inserting virtual objects into image sequences if the
cuboid structure keeps on appearing in the scene either
explicitly or “implicitly” — i.e., can be inferred by human
perception. To insert virtual objects into a single un-
calibrated image, some human interaction is unavoidable.
Our method provides an auxiliary line to help manually
selecting the control points.

Inserting virtual objects in an image sequence remains to
be a research issue. In fact, all the existing methods
proposed to solve this problem has some limitations. For
example, the method assuming an orthographic projection
[10] can not be used if the real object is close to the
camera center. The method using self-calibration [4] can
not be applied if the motion of the real object contained in
the scene 1is critical (e.g., pure translation, plane
movements, rotation movements around a point, etc.)
[4][14]. The CFAOS methods [9][12] require the user to
draw the virtual objects in both of the first two frames of
the image sequence in a geometrically consistent way.
The proposed PCS method requires that a cuboid structure
exists in the scene, either explicitly or implicitly. In our
opinion, no methods can successfully handle all the cases,
and hence a hybrid approach may be required. The PCS
method proposed in this paper has greatly enriched the
tools for handling the vision-based AR applications.

Appendix 1 (proof of Property 1)

Assume that the six points of two adjacent faces are {P,,
Pi1, Py, P3, P4, Ps} as shown in Fig. 1. The homogeneous
coordinates of their image points are py, p;, p2 P3 P+ D5,
respectively. Based on the parallelepiped, we define an
orthogonal world coordinate system that (i) the origin is
Po, (ii) the X axis is along the direction from Pg to P; (iii)
the Y axis lies on the plane formed by {Po, P, P3} and is
orthogonal to the X axis, and (iv) the Z axis is orthogonal
to both X and Y axes as shown in Fig. 1. We use P; to
represent the coordinate of P; w. r. t. the world coordinate
system defined above (in particular, P, = [0 0 0]"). Then,
the corresponding six camera equations are

Aopy =Kt, Aip, =K(RR +1), A,p, =K(RP, +1)

Asps = K(RP, +1), A;p, =K(RP, +1), Asps = K(RF; +1)
(A1)

Since there always exists a scale factor which can not be

calibrated, we set i, =1 (i.e., the distance from the lens

center to P, is the unit length) and it will not affect the
camera parameter estimation results. Because the two

faces {P, P; P, P,} and {P, P, Ps; P;3} are both
parallelograms. Their depths A, ,A,,A;,A,, A can all be

computed via lemma 1. So we can also compute all the V;
for i=1,2,3,4,5, where V; is defined as

Vi=Ap, —Kt=A,p, = A, p, (A2)

Via (A2), the eq. (Al) can be rewritten as V; = KRP;, or
equivalently, K! Vi=RP,, for i=1,2,3,4,5.

Consider the matrix 4 defined as

0,70 p'p R'P, R'PD
=|:| rJ -T —|[ ]_DT T r U
A=y, KK v, vl=@'R PP, PP
T 'R p'P, R'RH
(A3)

Since

PP, =PI P, =abcos@,,), P P, = P! P, = becos(8,,)
P'P, =P/ P, =accos(@,,).
Also, P,'P,; = a’, P,'P, =b’, P;'P; = ¢’.
Hence, (A3) can be re-written as
B a’> abC, acC,O
VIMV =@bC, b>  bcC,. (A4)
BZCCM beC,, ¢’ B
where V=[V,; V, V3],
c, =cos@,),C, =cos@,.),C, =cos(d,.),and

%{2 0 ap E
M=K"K"'=q0 a’ ay
HB ay B +y’+1H

(a=f"B=-fTuy=-f"v).

Notice that the physical meaning of det(V) is the volume
of the parallelepiped, and hence V' is nonsingular. So,
(A4) can be equivalently written as

@ 0 a O da abC, acC,UO
t 0 .0 2

=U @C, b beC,,

" B

0o o’ ay
@118 ay B+y? +IH BJCCQC beC,, ¢
(A5)

where U =V, Eq. (A5) has six unknowns @, &, and
a, b, ¢, and totally six constrained equations can be listed
from it. Hence it is possible to solve the problem now.
Remember that the left side of (A5) is the matrix M. By
using the constraints that M;,=0 and M;; - M;,=0 (where
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M is the ijth entry of M), we can obtain two quadratic
equations in terms of @, b, c:

C1a’+Cob*+C5¢?+Chab+Csac+Cebe=0 (A6)
C1d*+C b +C 3P +Cab+Csac+Csbe=0 (A7)

where C; and C’; (i=1,...,6) are constants which can be
computed from U and C,;, Cp., C,. using the right side of
(A5). Let x=b/a and y=c/a, then (A6) and (A7) can be
written as

a’ (Cox’+Cexy +C +Cx+Csy+C))=0 (A8)
@ (C'xX°+Cxy +C 37 +C x+C p+C ) =0 (A9)

Since the edge length a # 0, we have two quadratic
equations consisting of two variables x, y in (A8) and
(A9). The number of the joint points of two quadratic
curves are maximal four, and these points can be solved
by using a fourth-degree polynomial equation constructed
by first solving y in terms of x (solving a quadratic
equation) in (A8) and then replacing y in (A9). After
solving x and y, the values a/a, (/a, y/acan be
computed by substituting x and y in the right side of (A5)

and using the terms M;;=a*, M;;=af, and My;=ay .
Then, by using the terms M;;= B +y* +1, 1/a’ can be
obtained. After that, the size parameters a, b, ¢, and the
intrinsic parameters f, u, v can all be easily obtained by
tracing back their relations to the solved terms. The
translation ¢ is simply K'P,. To solve the rotation matrix
R, notice that it satisfies R[P; P, Ps] =K' [V, V, V3], and
[P; P, P5] is an upper-triangular matrix according to the
definitions of the world coordinate system. Hence, R can

be obtained via the QR-decomposition of the matrix K
"WV, m

Appendix 2 (proof of Property 2)

Since C,p, Cpe, C, are all zeros for a cuboid, the eqs. (A6)
and (A7) will be reduced to

C1d’+Cb*+C5¢? =0 and C’,a°+C,b°+C 5c’=0 (A10).

By letting x=b/a, y=c/a, (A10) can be re-written to two
linear equations in terms of x° and y°.

CoxX’+Cyp°+ C, =0 and C’'x*+C’p7+ C’, =0 (All).

After solving the linear systems (A11), x* and )’ can be
obtained. Then, other parameters can be solved by simple
arithmetic as described in the proof of property 1. Notice
that to solve R, it is not required to use the QR-
decomposition now. Since [P; P, P;] is a diagonal matrix,
the three columns of R is simply the unit vectors of the
three columns of K [V V; V3], respectively. B
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Figure 5. An example of inserting a single virtual object. (a)
The original image. (b) The selected control points of two
adjacent faces of a cuboid (which is of concave type). After
performing the PCS method, a virtual object is inserted into the
image, as shown in (c).

Figure 6. An example of inserting a moving object into a single
un-calibrated image. An image sequence is generated by
inserting a virtual car driving along the road. Notice that we
only have to perform the camera parameter estimation once, and
then the motion of the virtual car can be controlled with a mouse
in an easy and intuitive way.

Figure 7. An example of inserting virtual objects into an image
sequence containing a moving truck and a static background. A
virtual convertible is inserted on the ground, driving toward the
opposite direction of the truck’s motion. Another virtual sedan
was inserted on top of the truck with consistent motion.
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