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Abstract 

In this paper, we present a systematic method for pose 
estimation of such a generalized imaging device.  We formulate 
it as a non-perspective n point (NPnP) problem.  The case with 
exact solutions, n=3, is investigated comprehensively.  
Approximate solutions can also be found for n>3 with our 
approach in a least-squared-error manner.  The proposed 
method can be used not only to perspective imaging devices, but 
also non-perspective ones. 

1. Introduction 

In the past, many methods were developed for solving the 
pose estimation problem for perspective imaging devices, 
where the imaging rays are assumed to intersect at a 
common point.  For some applications such as 
tele-presence and image-based virtual reality, the 
perspective property has better to be taken into account 
because the generated images are supposed to be 
presented to humans.  However, for some other 
applications such as automatic visual surveillance and 
mobile robot guidance, the imaging system need not 
comply with the perspective rule. 

In fact, in recent years, many new types of imaging 
methodologies or devices violating the perspective rule 
were designed.  That is, the imaging rays may not 
intersect at a common point.  For example, Rademacher 
and Bischop introduced the concept of images with 
multiple centers of projection, which were applied to 
image-based rendering [11].  A linear pushbroom 
camera [6] contains multiple focal centers distributed in a 
line.  It is also possible to acquire a non-perspective 
image in a single shot.  For instance, wide-angle lens 
systems including sever projective distortions may have a 
locus of viewpoints [10].  An omni-directional vision 
sensor combining a camera and a conic mirror, which was 
employed for collision avoidance of robotics, is another 
example of non-perspective imaging devices [14]. 

However, it still lacks of systematic methods for pose 
estimation of an imaging device that is non-perspective.  
Therefore, how to design a general pose-estimation 
method for non-perspective imaging devices is important.  
In this paper, we propose a pose-estimation method for an 
arbitrary imaging device. 

2. Problem Formulation 

First, we formulate the model of the imaging devices 
considered in this paper.  In essence, an imaging device 
captures the rays of lights in the 3D space.  Since these 
rays are occluded by the physical occupation of the 
imaging device itself, the end points of these rays are 
inherently determined.  Hence, an imaging device can be 
generally formulated via the three components, (I, CCS, 
L), defined below. 

(1) I(⋅,⋅): DI → R×G×B is an image map (DI ⊂ ℛ2 is the 
domain of image I), and R, G, B are the sets consisting 
of the three primitive colors, respectively. 

(2) CCS: an arbitrary Euclidean coordinate frame selected 
in the 3D space, which is referred to as the camera 
coordinate system (CCS). 

(3) L(⋅,⋅): DI → ℛ3×ℛ3 is a mapping from an image point, 
say (i, j), to the 3D ray represented as (c, v) with 
respect to CCS, which consists of all the 3D points 
that can be imaged at (i, j), where c∈ℛ3 is the end 
point and v∈ℛ3 is the normalized directional vector of 
this ray. 

We call the model formulated above a generalized 
imaging device (GID) in this paper.  Fig. 1 gives an 
illustration of the GID.  The color grabbed in a particular 
point in the image, I(i,j), i,j ∈DI is thus a blending of the 
light intensities of the rays in N(L;i,j), a neighborhood of 
L(i,j). 1 

Given a GID G, let Γ(G)={l: a 3D line | ∃(c,v) s.t. the ray 
specified by (c,v) is contained in l}.  If all of the lines 
contained in Γ(G) intersect at a common point, then G is 

                                                 
1 In [5], Grossberg and Nayar presented a more general imaging model, 
in which an image point corresponds to a bundle of rays, and it is useful 
for identifying the point spread function for each pixel.  Since we 
focuses on the geometrical calibration of the imaging devices in this 
paper, the imaging model is formulated by associating an image point 
with a single ray, which simplifies considerably the problem for 
estimation of the parameters about rigid transformations. 
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called perspective.  Otherwise, G is non-perspective.  
For example, a common video camera is usually modeled 
as a perspective GID.  The concept of GID is suitable for 
formulating the geometrical relation of optical 
apparatuses designed for capturing images in a 3D 
environment.  Consider such a general definition of 
imaging devices, a basic problem is that: Given a set of 
3D points w.r.t a world coordinate system (WCS) and 
their projecting points in the image plane of a GID, how 
can the rigid transformation between the world and the 
camera coordinate systems be computed?  Such a 
fundamental problem is called the perspective n point 
problem (PnP) for perspective imaging devices [4] 
[15][7][8][3][9].  In this paper, we refer to the problem 
as the non-perspective n point problem (NPnP) because 
the GIDs considered herein need not be perspective. 

In the past, the PnP problem has been well investigated.  
Closed-form solutions have been formulated if three or 
four 3D/2D correspondences are adopted [4][7].  
However, if more correspondences are used, closed-form 
solutions do not exist.  Lowe [8] and Yuan [15] used the 
Newton-Raphson method for pose estimation under the 
assumption that approximate initial poses were provided.  
The Dementhon and Davis approach [3] first assumed that 
the camera model is orthographic.  It obtains the rigid 
transformation by solving a linear system, and then uses a 
POSIT procedure to refine the result iteratively.  Lu et al. 
[9] proposed an orthogonal iteration method for finding 
the camera poses. 

3. Non-Perspective Three Point Problem 

In an NPnP problem, n points in the 3D space, e.g., P1, 
P2, ..., Pn, w. r. t. a WCS are supposed to be imaged with a 
GID.  Assume that their 2D image points are (i1, j1), (i2, 
j2), ..., (in, jn), respectively, where (ik, jk)∈DI for all k = 
1, …,n.  We want to find the rigid transformation 

between CCS and WCS such that Qk=R⋅Pk+t, where R is 
a 3×3 rotation matrix, t is a 3×1 translation vector and Qk 
is a coordinate in CCS that can be represented as 
Qk=sk⋅vk+ck, in which (ck, vk) = L(ik, jk) and sk is a scale 
factor for all k = 1, …,n. 

First, we investigate the problem when n=3, which is the 
minimal number of 3D/2D correspondences allowing the 
solutions to be identified exactly.  The induced problem 
is called the NP3P problem in this paper. 

3.1.  Solutions of the NP3P Problem 

When n=3, the three points P1, P2, and P3 form a triangle 
as shown in Fig. 2(a).  Since the coordinates of P1, P2, 
and P3 are known, the lengths of the three edges of the 
triangle, a, b, c, can be obtained, respectively.  Consider 
the transformed points, Q1, Q2, and Q3 lying on the 
corresponding rays, l1, l2, l3, respectively, where lk = (ck, 
vk), k = 1, 2, 3.  Denote lk to be the full line containing 
the ray lk, k = 1, 2, 3, and let lij be the commonly 
orthogonal line between li and lj, i,j=1,2,3 and i≠j, 
respectively.  Denote qij and qji to be the intersection 
points between li and lij, and lj and lij, respectively.  Let 
the distance between qij and qji be dij.  Without loss of 
generality, consider the coordinate system whose origin is 
q12 and whose x-axis is defined to be along the same 
direction of l12.  In addition, the y-axis of this coordinate 
system is also defined to be along the direction of l1, and 
the z-axis is defined to be the cross product of x and y 
axes, respectively.  By using this coordinate system, Q1 
and Q2 can be represented as follows: 

Q1=(0, t1, 0) and Q2=(d12, t2cosθ12, t2sinθ12), 

where t1 is the distance between q12 and Q1, t2 is the 
distance between q21 and Q2, and θ12 is the angle between 
the directions of l1 and l2 (i.e., θ12 = acos(v1,v2)).  By 
using the property that the distance between Q1 and Q2 is 
a, the following constraint is satisfied: 

d12
2+(t2cosθ12-t1)2+(t2sinθ12)2=a2 

⇒        t2
2-2t1t2cosθ12+t1

2=a2-d12
2       (1) 

Note that the parameters used for describing (1), 
including the distance between q12 (or q21) and Q1 (or Q2) 
and the angle between v1 and v2, are all independent of the 
coordinate systems being selected.  Hence, consider the 
line pair (l1, l3), we also have the following constraint by 
using the property that the distance between Q1 and Q3 is 
b: 

t3
2-2(t1-d1)t3cosθ13+(t1-d1)2=b2-d13,      (2) 

where t3 is the distance between q31 and Q3 and t1-d1 is the 
distance between q13 and Q1 (and thus the distance 

Figure 1.  An illustrative example of the generalized
imaging device (GID). 
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l2 between q12 and q13 is |d1|). 

Similarly, consider the line pair (l2, l3), we also have 

(t3-d3)2-2(t3-d3)(t2-d2)cosθ23+(t2-d2)2=c2-d23
2, (3) 

where t3-d3 (or t2-d2) is the distance between q32 (or q23) 
and Q3 (or Q2). 

Equations (1), (2), and (3) give three constraints on the 
three unknowns, t1, t2 and t3.  Organizing the constraints 
in this way help us considerably to simplify the solutions 
of special cases, as will be shown in Section 3.2.  
Generally, since each of the (1), (2), and (3) is a quadratic 
polynomial equation associated with two unknowns, the 
solutions can be obtained by solving eighth-order 
polynomial equations with a single variable, as shown in 
the following.  From (1) and (2), t2 and t3 can both be 
represented with t1, respectively: 

t2=t1cosθ12±(a2-d12
2-t1

2sin2θ12)1/2      (4) 

t3=(t1-d1)cosθ13±[b2-d13
2-(t1-d1)2sin2θ13]1/2  (5) 

Substituting (4) and (5) into (3), we can derive an 
equation of the following form: 

A2±A1(B2)1/2 = ±B1(C2)1/2±(B2C2)1/2,       (6) 

where A2, B2, C2 are all second-order polynomials and A1, 
B1 are both first-order polynomials, in terms of t1, 
respectively.  Taking the square of both sides of (6), we 
obtain 

A2
2+A1

2B2±2A2A1(B2)1/2 = B1
2C2+B2C2±2B1C2(B2)1/2 

or equivalently, 

A2
2+A1

2B2-B1
2C2-B2C2 = 2(±B1C2±A2A1)(B2)1/2.   (7) 

Taking the square of both sides of (7) yields eighth-order 
polynomial equations in terms of t1. 

Although there is no analytic way to solve a polynomial 
equation of eighth order, it is not difficult to find the 
solutions of them numerically.  Then, the other 
coefficients, t2 and t3, can be obtained by substituting the 
solution of t1 into (4) and (5).  The priori knowledge of 
the 3D points located on the positive direction of the 
corresponding rays, i.e., sk>0, k = 1, 2, 3, can be used to 
eliminate inappropriate solutions as well. 

3.2.  Special Cases of the NP3P Problem 
To solve a general NP3P problem requires solving the 
eighth-order polynomial equations as described above.  
In this section, we investigate some special cases of the 
NP3P problem whose solutions can be obtained by 
solving polynomial equations whose orders are at most 

four, instead of eighth-order ones.  Since there are 
analytical representations of the solutions of a 
fourth-order polynomial equation, the solutions of these 
special cases can be expressed in closed forms. 

Case 1 [Linear Pushbroom]: All the rays of a linear 
pushbroom camera model [6] are emitted from a line and 
orthogonal to this line.  The linear pushbroom camera 
can be used to model X-ray imageries and local behaviors 
of satellite images [6].  We will show that its pose 
estimation problem has analytical forms of solutions.  
Consider that in this case, d1=d2=d3=0, and thus (1), (2), 
(3) become (8), (9), (10), respectively. 

t2
2-2t1t2cosθ12+t1

2=a',                      (8) 

t3
2-2t1t3cosθ13+t1

2=b',                      (9) 

t3
2-2t3t2cosθ23+t2

2=c',                     (10) 

where a'=a2-d12
2, b'=b2-d13

2, and c'=c2-d23
2, respectively.  

Let x1 = 1/t1, x2 = t2/t1, x3 = t3/t1, a fourth order 
polynomial equation in terms of x3 can be derived, and 
thus the pose estimation problem of a linear pushbroom 
camera can be solved analytically. 

Case 2 [Partially Parallel]: We call an NP3P problem 
partially parallel if any two of the three lines, l1, l2, l3, are 
parallel.  Without loss of generality, assume that l1 and l2 
are parallel.  In this case, cosθ12=1, and thus (1) becomes  

Figure 2.  Illustration of the definitions associates with 
the NP3P problem. 
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(t2-t1)2=a'                (11) 

That is, t2=t1±(a')1/2.  In particular, we can also choose 
appropriately the coordinate that makes d1=0.  Hence, (2) 
becomes 

t3=t1cosθ13±[-t1
2sin2θ13+b']1/2        (12) 

Substituting both (11) and (12) into (3) yields fourth-order 
polynomial equations in terms of t1.  Hence, analytical 
solutions can be derived for the partially parallel case as 
well. 

4. Non-Perspective N Point (NPnP) Problem 
The analysis in Section 3 shows that exact solutions can 
be identified for the NPnP problem when n=3.  However, 
when n>3, exact solutions may not exist due to image 
noises.  It is therefore necessary to find approximate 
solutions.  In this paper, we develop a systematic method 
that finds an initial estimate of the approximate solutions 
first, as introduced in Section 4.1.  Then, an iterative 
optimization procedure is proposed for refining the 
solutions, as introduced in Section 4.2. 

4.1.  Initialization for the NPnP Problem 
The idea of our approach to initialization of the NPnP 
problem is to exploit the solutions of the three-point case.  
In general, there are n!/(3!(n-3)!) triples of 3D/2D 
correspondences that can be served as initial estimates.  
Among them, to find a better one is desired -- better in the 
sense that the triple gives a more accurate estimate than 
the other triples.  Since in general, the closer the image 
points are to each other, the less accurate the estimate is.  
It is thus better to use the triple of image points where the 
triangle formed by it has large enough area.  The 
initialization procedure is shown as follows. 

Algorithm 1: {Consider n 3D points, P1, P2, ..., Pn, w.r.t. 
a WCS, and the corresponding 2D image points p1, p2, ..., 
pn, w.r.t. the CCS, where pm∈DI for all m = 1, …,n.  
Assume that the full lines containing the rays associated 
with these image points to be l1, l2, ..., ln, respectively.} 

Step 1.  Repeat Steps 1.1-1.4 K times, where K is a 
positive integer. 

1.1. Select three points among {p1, p2, ..., pn} in the 
image randomly.  Assume that they are pi, pj, and pk, 
respectively. 

1.2. If li, lj, and lk are either too coplanar or the area of 
the triangle formed by pi, pj, and pk is too small, then go 
back to Step 1. 

1.3. Compute the rigid transformations between WCS 
and CCS, which are associated with the three point-line 
pairs, (Pi, li), (Pj, lj), and (Pk, lk). 

1.4. For each rigid transformation computed in Step 1.3, 
say, (R, t), transform all the other 3D points with this 
rigid transformation by P'm=RPm+t, where m=1, …,n.  
Compute the sum of squared distances (SSDs) between 
P'm and lm, m=1, …,n.  Record both the SSD value e 
and its corresponding rigid transformation (R, t). 

Setp2.  Let e be the smallest among all the SSD values 
recorded in Step 1.3, and let (R, t) be the recorded rigid 
transformation corresponding to e.  Output (R, t). 

The above algorithm computes a rigid transformation 
with the smallest error among K random selections of the 
triples of 3D/2D correspondences.  It can serve as a good 
initial estimate for the NPnP problem.  The iteration 
times, K, is selected by balancing between accuracy and 
time.  The larger the K, the more the triples are used, and 
thus the higher the chance of having a more accurate 
solution.  However, too large a K leads to a long period 
of execution time.  In our implementation, K is usually 
selected to be 100. 

Another issue worthy to be addressed is the computation 
of the rigid transformations associated with the three pairs, 
(Pi, li), (Pj, lj), and (Pk, lk), in Step 1.3.  A generally 
effective way is to use the method for solving the NP3P 
problem as introduced in Section 3.1, which obtains rigid 
transformations that transforms Pi, Pj, and Pk to lying in li, 
lj, and lk, respectively.  However, the computational 
efficiency may be diminished because of the following 
two reasons.  (1) It requires finding all the real-number 
solutions of several eighth-order polynomial equations 
that can only be solved numerically.  (2) There may be 
many solutions satisfying an NP3P problem and all of 
them need to be further processed in Step 1.4. 

To increase the efficiency of this algorithm, we suggest 
using a perspective camera to approximate the GID being 
considered, and the computations involved in Step 1.3 are 
thus reduced to finding solutions of a P3P problem 
instead of an NP3P one.  Since the solutions of a P3P 
problem can be represented analytically, it is easy to 
identify the real-number solutions among them.  In 
addition, the number of real-number solutions of a P3P 
problem is at most 4, which is much smaller than that of 
the NP3P one.  Although the solution obtained by 
solving a P3P problem is an approximated one compared 
with its NP3P counterpart, it usually suffices to be an 
initial estimate for an NPnP problem by considering that 
the NP3P solution itself serves as an approximation to the 
NPnP problem. 

In the remainder of this section, we focus on how to 
approximate a GID with a perspective camera.  This 
problem is equivalent to finding a virtual center and a 
virtual image plane.  First, the virtual center is obtained 
as a 3D point, Pc, that minimizes the following criterion: 
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∑m dist2(Pc, lm),              (13) 

where dist(Pc, lm) is the distance between Pc and lm. 

Now, consider the selections of the virtual image plane.  
When a virtual plane is selected, the intersection points, 
g1, ..., gn, of this plane and all the rays of the GID can be 
computed respectively.  The line l'm passing through Pc 
and gm then serves as an approximated line of lm for all m 
= 1, ...,n.  Hence, given a 3D point P lying in l'm, its 
distance to lm is, however, dependent on how far P is 
away from gm.  The farther is P away from gm, the larger 
is dist(P, lm).  Accordingly, the accuracy of such an 
approximation is distance-dependent.  When P is away 
from the virtual plane (e.g., P is a distant 3D point), then 
the approximation is likely to be very poor.  Since no 
prior knowledge about the locations of the 3D points to be 
imaged with a GID is given, we propose an infinite-plane 
approximation strategy for approximating the 3D rays of 
GID by using the rays of a perspective imaging device.  
In this strategy, the virtual plane is selected as the infinite 
plane, and line l'm is thus parallel to line lm that it 
approximates for all m = 1, ...,n.  Hence, the distance 
between lm and l'm is a constant, dist(Pc, lm).  The 
advantage of such an approximation strategy is that the 
accuracy of the approximation is independent of the 
locations of the 3D points, which allows the 3D points to 
be treated evenly in the pose-estimation process. 

After approximating the GID to be processed with a 
perspective imaging model described above, the method 
for solving the P3P problem as introduced in Section 3.2 
can then be used to find the required rigid transformations 
in Step 1.3 of Algorithm 1. 

4.2.  Convergent Iterations for NPnP 
Given an initial estimate of the rigid transformation 
between WCS and CCS, we further refine it by 
minimizing an objective function iteratively.  Consider 
that the projection of a point P onto a ray l = (c,v) can be 
represented as: 

Proj(P;l) = vvT(P-c)+c.          (14) 

The orthogonal vector from P to Proj(P;l) is thus 

Proj(P;l)-P = (vivi
T-I)(P-ci),         (15) 

where I is the 3 by 3 identity matrix.  The length of the 
vector defined in (15) is therefore the distance between P 
and l.  The objective function being minimized in our 
approach is 

E = ∑
tR,

min m||( vmvm
T-I)(RPm+t-cm)||2.      (16) 

To find the optimal solution (R*, t*) of (16), we adopt the 

iterative-closest point (ICP) principle introduced by Besl 
et al. [1].  The ICP algorithm always converges 
monotonically to a minimum value of a mean-square 
distance metric, and the rate of convergence is more rapid 
than that of generic nonlinear optimization methods (such 
as the Gauss-Newton method).  Although it does not 
guarantee that the global minimum can always be found, 
it does suggest that the global minimum (or a very 
approximate local minimum) can be obtained from a very 
board range of initial guesses.  The ICP algorithm has 
also been adopted for solving pose estimation problem for 
the perspective case [13].  Lu et al. [9] have recently 
proposed a method that is very similar to the ICP 
algorithm for solving the PnP problem as well. 

The principle of the ICP algorithm is the iteration of the 
following two stages.  (1) Find the closest point in the 
corresponding line for each 3D point.  (2) Find a rigid 
transformation that transforms the 3D points to their 
closest points in a least-squared-error manner. 

Algorithm 2: {The same variables defined in Algorithm 
1 are used} 

Step 0.  Let (R0, t0) be the initial rigid transformation 
estimated using Algorithm 1. 

Step 1.  Compute P*m= R0Pm+t0 for all m = 1, ...,n. 

Step 2.  For each point P*m, find its closest point, P'm, in 
lm.  That is, P'm = vvT(P*m-c)+c for all m = 1, ...,n. 

Step 3.  Find the rigid transformation that minimizes the 
sum of squared distances between P*m and P'm, m = 
1, …,n.  That is, find (Rnew, tnew) that minimizes 
∑m||RnewP*m + tnew - P'm||2. 

Step 4.  If Rnew is close enough to the identity matrix and 
tnew is also close enough to the zero vector, then stop.  
Else, compose (Rnew, tnew) and (R0, t0) by R0 ← RnewR0, t0 
← tnew+Rnewt0, and go to Step 1. 

In Step 3 of Algorithm 2, the least-squared-error 
transformation between two sets of 3D points has a 
closed-form solution, which can be solved via singular 
value decomposition [1]. 

5.  Experimental Results 
An omni-directional camera composed of a lens and a 
curved mirror is used in our experiment, as shown in Fig. 
3(a).  The reflection curve of this camera is designed to 
maximize the average image resolutions in a range of 
viewing angles, but not deliberated to satisfy the single 
view-point constraint.  Hence, such an imaging device is 
a non-perspective GID but with higher image resolutions 
and better point-spread properties than those designed to 
satisfy the single view-point constraint.  Such a camera 
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is thus more suitable for robot guidance and ego-motion 
estimation.  The intrinsic model of this GID, L(⋅,⋅), has 
been investigated in the manufacturing process.  That is, 
for all (i,j)∈DI, the corresponding ray, L(i,j), w.r.t. a 
selected CCS of the GID is known.  Nevertheless, even 
if the intrinsic model of the GID has not been investigated 
during the manufacturing process, it can also be calibrated 
via some other methods (e.g., the one introduced in [5]). 

TABLE I.  Errors for some right angles and length ratios. 

Ca
Ca
Ca
Ca
Ca

In practice, the quantization error, image correspondence 
error, and the calibration error (of the intrinsic model) can 
all generate errors to the estimated poses.  To verify the 
accuracy of our method, two such omni-directional GIDs 
were used and thus a non-perspective stereo pair was 
formed.  We put this stereo setup in an indoor 
environment, and some 3D points (totally 38 points) in 
this environment were measured in advance and 
employed for pose estimation, as shown in Fig. 3(b).  
After using the method introduced above, the poses of 
both imaging devices were estimated respectively.  
Hence, a calibrated stereo pair of omni-directional 
cameras was constructed, which could help us compute 
the 3D coordinate of any other point in this environment 
if its corresponding image points had been identified in 
both images.  In this way, we computed the coordinates 
of some 3D points in this environment and used them to 
verify the accuracy of the poses estimated with our 
method.  The left part of Table I lists the errors measured 
for some right angles, while the right part of Table I lists 
the errors measured for some length ratios, where line 0 
shown in Fig. 4 serves as the unit length.  The 3D 
reconstruction results show that our method is very 
accurate. 

In addition, since a stereo pair is formed, the 
correspondence of a point selected in one image should 
lie in a curve in the other image, as illustrated in Fig. 5.  
It is called the epi-polar line in the perspective case, and is 
referred to as the matching curve here.  Fig. 6(a) shows 
some points selected in one image.  If no errors occurr, 
their associated matching curves should pass through the 
corresponding points in the other image.  Fig. 6(b) 
shows the matching curves of the points shown in 6(a).  
As can be seen, these matching curves all pass through 
the corresponding points in a close manner. 

6. Summary 
In this paper, we have proposed a method for pose 
estimations of generalized imaging devices.  Since the 
imaging devices considered in our framework may not be 
perspective, their pose estimation problem is referred to 
as the NPnP problem in this paper.  First, we 
investigated the case when n=3 and presented how to get 
its exact solutions.  Some particular useful special cases, 
such as the linear pushbroom and partially parallel camera 
models, have also been investigated and they were shown 
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 Real 
angle

Estimated
angle 

Error Real 
ratio 

Estimated
 ratio Error 

se 1 90 89.9967 0.36*e-4 0.7550 0.7384 0.021987
se 2 90 90.0017 0.20*e-4 0.8926 0.9005 0.008851
se 3 90 90.0070 0.78*e-4 0.0624 0.0623 0.001603
se 4 90 90.0138 1.54*e-4 0.1812 0.1809 0.001655
se 5 90 90.0164 1.83*e-4 0.0990 0.1043 0.053535

 have analytic solutions.  We observed that the

lutions of the NP3P problem can be served as an initial 
timate for obtaining an approximated solution for the 
PnP problem, and a random-selection strategy was 
veloped to identify a better triple of 3D/2D 
rrespondences for getting this initial estimate.  In 
dition, to increase the efficiency of the 
itial-estimation stage, a perspective camera model was 
so proposed and used for approximating a GID.  
inally, the iterated-closest point (ICP) principle was 
opted for refinement the pose initially estimated. 

lthough a non-perspective imaging device was used in 
r experiment, the proposed method can be applied not 
ly to non-perspective imaging devices, but also 
rspective ones.  Our approach thus provides a 
nerally effective way for pose estimation of general 
aging devices.  Experimental results have also shown 

at our method is quite accurate. 
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(a)        (b) 

Figure 3.  (a) The adopted omni-directional camera.  (b) An 
image captured with the camera shown in (a), and the red points 
are the 3D points used for pose estimation. 
 

 
Figure 4.  The lines used for the length-ratio results, where line 
0 is the unit length. 
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(b) 

Figure 6.  (a) Five points selected in one image.  (b) The 
matching curves of these points in the other image. 
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