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Abstract 

With the advances in imaging technologies for robot or machine vision, new imaging 

devices are being developed for robot navigation or image-based rendering.  However, to 

satisfy some design criterion, such as image resolution or viewing ranges, these devices are 

not necessarily being designed to follow the perspective rule, and thus the imaging rays 

may not pass through a common point.  Such generalized imaging devices may not be 

perspective, and therefore their poses cannot be estimated with traditional techniques.  In 

this paper, we propose a systematic method for pose estimation of such a generalized 

imaging device.  We formulate it as a non-perspective n point (NPnP) problem.  The case 

with exact solutions, n=3, is investigated comprehensively.  Approximate solutions can be 

found for n>3 in a least-squared-error manner by combining an initial-pose-estimation 

procedure and an orthogonally iterative procedure.  This proposed method can be applied 

not only to non-perspective imaging devices but also perspective ones.  Results from 

experiments show that our approach can solve the NPnP problem accurately. 

Index Terms:  Computer vision, camera pose estimation, generalized imaging device 

(GID), perspective n point problem (PnP), non-perspective n point problem (NPnP). 
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I. Introduction 

How to estimate the pose of a camera by determining the rigid transformation, which relates 

images to known geometry, is a problem of fundamental importance to machine and robot 

vision.  In the past, many methods were developed for solving the pose estimation problem 

for perspective imaging devices, where the imaging rays are assumed to intersect at a 

common point.  For some applications such as tele-presence and image-based virtual reality, 

the perspective property has to be taken into account, because the generated images are 

supposed to be presented to humans.  However, for some other applications such as 

automatic visual surveillance and mobile robot guidance, the imaging system need not 

comply with the perspective rule. 

In fact, many new types of imaging methodologies or devices, violating the perspective 

construction in machine and robot vision, were designed.  That is, the imaging rays of each 

of them may not intersect at a common point.  For example, Rademacher and Bishop 

introduced the concept of images with multiple centers of projection, which were applied to 

image-based rendering [26].  A linear pushbroom camera [13] contains multiple focal 

centers distributed in a line and is thus non-perspective as well.  In addition, Huang et al. [11] 

proposed a polycentric panorama model, where the focal centers were distributed in circles.  

In fact, it is also possible to acquire a non-perspective image in a single shot.  For instance, 

wide-angle lens systems including severe projective distortions may have a locus of 

viewpoints [24].  An omni-directional vision sensor combining a camera and a conic mirror, 

which was employed for collision avoidance of robotics, is another example of 

non-perspective imaging device [33]. 

However, systematic methods for pose estimation of a non-perspective imaging device are 

lacking.  In this paper, we propose a pose estimation method for an arbitrary imaging device 
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that can be perspective or non-perspective.  The rest of the paper is organized as follows.  

Section II gives a formulation of the problems.  Sections III and IV introduce the 

non-perspective pose estimations when three and n (n>3) point correspondences are given, 

respectively.  Simulated and experimental results are shown in Sections V and VI, 

respectively.  Finally, some conclusions and discussion are given in Section VII. 

II. Problem Formulation 

First, we formulate the model of imaging devices considered in this paper.  In essence, an 

imaging device captures the rays of lights in 3D space.  These rays are occluded by the 

physical occupation of the imaging device itself, with which the end points of these rays are 

inherently determined.  Hence, an imaging device can be generally formulated by the three 

components, (I, CCS, L), as defined below. 

(1)  I(⋅,⋅): DI → R×G×B is an image map (DI ⊂  ℛ2 is the domain of image I), and R, G, B are 

the sets consisting of the three primitive colors. 

(2)  CCS: an arbitrary Euclidean coordinate frame selected in 3D space, which is referred to 

as the camera coordinate system (CCS). 

(3)  L(⋅,⋅): DI → ℛ3×ℛ3 is a mapping from an image point, say (i, j), to the 3D ray 

Figure 1.  An illustrative example of a generalized imaging device (GID). 

GID 

CCS I(i1,j1) I(i2,j2) 
I

(c1,v1) 

(c2,v2)
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represented as (c, v) with respect to CCS, which consists of all the 3D points that can be 

imaged at (i, j), where c∈ ℛ3 is the end point and v∈ ℛ3 is the unit directional vector of 

this ray. 

The model formulated above is called a generalized imaging device (GID) in this paper.  

Figure 1 gives an illustration of the GID. 1 

Given a GID G, let Γ(G)={l: a 3D line | ∃ (c, v) s.t. the ray specified by (c, v) is contained in 

the full line l}.  If all of the lines contained in Γ(G) intersect at a common point, then G is 

called perspective.  Otherwise, G is non-perspective. 

For example, a common video camera is usually modeled as a perspective GID.  An 

omni-directional imaging system combining a hyperbolic mirror and a camera, where the lens 

center of the camera is placed in one of the focal points of the hyperbolic mirror, is another 

example of a perspective GID [34].  On the other hand, a linear pushbroom camera and 

some wide-angle lens systems, which have been introduced in Section I, are examples of 

non-perspective GIDs.  In essence, the concept of the GID is suitable for formulating the 

geometrical relation of optical apparatuses designed for capturing images in a 3D 

environment.  Considering such a general definition of imaging devices, a basic problem 

would be as follows: Given a set of 3D points w. r. t. a world coordinate system (WCS) and 

their projecting points in the image plane of a GID, how can the rigid transformation 

between the world and the camera coordinate systems be computed?  Such a fundamental 

problem is called the perspective n point problem (PnP) for perspective imaging devices 

                                                 
1 In [10], Grossberg and Nayar presented a more general imaging model, in which an image point corresponds 

to a bundle of rays, and it is useful for identifying the point spread function for each pixel.  Since we focus on 

the geometrical calibration of the imaging devices in this paper, the imaging model is formulated by 

associating an image point with a single ray, which considerably simplifies the problem for estimating the 

parameters for rigid transformations. 
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[8][9][14][22][23][35].  This study investigates a more general problem for the GIDs, which 

we call non-perspective n point problem (NPnP) because the GIDs considered herein need 

not be perspective [4]. 

The PnP problem has been well investigated.  Closed-form solutions have been formulated 

if three or four 3D-2D correspondences are adopted [9][14][15].  However, if more 

correspondences are used, there are no closed-form solutions available.  Lowe [22] and 

Yuan [35] used the Newton-Raphson method for pose estimation under the assumption that 

approximate initial poses were provided.  The DeMenthon and Davis approach [8] first 

assumed the camera model as a scaled orthographic projection.  It obtains the rigid 

transformation by solving a linear system, and then uses a POSIT procedure to refine the 

result iteratively.  Lu et al. [23] also proposed an iteration method using a scaled 

orthographic projection for initial estimation. 

However, the NPnP problem has not been well researched in past studies.  In Sections III 

and IV, we will propose a systematic method for solving the NPnP problem.  Since the PnP 

problem is a special case of the NPnP problem, our method can be used for solving the PnP 

problem as well. 

III.  Non-Perspective Three-Point (NP3P) Problem 

In a NPnP problem, n points with known coordinates w. r. t. a WCS in the 3D space, e.g., P1, 

P2, ..., Pn, are supposed to be imaged with a GID.  Assume that their 2D image points are (i1, 

j1), (i2, j2), ..., (in, jn), respectively, where (ik, jk)∈ DI for all k=1, …,n.  When the intrinsic 

model of the GID is known, we want to find the rigid transformation between CCS and WCS 

so that Qk=R⋅Pk+t, where R is a 3×3 rotation matrix, t is a 3×1 translation vector, and Qk is a 

point in CCS that can be represented as Qk=sk⋅vk+ck, in which (ck, vk)=L(ik, jk) and sk is a scale 

factor for all k=1, …,n. 
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First, we investigate the problem when n=3, which is the minimum number of 3D-2D 

correspondences needed to allow the solutions to be identified exactly.  The induced 

problem is called the NP3P problem in this study. 

A.  Solutions of the NP3P Problem 

When n=3, the three points P1, P2, and P3 with known coordinates w. r. t. the WCS form a 

triangle.  Since the coordinates of P1, P2, and P3 are known, the length of the three edges of 

the triangle, a, b, c, can be determined.  Consider Q1, Q2, and Q3, the transformed points of 

P1, P2, and P3, lying on the corresponding rays, l1, l2, and l3, respectively, as shown in Figure 

2(a), where lk=(ck, vk), k=1, 2, 3 are three lines of a GID with known intrinsic model (and thus 

ck and vk, k=1, 2, 3 are all known to the CCS of the GID).  Denote lk to be the full line 

containing the ray lk, k=1, 2, 3, and let lij be the common orthogonal line between li and lj, 

i,j=1,2,3 and i≠j, respectively.  Denote qij and qji to be the intersecting points between li and 

lij, and lj and lij, respectively.  Let the distance between qij and qji be dij.  Without loss of 

generality, consider the coordinate system whose origin is q12 and whose x-axis is defined to 

be along the same direction of l12.  In addition, the y-axis of this coordinate system is 

defined to be along the direction of l1, and the z-axis is defined to be the cross product of x 

and y axes.  By using this coordinate system, Q1 and Q2 can be represented as Q1=(0, t1, 0) 

and Q2=(d12, t2cosθ12, t2sinθ12), where t1 is the distance between q12 and Q1, t2 is the distance 

between q21 and Q2, and θ12 is the angle between the directions of l1 and l2 (i.e., 

θ12=acos(v1,v2)).  Because the distance between Q1 and Q2 is a, we have a2 = 

d12
2+(t2cosθ12−t1)2+(t2sinθ12)2 = d12

2+(t2
2cos2θ12−2t1t2cosθ12+t1

2)+(t2
2sin2θ12) = 

d12
2−2t1t2cosθ12+t1

2+(t2
2cos2θ12+t2

2sin2θ12) = d12
2−2t1t2cosθ12+t1

2+t2
2.  Hence, 

                 t2
2−2t1t2cosθ12+t1

2 = a2−d12
2.                                     (1) 
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Note that the parameters used for describing (1), including the distance between q12 (or q21) 

and Q1 (or Q2) and the angle between v1 and v2, are all independent of the coordinate systems 

being selected.  Hence, consider the line pair (l1, l3), we also have the following constraint 

by using the property that the distance between Q1 and Q3 is b: 

t3
2−2(t'1)t3cosθ13+(t'1)2 = b2−d13

2,                     (2) 

where t3 is the distance between q31 and Q3, and t'1 is the distance between q13 and Q1.  

When d1=t1−t'1 (and thus the distance between q12 and q13 is |d1|), then the following equation 

holds: 

t3
2−2(t1−d1)t3cosθ13+(t1−d1)2 = b2−d13

2,                  (3) 

Similarly, consider the line pair (l2, l3), then we also have: 

(t3−d3)2−2(t3−d3)(t2−d2)cosθ23+(t2−d2)2 = c2−d23
2,             (4) 

where t3−d3 (or t2−d2) is the distance between q32 (or q23) and Q3 (or Q2). 

Equations (1), (3), and (4) give three constraints on the three unknowns, t1, t2 and t3.  

Generally, since each of the (1), (3), and (4) is a quadratic polynomial equation associated 

with two unknowns, the solutions can be obtained by solving eighth-order polynomial 

Figure 2.  Illustration of the definitions associated with the NP3P problem. 
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equations with a single variable, as shown in the following:  From (1) and (3), t2 and t3 can 

both be represented as t1, respectively: 

t2 = t1cosθ12±(a2−d12
2−t1

2sin2θ12)1/2,                       (5) 

t3 = (t1−d1)cosθ13±[b2−d13
2−(t1−d1)2sin2θ13]1/2.                    (6) 

Substituting (5) and (6) into (4), we can derive an equation of the following form: 

A2±A1(B2)1/2 = ±B1(C2)1/2±2cosθ23(B2C2)1/2,                       (7) 

where B2=a2−d12
2−t1

2sin2θ12, C2=b2−d13
2−(t1−d1)2sin2θ13, A1=2B−2Acosθ23, 

A2=A2+B2−c2+d23
2−2ABcosθ23+B2+C2, B1=2Bcosθ23−2A, A=(t1−d1)cosθ13−d3, and 

B=t1cosθ12−d2. 

Taking the square of both sides of (7), we obtain 

A2
2+A1

2B2±2A2A1(B2)1/2 = B1
2C2+4cos2θ23B2C2±4cosθ23B1C2(B2)1/2 

or equivalently: 

A2
2+A1

2B2−B1
2C2−4cos2θ23B2C2 = 2(±2cosθ23B1C2±A2A1)(B2)1/2.        (8) 

Taking the square of both sides of (8) yields eighth-order polynomial equations in terms of t1. 

Although there is no analytic way to solve a polynomial equation of the eighth order, its 

solution is not difficult to find numerically.  Polynomial root finding is a traditional topic in 

numerical analysis.  Three of the popular general-purpose polynomial root finders include 

the method of computing the eigenvalues of a companion matrix (which was used in the 

EISPACK routine [29]), the Jenkins/Traub method [18] that works with the polynomial itself, 
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and the method consisting of a combination of Muller’s and Newton’s method [25][19].  

According to [19], all these three methods yield comparable results regarding speed and 

accuracy when working with low degree (n<20) polynomials, and thus are suitable for 

solving t1 in our problem (n=8).  Then, the other coefficients, t2 and t3, can be obtained by 

substituting the solution of t1 into (5) and (6).  The a priori knowledge of the 3D points 

located on the positive direction of the corresponding rays, i.e., sk>0, k=1, 2, 3, can be used to 

eliminate inappropriate solutions as well. 

Two singular cases (i.e., cases with infinite solutions) of the NP3P problem are discussed as 

follows.  The first case happens when the three points are all in a line, and is referred to as 

the co-linear case.  This is because the transformation obtained by coupling a solution with 

any rotation around this line remains a solution.  The second case, referred to as the 

parallel-ray case, occurs when all three rays are parallel to each other, as will be analyzed in 

the orthographic-projection case (i.e., case 5) in Section III.B.  These two singular cases will 

be employed for removing unsuitable triples of 3D points in finding an initial estimation for 

the NPnP problem, as shown in Section IV.A.  A more formal analysis of singular cases of 

the general NPnP problem will be given in Section IV.B. 

B.  Special Cases of the NP3P Problem 

To solve a general NP3P problem requires solving the eighth-order polynomial equations as 

described above.  In this section, we investigate some special cases of the NP3P problem 

whose solutions can be obtained by solving polynomial equations whose orders are at most 

four instead of eight.  Since there are analytical representations of the solutions of a 

fourth-order polynomial equation, the solutions of these special cases can be expressed in 

closed forms. 

Case 1 [Partially Parallel]: We call an NP3P problem partially parallel if any two of the three 
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lines, l1, l2, l3, are parallel.  Without loss of generality, assume that l1 and l2 are parallel, i.e., 

θ12=0, and thus sinθ12=0.  The term B2 in (8) then becomes B2 = a2−d12
2−t1

2sin2θ12 = a2−d12
2, 

which is a constant term irrelevant with t1.  Hence, (8) become fourth-order polynomial 

equations in terms of t1.  Therefore, analytical solutions can be obtained for the partially 

parallel model. 

Case 2 [Perspective]: In this case, the three lines, l1, l2, and l3, intersect at a common point, 

which forms the standard P3P problem which has been investigated in previous works [9][14].  

According to our formulation, d1=d2=d3=0 and d12=d13=d23=0 in this case, and (1), (3) and 

(4) degenerate to the same forms of equations (1)-(3) of [14].  It has been shown in [14] that 

a fourth-order polynomial equation can be derived from those three equations.  Recently, an 

algorithm, CASSC, was proposed to find complete and robust real-number solutions to the 

P3P problem [12]. 

Case 3 [Parallel Plane]: We refer to the NP3P problem as the case of parallel plane if there 

are three parallel planes, VP1, VP2, and VP3, such that the three rays, l1 = (c1, v1), l2 = (c2, v2), 

and l3 = (c3, v3) lie on VP1, VP2, and VP3, respectively, as shown in Figure 3(a) (however, 

the three rays are not necessarily parallel to each other).  This case cannot be analyzed 

easily by using the coordinate system as defined in Section III.A.  Therefore, a new 

coordinate system is used where the origin is c1, the x-axis is along v1 (i.e., the direction of 

l1), the z-axis is along the normal of VP1, and the y-axis is the cross product of z and x axes, 

respectively.  Since VP1 is the x-y plane of this coordinate system and both VP2 and VP3 

are parallel to VP1, ck can be represented as (ckx, cky, Lk) and vk can be represented as (vkx, vky, 

0) for k = 2 and 3, where vkx, vky, ckx, cky∈ ℛ and Lk is the distance between VP1 and VPk, k = 

2 or 3.  Hence, the coordinates of the transformed points, Q1, Q2, and Q3 in this coordinate 

system are Q1=(d, 0, 0), Q2=(c2x+s1v2x, c2y+s1v2y, L2), and Q3=(c3x+s2v3x, c3y+s2v3y, L3), 
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respectively, where s1, s2∈ ℛ and d is the distance between c1 and Q1.  According to the 

three edge lengths {a, b, c} of the triangle formed by Q1, Q2, and Q3, we have the following 

equations in terms of three unknowns s1, s2 and d: 

(c2x+s1v2x−d)2+(c2y+s1v2y)2+L2
2 = a2      (9) 

(c3x+s2v3x−d)2+(c3y+s2v3y)2+L3
2 = b2      (10) 

(c2x+s1v2x−c3x−s2v3x)2+(c2y+s1v2y−c3y−s2v3y)2+(L2−L3)2 = c2.    (11) 

By eliminating the unknown d in (9) and (10), the following equation can be derived: 

c2x+s1v2x±(a′−α2)1/2 = c3x+s2v3x±(b′−β2)1/2 

⇒ (c2x+s1v2x−c3x−s2v3x)2 = b′−β2+a′−α2±2([b′−β2][a′−α2])1/2,   (12) 

where a′=a2−L2
2, b′=b2−L3

2, α=c2y+s1v2y, and β=c3y+s2v3y.  By substituting 

(c2x+s1v2x−c3x−s2v3x)2 in (11) with the right-hand side of (12), we have 

b′−β2+a′−α2±2([b′−β2][a′−α2])1/2+(α−β)2 = c′, where c′=c2−(L2−L3)2.  Hence 

b′+a′±2([b′−β2][a′−α2])1/2 = c′+2αβ 

⇒ ±2([b′−β2][a′−α2])1/2 = d′+2αβ (where d′=c′−b′−a′) 

Figure 3.  (a) Illustration of parallel plane case.  (b) Illustration of the linear pushbroom 
camera model. 
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⇒ 4([b′−β2][a′−α2]) = (d′+2αβ)2 

⇒ 4a′b′−4a′β2−4b′α2+4α2β2 = d′2+4d′αβ+4α2β2 

⇒ 4a′β2+4b′α2+4d′αβ = 4a′b′−d′2.                     (13) 

In addition, by substituting s1=(α−c2y)/v2y and s2=(β−c3y)/v3y into (11), we have another 

equation in terms of α and β. 

(c2x+(v2x/v2y)(α−c2y)−c3x−(v3x/v3y)(β−c3y))2+(α−β)2 = c′.         (14) 

Since both (13) and (14) are quadratic equations in terms of α and β, a fourth-order 

polynomial equation in terms of a single variable α (or β) can be derived by eliminating 

another unknown β (or α) from (13) and (14).  Hence, the pose estimation problem of the 

parallel-planes case can be solved analytically as well. 

Case 4 [Linear Pushbroom]: All the rays of a linear pushbroom camera [11] are emitted 

from a line (referred to as the line of motion) and lie on parallel planes (referred to as the 

view planes), as shown in Figure 3(b).  The linear pushbroom camera model can be used to 

model X-ray imageries and local behaviors of satellite images.  It is obvious that the linear 

pushbroom camera model is a special case of the parallel plane case analyzed above, and 

thus can be solved analytically as well. 

Case 5 [Orthographic]: In orthographic projection all rays are parallel, which is both a special 

case of the partially parallel model and the parallel plane model discussed above.  In this 

case, cosθ12= cosθ13= cosθ23=1 and d1= d2= d3= 0.  Therefore, (1), (3) and (4) become 

(t2−t1)2 = a*, (t3−t1)2 = b*, and (t3−t2)2 = c*, 
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respectively, where a*=a2−d12
2, b*=b2−d13

2, and c*=c2−d23
2.  They can be further 

simplified to the following three linearly dependent equations in terms of t1, t2, and t3:  

t2−t1=±a'', t1−t3=±b'', and t3−t2=±c'', 

where (a'')2=a*, (b'')2=b*, and (c'')2=c*.  Hence, the solutions exist if and only if 

±a''±b''±c''=0, and in this case there are infinite number of solutions, t2=t1±a'' and t3=t1±b'', 

for all t1.  The existence of an infinite number of solutions is because the projected image 

remains the same under orthographic projection when an object is translated along the ray 

direction. 

IV. Non-Perspective N Point (NPnP) Problem 

The analysis in Section III shows that exact solutions can be identified for the NPnP problem 

when n=3.  However, when n>3, exact solutions may not exist due to image noises.  It is 

therefore necessary to find approximate solutions.  In this paper, we developed a systematic 

method that finds an initial estimate of the approximate solutions first, as introduced in 

Section IV.A.  Then, an iterative optimization procedure is proposed for refining the 

solutions, as introduced in Section IV.B. 

A.  Initialization for the NPnP Problem 

The idea of our approach to initialization of the NPnP problem is to exploit the solutions of 

the three-point case.  In general, there are n!/(3!(n−3)!) triples of 3D-2D correspondences 

that can be served as initial estimates.  The desire is to find that one that is better than the 

others (better in the sense that the triple gives a more accurate estimate than the other triples).  

The initialization procedure is shown as follows. 

Algorithm 1: {Consider n 3D points, P1, P2, ..., Pn, with known coordinates w.r.t. a WCS, 
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and the corresponding 2D image points p1, p2, ..., pn, where pm∈ DI for all m=1, …,n.  

Assume that the rays associated with these points are (c1, v1), (c2, v2), …, (cn, vn), and the full 

lines containing these rays are l1, l2, ..., ln, w. r. t. the CCS, respectively.} 

Step 1.  Repeat Steps 1.1-1.4 K times, where K is a positive integer. 

1.1. Select three points in {P1, P2, ..., Pn} randomly.  Assume that they are Pi, Pj, and Pk. 

1.2. If one of the following conditions happens, then go back to Step 1: (i) max(|vi
Tvj|, |vj

Tvk|, 

|vi
Tvk|) is smaller than a given threshold.  (ii) The angle between the two vectors, Pji and 

Pki, where Pji=Pj−Pi and Pki=Pk−Pi, is too small.  (iii) The area of the triangle formed by 

the three selected points in the image, pi, pj, and pk, is too small. 

1.3. Compute the rigid transformations between WCS and CCS, which are associated with 

the three point-line pairs, (Pi, li), (Pj, lj), and (Pk, lk). 

1.4. For each rigid transformation computed in Step 1.3, say, (R, t), transform all the other 

3D points with this rigid transformation by P'm=RPm+t, where m=1, …, n.  Compute the 

sum of squared distances (SSD) between P'm and lm, m=1, …,n.  Record both the SSD 

value e and its corresponding rigid transformation (R, t). 

Step2.  Let e be the smallest among all the SSD values recorded in Step 1.3, and let (R, t) be 

the recorded rigid transformation corresponding to e.  Output (R, t). 

The above algorithm computes a rigid transformation with the smallest error among several 

selections of the triples of point-line correspondences.  In Step 1.2, some triples of point-line 

correspondences randomly selected from Step 1.1 are dropped because they are not 

appropriate for pose estimation.  Rule (i) drops the triples whose three rays are too parallel 

to each other.  Rule (ii) drops the triples whose three world points are too co-linear.  Both 

(i) and (ii) drop the triples that are close to the singular cases shown in the end of Section 
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III.A, which lead to infinite approximate solutions, and thus are not suitable to be employed.  

Rule (iii) in Step 1.2 drops the triples whose three image points are too close to each other.  

This is employed because the image domain is discrete in practice and the three image points 

of the triples that are too close to each other is easily affected by quantization noises.  In our 

experience, the pose computed by Algorithm 1 can serve as a good initial estimate for the 

NPnP problem.  The iteration time, K, is selected by balancing between accuracy and time.  

The larger the K, the more the triples are used, and thus the higher the chance of having a 

more accurate solution.  Too large a K leads to a long period of execution time for 

Algorithm 1, but may also induce a faster convergence speed for Algorithm 2 that will be 

introduced in Section IV.B.  A simulation showing the influence of K on the accuracy of the 

estimated pose is given in Section V.  In addition, note that Algorithm 1 copes with the case 

in which 3D-2D correspondences are available.  By augmenting it with some further 

processing, this algorithm can be extended to a RANSAC algorithm [9] that can handle 

outliers of 3D-2D correspondences. 

Another issue worthy of being addressed is the computation of rigid transformations 

associated with the three pairs, (Pi, li), (Pj, lj), and (Pk, lk), in Step 1.3.  A generally effective 

way is to use the method for solving the NP3P problem as introduced in Section 3.1, which 

obtains rigid transformations that transforms Pi, Pj, and Pk to points lying on li, lj, and lk, 

respectively.  However, the computational efficiency may be diminished due to the 

following two reasons.  (1) It requires finding all the real-number solutions of several 

eighth-order polynomial equations which can only be solved numerically.  (2) There may be 

many solutions satisfying a NP3P problem, and all of them need to be further processed in 

Step 1.4. 

To increase the efficiency of this algorithm, we suggest using a perspective camera to 

approximate the GID being considered.  As a result the computations involved in Step 1.3 
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are reduced to finding solutions of a P3P problem instead of a NP3P one.  The number of 

real-number solutions of a P3P problem is at most 4, which is much smaller than that of the 

NP3P one.  Although the solution obtained by solving a P3P problem is an approximated 

one compared with its NP3P counterpart, it usually suffices as an initial estimate for a NPnP 

problem, by considering that the NP3P solution itself serves as an approximation to the NPnP 

problem. 

In the remainder of this section, we will focus on how to approximate a GID with a 

perspective camera.  This problem is equivalent to finding a virtual center and a virtual 

image plane, as shown in Figure 4(a).  First, the virtual center is obtained as a 3D point, Pc, 

that satisfies the following criterion: 

Pc = 
P

minarg ∑
=

n

m
dist

n 1

21 (P,lm), P∈ ℛ3                   (15) 

where dist(P, lm) is the distance between P and lm.  Since the objective function to be 

minimized in (15) is a quadratic polynomial in terms of Px, Py, and Pz (where P=(Px, Py, Pz)), 

it has a closed-form solution that can be solved via standard LMS analysis. 

3D virtual 
center 

Virtual plane

(a) 

Figure 4.  (a) Approximate a GID with a perspective camera containing a virtual center and a
virtual image plane.  (b) A 2D example of the virtual center, virtual plane and approximated
lines.  (c) A 2D illustration of the infinite-plane approximation strategy. 
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Now, consider the selections of the virtual image plane.  As seen in the 2D illustrative 

example shown in Figure 4(b), when a virtual plane is selected, the intersection points, g1, ..., 

gn, of this plane and all the rays of the GID can be computed.  The line l'm passing through 

Pc and gm then serves as an approximated line of lm for all m=1, ...,n. 

Hence, given a 3D point P lying in l'm, its distance to lm is, however, dependent on how far P 

is away from gm.  The farther that P is away from gm, the larger dist(P, lm) becomes.  

Consequently, the accuracy of such an approximation is distance-dependent.  When P is 

away from the virtual plane (e.g., P is a distant 3D point), the approximation is likely to be 

very poor.  Since no prior knowledge about the locations of the 3D points to be imaged with 

a GID is given, we propose an infinite-plane approximation strategy for approximating the 

3D rays of GID by using the rays of a perspective imaging device.  In this strategy, the 

infinite plane is selected as the virtual plane, and line l'm is thus parallel to line lm so that it 

approximates for all m=1, ..., n.  Hence, the distance between lm and l'm is a constant, dist(Pc, 

lm).  In other words, the distance from any point P on the approximated line l'm to the 

original line lm remains fixed by using this strategy.  In contrast, if the virtual plane is 

selected ‘not’ distant to the virtual center Pc, the distance from a point P on the approximated 

line l'm to the original line lm will vary with the distance from P to Pc, which then leads to a 

case in which the accuracies of virtual-plane approximation are not even for the 3D points in 

space.  A 2D illustrative example of the infinite-plane strategy is shown in Figure 4(c).  

Therefore, the advantage of this approximation strategy is that the accuracy of the 

approximation is independent of the locations of the 3D points, which allows the 3D points to 

be treated evenly in the pose-estimation process. 

After approximating the GID to be processed with a perspective imaging model as described 

above, the method for solving the P3P problem as introduced in Section III.B can then be 

used to find the required rigid transformations in Step 1.3 of Algorithm 1. 
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B.  Convergent Iterations for NPnP 

Given an initial estimate of the rigid transformation between WCS and CCS, we further 

refine it by minimizing an objective function iteratively.  Consider that the projection of a 

point P onto a ray l = (c,v) can be represented as: 

Proj(P;l) = vvT(P−c)+c.                           (16) 

The orthogonal vector from P to Proj(P;l) is thus 

Proj(P;l)−P = (vvT−I)(P−c),                         (17) 

where I is the 3 by 3 identity matrix.  The length of the vector defined in (17) is the distance 

between P and l.  The objective function being minimized in our approach is E = 

tR ,
min e(R,t), where e(R,t) is defined as 

e(R,t) = ∑
=

n

mn 1

1 ||(vmvm
T−I)(RPm+t−cm)||2 = ∑

=

n

mn 1

1 ||RPm+t−Proj(RPm+t;lm)||2.      (18) 

To find the optimal solution (R*, t*) of (18), we adopt the iterative-closest point (ICP) 

principle introduced by Besl et al. [3].  Algorithms based on the ICP principle always 

converge monotonically to minimum values of a mean-square distance metric.  This rate of 

convergence is more rapid than that of generic non-linear optimization methods (such as the 

Gauss-Newton method).  Although the ICP principle does not guarantee that the global 

minimum can always be found, it does suggest that the global minimum (or a very 

approximate local minimum) can be obtained from a very broad range of initial guesses (our 

simulation result as shown in Section V also supports this phenomenon).  The ICP principle 

was widely adopted for the registration of partially overlapping range images [5][28].  In the 



Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence 

 19

past, the ICP principle has also been adopted for solving pose estimation problems for the 

perspective case [32][6].  Lu et al. [23] have recently proposed a method that is very similar 

to the ICP principle for solving the PnP problem as well, which has also shown that such a 

scheme is faster and globally convergent. 

An algorithm based on the ICP principle contains the iteration of the following two stages:  

(1) Find the closest point in the corresponding line for each 3D point.  (2) Find a rigid 

transformation that transforms the 3D points to their closest points in a least-squared-error 

manner.  The iterative refinement method proposed for solving the NPnP problem based on 

the ICP principle is shown in the following. 

Algorithm 2: {The same variables defined in Algorithm 1 are used} 

Step 0.  Let (R0, t0) be the initial rigid transformation estimated using Algorithm 1.  Set 

Eold←∞. 

Step 1.  Compute P*m=R0Pm+t0 for all m= 1, ..., n. 

Step 2.  For each point P*m, find its closest point, P'm, in lm.  That is, P'm = Proj(P*m;lm) = 

vvT(P*m−c)+c for all m= 1, ...,n. 

Step 3.  Find the rigid transformation that minimizes the sum of squared distances between 

Pm and P'm, m= 1, …,n.  That is, find (Rnew, tnew) that minimizes E = 

∑
=

n

mn 1

1 ||RnewPm+tnew−P'm||2. 

Step 4.  If (Eold − E)/Eold is smaller than a pre-defined positive threshold, then stop.  

Otherwise, set Eold←E, R0←Rnew, t0←tnew, and go to Step 1. 

In Step 3 of Algorithm 2, the least-squared-error transformation between two sets of 3D 
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points has closed-form solutions, which can be solved via the quaternion approach [16], the 

SVD approach [1], the orthonormal-matrices approach [17], or the dual-quaternion approach 

[31].  In our work, the SVD approach proposed by Arun et al. [1] was adopted because it 

has been shown to have the best overall accuracy among these methods [21]. 

In the following, some limitations of our method are formally analyzed.  Consider that our 

method consists of two phases, the initial-estimation phase (Algorithm 1) and the ICP phase 

(Algorithm 2).  The major step of Algorithm 1 is to compute the solutions of the NP3P 

problem, and that of Algorithm 2 is to find the least-squared-error (LSE) rigid transformation 

between two 3D point sets.  We have shown in Section III.A that the parallel-ray and the 

co-linear cases are both singular cases of the NP3P problem.  Note that the co-linear case is 

also a singular case for estimating the LSE rigid transformation between two 3D point sets 

[21].  By joining the singular cases of both phases, we can see that the two singular cases of 

the NP3P problem remain singular for the NPnP problem.  We demonstrate this by giving a 

formal analysis of the error function (18) as shown below. 

First, consider the case that all the rays are parallel to each other.  In this case, all the unit 

vectors vm in (18) are the same.  Without lost of generality, let vm=u for all m, then (18) 

becomes E=
tR,

min ∑m||(uuT−I)(RPm+t−cm)||2= 
tR,

min ∑m||(uuT−I)(RPm+t−cm)+σuuTu−σu||2 for 

all σ∈ ℛ because u is a unit vector.  Hence, 

E=
tR,

min ∑m||(uuT−I)(RPm+t−cm)+(uuT−I)σu||2=
tR,

min ∑m||(uuT−I)(RPm+(t+σu)−cm)||2, which 

shows that if (R, t) is a solution, then (R, t+σu) is also a solution for all σ∈ ℛ. 

Secondly, consider the case where all the 3D points are in a line.  In this case, the point Pm 

can be represented as Q0+σmw for all m, where w is a unit vector along this line, Q0 is an 

arbitrary point on this line, and σm∈ ℛ, respectively.  Note that any rotation can be 
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represented as rotating an angle θ about some axis.  Let Rθ be the rotation of rotating θ 

around the ray (Q0, w).  Then, Rθ satisfies that Rθ(Q0+σmw)=Q0+σmw, and (29) becomes 

E=
tR,

min ∑m||(vmvm
T−I)(R(Q0+σmw)+t−cm)||2=

tR,
min ∑m||(vmvm

T−I)(RRθ(Q0+σmw)+t−cm)||2.  

Hence, if (R, t) is a solution, then (RRθ, t) is also a solution for all θ in this case.  The above 

analyses show that the pose of the GID can not be determined exactly with our method in the 

above two cases. 

In our experience, the ICP method performs well for solving the NPnP problem.  Global 

minimum (or a very approximate local minimum) can be found from a broad range of initial 

estimates, as will be shown in the simulation in Section V.  Nevertheless, ICP does not 

guarantee finding the global minimum for all cases, and therefore may at times get stuck at a 

strong local minimum.  To solve this problem, a common strategy is to use multiple initial 

estimates for re-starting and running the ICP algorithm multiple times [7][27].  Note that our 

method can be easily modified to implement this idea.  In Algorithm 1, since K rigid 

transformations have been found by solving K distinct P3P problems, each transformation 

can serve as an initial estimate to re-start the ICP method in Algorithm 2.  By doing so, there 

is more opportunity to seek out a better solution when the ICP method fails to find an 

accurate one in previous trials. 

V.  Simulations 

Some simulations were performed to evaluate the accuracy of the proposed method for 

solving the NPnP problem.  First, a GID containing 50 rays is defined in 3D space.  The 

end point c of each ray is randomly selected in a disk whose radius is 10 and the directional 

vector v of this ray is selected randomly in space.  After a GID is defined in this way, a 3D 

point is picked randomly on each ray.  Then, these 50 points are translated and rotated via a 

rigid transformation Tsim=(Rsim, tsim).  Our purpose is to estimate the rigid transformation 
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Tsim, given the pairs of rays and transformed 3D points.  In our simulation, Rsim's are 

synthesized using Euler angles.  Several rotations whose angles are within a range [0, Wsim] 

are selected, and the translations tsim's are synthesized randomly.  In our simulation, Wsim is 

selected from 20° to 140°, as shown in Figure 5(a).  With Algorithm 1 (K is set to 100) and 

the approximated GID as introduced in Section IV.A, an estimated rigid transformation Tsim 

can be obtained from a selected triple of pairs of point-ray correspondences for each (Rsim, 

tsim).  By applying the estimated transformation, the 3D-distance error (as defined to be the 

squared root of (18)) was obtained for each (Rsim, tsim), and Figure 5(a) shows an average of 

the errors for each range specified by Wsim. 

Meanwhile, the rigid transformation is obtained by means of only three pairs.  It can then 

be further refined by including more pairs of point-ray correspondences using our approach.  

By using this transformation as an initial estimation for iterative refinement with Algorithm 

2, a new rigid transformation can be obtained from all 50 pairs of point-ray correspondences.  

Figure 5(a) also shows the 3D-distance error (the squared root of E) by applying the newly 

generated rigid transformation.  As can be seen, no matter how large the range of the 

rotation angles are, our method (the combination of Algorithms 1 and 2) can always 

converge to the correct solutions that correspond to E=0.  This shows that our method can 

converge to the global minimum within a very broad range of initial guesses.  To make a 

comparison, two widely adopted iterative refinement methods, the Gauss-Newton (G-N) 

method and the Levenberg-Marquardt (L-M) method 2, are also used to refine the initial 

rigid transformation obtained via Algorithm 1, as shown in Figure 5(b).  In this simulation, 

the maximal number of iterations (MaxIter) allowed is set to be 10000, and the tolerance of 

the error value for stopping (TolFun) is set as 1e-5, for both G-N and L-M, respectively.  

                                                 
2 They were implemented with MATLAB via the command “lsqnonlin” in our simulation. 
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Figure 5(b) shows the 3D-distance error.  As can be seen, our proposed method converges 

more accurately than the other two.  In general, the efficiency of an iterative process highly 

depends on the number of iterations.  Figure 5(c) further shows the number of iterations 

required for G-N, L-M, and our Algorithm 2, respectively.  It reveals that our method, 

based on the ICP principle, is far more efficient than the other two. 

We have also varied some other factors in our method to see their influences.  First, we 

show the influences of the iterative times, K, in Algorithm 1, by varying K from 20 to 120 

(where Wsim is fixed to 50°).  The 3D-distance error of the initial transformation, obtained by 

using Algorithm 1, is shown as a red line in Figure 6(a).  As can be seen, the 

pose-estimation error decreases when K increases, which is very reasonable because the more 

trials that are being done, the better the chances are to find a better solution.  Nevertheless, 

an interesting result is that, no matter what K is, an initial pose can always be iteratively 

refined via the ICP principle of Algorithm 2 to an exactly correct pose, as shown with the 

green line in Figure 6(a).  Hence, K has an influence on the accuracy of the initial poses but 

is without influences on the final poses when our method is being used in this simulation.  

Secondly, we investigated the influence of the dropping rules of Step 1.2 of Algorithm 1.  

The blue line in Figure 6(a) shows the average 3D-distance error of the initial poses obtained 

by using Algorithm 1, where the dropping rules in Step 1.2 were not used.  It is clear that the 

dropping rules are useful for finding a better initial estimation of the GID pose.  Also, 

similar to the case of varying the rotation angles and K, exactly correct poses can always be 

found by further refining with Algorithm 2, whether the dropping rules have been applied or 

not (green line of Figure 6(a)).  The above simulations reveal that the global minimum (or a 

very approximate local minimum) can be obtained from a very broad range of initial guesses, 

by using the ICP principle in Algorithm 2.  Although the dropping rules have no significant 

influences on the final poses obtained with our method in the simulation, they are helpful to 
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reduce the iteration time of Algorithm 2 because better initial estimates have been found with 

Algorithm 1 by using these rules, as shown in Figure 6(b). 

In the above, ideal GID models without imaging noise were considered, and thus the error 

could be minimized to zero.  In the following simulation, the same GID model as defined in 

the above was used, and some noises are added to the GID.  In this simulation, a 3D point is 

randomly picked on each ray such that the distance between this 3D point and the end point is 

within a range [10, 500].  Hence, such a configuration simulates a situation where the width 

of the GID is about 10 centimeters, and it is used to take images of objects that are within a 

range of 5 meters away from it.  These 50 points are translated and rotated via a rigid 

transformation Tsim=(Rsim, tsim), where the Euler angles of Rsim are selected within [0°, 50°] 

and tsim is selected randomly.  Then, we add some imaging noises to the simulation process.  

The noise is added by varying the directional vector of each ray within a stereo angle.  To 

determine reasonable noise ranges (i.e., ranges of the stereo angles) for simulation, we 

assume that the angle of viewing scope of the GID is W, and it has roughly 512 pixels in a 

row.  If the imaging error is about 3 pixels, then the ray direction deviates roughly 3W/512 

degrees, which is smaller than 2.2° (≈ 3×360°/512) because W is at most 360°.  According 

to the above analysis, the noise of the stereo angle is set to range from Ssim=0.5 degrees to 5 

degrees (i.e., about 0.7 to 6.8 pixel error if it is the case considered above).  Within each 

noise range [0, Ssim], several trials were performed.  To save the simulation time and taking 

practical situations into account, the maximal number of function evaluations allowed 

(Maxfunevals) for both G-N and L-M are set as 1000 in this simulation.  The average errors 

versus noise ranges thus obtained are shown in Figure 7(a), and it shows the better 

performance of our method.  In addition, we found that the number of function evaluations 

required for both G-N and L-M are always 1000.  Comparing the number of function 

evaluations required for different methods as shown in Figure 7(b), our method also 
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demonstrates a greater efficiency in the presence of image noise.  Looking at the influence 

of the iterative time K of algorithm 1 when image noise is presented, Figure 7(c) further 

shows that the 3D-distance errors obtained by setting Ssim=1°.  Similarly, the larger is K, the 

more accurate is the estimated pose via triple of points with Algorithm 1.  Nevertheless, no 

matter the size of K is, Algorithm 2 can always converge to a pose with the same accuracy 

from all initial poses, as shown in Figure 7(c). 

VI.  Experimental Results 

An omni-directional camera, composed of a lens and a curved mirror, is used in our 

experiment, as shown in Figure 8.  The reflection curve of this camera is designed to 

maximize the average image resolutions within a range of viewing angles, but not 

deliberately to satisfy the single view-point constraint [2].  Hence, such an imaging device is 

a non-perspective GID, but with higher image resolutions and better point-spread properties 

than those designed to satisfy the single view-point constraint.  In the following, an 

implementation issue of investigating the intrinsic model is first discussed in VI.A.  Then, 

the experimental results are shown in VI.B. 

A.  Intrinsic model investigation 

This paper focuses on the pose-estimation problem of a GID under the situation that the 

intrinsic model of a GID is given.  That is, for all (i, j)∈ DI, the corresponding ray, L(i, j), 

with respect to a CCS of the GID is known.  In the following, we will introduce the method 

used in our experiment for investigating the intrinsic model.  The idea behind it is similar to 

that in [10]. 

Inspired by an image-based rendering method [20], we use two disjointed surfaces for 

establishing the intrinsic model L(⋅,⋅) in our work.  Figure 9(a) shows a 2D illustration of our 
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method.  Suppose that S1 and S2 are two parametric surfaces (e.g., planes or cylinders) with 

known parameters w. r. t. a CCS.  Hence, each point contained in S1 or S2 has known 3D 

coordinates w. r. t. the CCS.  In addition, assume that each ray of the GID to be investigated 

intersects some points in S1 and some other points in S2, respectively.  For example, let L(i, j) 

intersect S1 in P1 and S2 in P2, respectively.  If we can identify P1 and P2 in the image, then 

L(i, j) can be set as the ray starting from P1 and passing through P2.  Here, P1 and P2 are 

referred to as the starting and passing point of (i, j), respectively. 

In practice, two opaque calibration surfaces, S1 (inner) and S2 (outer), are used, both of which 

contain some calibration marks with known coordinates as shown in Figure 9(b).  However, 

it is worth noting that the two calibration surfaces need not necessary be similar, and that the 

marks can be randomly located on each surface.  The only critical restriction for these two 

surfaces is that the 3D coordinates of the calibration marks on them have to be known with 

reference to a unified coordinate system.  First, the GID takes an image of S1.  Then, S1 is 

taken off and the GID takes an image of S2.  Assume that these two images are I1 and I2, 

respectively.  Given an (i, j)∈ DI, if it happens to be the imaging positions of some 

calibration mark, M, in I1, as well as some other calibration mark, M′, in I2, then the 3D 

coordinate of M can serve as the starting point, and that of M′ can serve as the passing point, 

of (i, j), respectively.  L(i, j) can then be set as the ray from the starting point toward the 

passing point.  Otherwise, if (i, j) is not the imaging positions of any calibration marks in 

either I1 or I2, then the 3D coordinates of some calibration marks imaged in a neighborhood 

of (i, j) are used to interpolate the starting and the passing points.  The cubic spline [25] is 

used here to interpolate the starting and the passing points. 

B.  Results 

In practice, the quantization error, image correspondence error, and the estimation error of the 
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intrinsic model all can generate errors to the estimated positions and orientations.  To verify 

the accuracy of our method, two such omni-directional GIDs were used, and thus a 

non-perspective stereo pair was formed.  We put this stereo setup in an indoor environment, 

and some 3D points (totally 38 points) in this environment were measured in advance and 

employed for pose estimation, as shown in Figure 10.  After using the method introduced 

above, the poses of both imaging devices were estimated.  Hence, a calibrated stereo pair of 

omni-directional cameras was constructed, which can help us compute the 3D coordinate of 

any other point in this environment if its corresponding image points have been identified in 

both images.  In this way, we computed the coordinates of some 3D points in this 

environment and used them to verify the accuracy of the poses estimated with our method.  

The left part of Table I lists the errors measured for some right angles as shown in Figure 

11(a), while the right part of Table I lists the errors measured for some length ratios, where 

line 0 shown in Figure 11(b) serves as the unit length.  The relative error is the ratio of the 

difference between real and estimated values to the real value. 

In addition, since a stereo pair is formed, the correspondence of a point selected in one image 

should lie on a curve in the other image, as illustrated in Figure 12.  It is called the epipolar 

line in the perspective case, and is referred to as the matching curve here.  Figure 13(a) 

shows some points selected in one image.  If no errors occur, their associated matching 

curves should pass through the corresponding points in the other image.  Figure 13(b) shows 

the matching curves of the points shown in 13(a).  As can be seen, these matching curves all 

pass through the corresponding points in a close manner.  Table II shows the distances from 

the corresponding points to their associated matching curves, where these corresponding 

points are selected manually.  As can be seen, these distances are all very small (less than 

one pixel). 

In the next experiment, in order to test our method in a more complicated environment, a GID 
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stereo pair is formed such that one GID has a slant motion (where the slant angle is about 10°) 

with the other GID, as illustrated in Figure 14(a).  In addition, with more objects being 

added, the scene contains points with more 3D variations than those in the previous 

experiment, as shown in Figures 14(b) and 14(c).  After computing the GID poses with our 

method, Table III lists distances from some points to their associated matching curves (shown 

in Figure 14(d)).  The results of this experiment show again the effectiveness of our method. 

VII. Conclusions and Discussion 

A systematic method for pose estimations of generalized imaging devices is proposed in this 

paper.  Since the imaging devices considered in our framework may not be perspective, their 

pose estimation problem is referred to as the NPnP problem.  We have investigated the case 

when n=3 and presented how to find its exact solutions.  Some particularly useful special 

cases, such as the parallel plane, linear pushbroom, and partially parallel camera models, 

TABLE I.  Errors for some right angles and length ratios in experiment 1. 

 Real angle Estimated angle Relative Error Real length 
ratio 

Estimated length 
ratio 

Relative Error 

Case 1 90 89.9967 0.36*e-4 0.7550 0.7384 2.19*e-2 
Case 2 90 90.0017 0.20*e-4 0.8926 0.9005 0.88*e-2 
Case 3 90 90.0070 0.78*e-4 0.0624 0.0623 0.16*e-2 
Case 4 90 90.0138 1.54*e-4 0.1812 0.1809 0.16*e-2 
Case 5 90 90.0164 1.83*e-4 0.0990 0.1043 5.35*e-2 

TABLE II.  Distances to the associated matching curves in experiment 1. 

 Case 1 Case 2 Case 3 Case 4 Case 5 
Distance to the matching curve (in pixel) 0.378 0.153 0.378 0.300 0.209 

TABLE III.  Distances to the associated matching curves in experiment 2. 

 Case 1 Case 2 Case 3 Case 4 Case 5 
Distance to the matching curve (in pixel) 0.403 0.177 0.410 0.201 0.347 
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have also been investigated, and they were shown to have closed-form solutions. 

A random-selection strategy, which finds an initial approximation of the rigid transformation 

via a better triple of 3D-2D correspondences, was then developed for solving the NPnP 

problem when n>3.  To increase the efficiency of the initial-estimation stage, a perspective 

camera model was also proposed and used for approximating a GID.  An iterative 

refinement algorithm, based on the ICP principle that always converges monotonically to a 

minimum value, was developed for refining the rigid transformation initially estimated in a 

highly effective and efficient way.  Although a non-perspective imaging device was used in 

our experiment, the proposed method can be applied not only to non-perspective imaging 

devices, but to perspective ones as well.  The developed method also has potential to be 

used for pose estimation of a mounted multi-camera system by modeling this system with a 

single GID consisting of all the camera rays.  We conclude that our approach provides an 

effective way for pose estimation of general imaging devices. 
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Figure 5. (a) Average 3D-distance errors obtained using Algorithm 1 and Algorithm 2.  (b) 
Average 3D-distance error obtained using G-N, L-M and our (Algorithm 2) methods.  (c) 
Number of iterations associated with each method. 
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(a)         (b) 

Figure 6. (a) Average 3D-distance errors obtained by using Algorithm 1 (with and without 
using dropping rules) and Algorithm 2 in association with K, the number of iterations of 
Algorithm 1.  (b) Number of iterations of Algorithm 2 in association with K. 
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Figure 7. (a) Average 3D-distance error versus noise range.  (b) Number of function 
evaluations versus noise range using our method.  (c) Average 3D-distance errors obtained 
using Algorithm 1 and Algorithm 2 in association with K when noise is presented (Ssim=1°). 

 

 
 

 
 
 

 
(a)                                        (b) 

Figure 9.  (a) Two-dimensional illustration of the investigation of the intrinsic model of a 
GID, where S1 and S2 are two surfaces consisting of 3D points of known coordinates w. r. t. 
the CCS .  (b) The two surfaces, S1 (inner) and S2 (outer), used for estimating the intrinsic 
model. 

Figure 8.  The omni-directional camera used in our experiment, which is non-perspective. 
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(a) 

  
(b) 

Figure 10.  The images captured with the camera shown in Figure 8.  (a) The red points 
are the 3D points used for pose estimation.  (b) A stereo pair taken with the 
omni-directional cameras. 
 
 

  
(a)         (b) 

Figure 11.  The illustrations for estimations of some right angles and length ratios in 
experiment 1.  (a)The angles used for right-angle results.  (b)The lines used for the 
length-ratio results, where line 0 is the unit length. 
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Figure 12.  Illustration of the matching curve.
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Figure 13.  (a) Five points selected in one image of the stereo GID pair used in experiment 
1, where their enlarged local views are shown in (c).  (b) The matching curves of these 
points in the other image of the stereo pair. 

  
(b)                                            (c) 
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Figure 14.  (a) A slanted stereo GID pair.  (b) Five points selected in one image of the 
stereo GID pair used in experiment 2, where their enlarged local views are shown in (d).  
(c) The matching curves of these points in the other image of the stereo pair. 
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