Theory of Computation

course note prepared by

Tyng–Ruey Chuang

Week 1, Spring 2008

About This Course Note

- It is prepared for the course *Theory of Computation* taught at the National Taiwan University in Spring 2008.

- It is available from Tyng-Ruey Chuang’s web site:

 and released under a Creative Commons “Attribution-ShareAlike 2.5 Taiwan” license:

 http://creativecommons.org/licenses/by-sa/2.5/tw/

This course aims to cover . . .

- the development of computability theory using an extremely simple abstract programming language,

- the various different formulations of computability and their equivalence,

- the expressiveness and limitation of various kinds of automata and formal languages, and

- the basics of the theory of computational complexity.
By the end of this course, you should be able to . . .

- appreciate the existence of universal digital computers,
- understand there are well-defined functions that cannot be computed even by the universal computers,
- know that certain problems are truly harder than others,
- use various formalized computation models to solve your problems, and
- show that some problems are just too difficult for the models at hand.

Textbook

- Written for people who may know programming, but from a mathematical view of the subjects. Enjoyably readable but very rigorous.
- “It is our purpose . . . to provide an introduction to the various aspects of theoretical computer science for undergraduate and graduate students that is sufficiently comprehensive that . . . research papers will become accessible to our readers.” (the authors)
- We will cover just one half of the materials in the book.

Schedule (1/2)

02/20 Preliminaries; A Programming Language. (1.1–1.7; 2.1–2.2)
02/27 Computable Functions; Primitive Recursive Functions. (2.3–2.5; 3.1–3.4)
03/05 Coding Programs by Numbers. (3.5–3.8; 4.1)
03/12 The Halting Problem; Universality. (4.2–4.3)
03/19 Recursively Enumerable Sets. (4.4–4.5)
03/26 Diagonalization and Reducibility. (4.6–4.8)
04/02 A Computable Function That Is Not Primitive Recursive. (4.9)
04/09 Turing Machines. (6.1–6.4)
04/16 mid-term examination
Outline of Today’s Lecture

- Review some preliminary materials.
- Define an abstract programming language \mathcal{S} that is extremely simple.
- Write some programs in \mathcal{S}.

1 Preliminaries (1)

1.1 Sets and n-tuples (1.1)

Cartesian Product

- If S_1, S_2, \ldots, S_n are given sets, then we write $S_1 \times S_2, \times \cdots \times S_n$ for the set of all n-tuples (a_1, a_2, \ldots, a_n) such that $a_1 \in S_1, a_2 \in S_2, \ldots, a_n \in S_n$.
- $S_1 \times S_2, \times \cdots \times S_n$ is called the Cartesian product of S_1, S_2, \ldots, S_n.
- In case $S_1 = S_2 = \cdots = S_n = S$ we write S^n for the Cartesian product $S_1 \times S_2, \times \cdots \times S_n$.
1.2 Functions (1.2)

Functions

- A function f is a set whose members are ordered pairs (i.e., 2-tuples) and has the special property
 $$(a, b) \in f \text{ and } (a, c) \in f \implies b = c.$$
 We write $f(a) = b$ to mean that $(a, b) \in f$.

- The set of all a such that $(a, b) \in f$ for some b is called the domain of f. The set of all $f(a)$ for a in the domain of f is called the range of f.

- A partial function on a set S is a function whose domain is a subset of S. If a partial function on S has the domain S, then it is called a total function.

- We write $f(a) \downarrow$ and say that $f(a)$ is defined if a is in the domain of f; if a is not in the domain of f, we write $f(a) \uparrow$ and say that $f(a)$ is undefined.

Examples of Functions

- Let f be the set of ordered pairs (n, n^2) for $n \in \mathbb{N}$. Then, for each $n \in \mathbb{N}$, $f(n) = n^2$. The domain of f is \mathbb{N}. The range of f is the set of perfect squares. f is a total function.

- Assuming \mathbb{N} is our universe, an example of a partial function on \mathbb{N} is given by $g(n) = \sqrt{n}$. The domain of g is the set of perfect squares. The range of g is \mathbb{N}. g is not a total function.

- For a partial function f on a Cartesian product $S_1 \times S_2 \times \cdots \times S_n$, we write $f(a_1, \ldots, a_n)$ rather than $f((a_1, \ldots, a_n))$.

- A partial function f on a set S^n is called an n-ary partial function on S, or a function of n variables on S. We use unary and binary for 1-ary and 2-ary, respectively.

2 Programs and Computable Functions (2)

2.1 A Programming Language (2.1)

The Programming Language \mathscr{P}

- Values: natural numbers only, but of unlimited precision.

- Variables:
 - Input variables X_1, X_1, X_3, \ldots
 - An output variable Y
- Local variables Z_1, Z_1, Z_3, \ldots

- Instructions:

 $V \leftarrow V + 1$ Increase by 1 the value of the variable V.

 $V \leftarrow V - 1$ If the value of V is 0, leave it unchanged; otherwise decrease by 1 the value of V.

 IF $V \neq 0$ **GOTO** L If the value of V is nonzero, perform the instruction with label L next; otherwise proceed to the next instruction in the list.

- Labels: $A_1, B_1, C_1, D_1, E_1, A_2, B_2, C_2, D_2, E_2, A_3, \ldots$

- Exit label: E.

- All variables and labels are in the global scope.

2.2 Some Examples of Programs (2.2)

Programming in \mathcal{P}

- A program is a list (i.e., a finite sequence) of instructions.

- The output variable Y and the local variables Z_i initially have the value 0.

- A program halts when there is no more instruction to execute.

- A program also halts if an instruction labeled L is to be executed, but there is no instruction with that label.

- What does this program do?

 \[
 \begin{align*}
 [A] & \quad X \leftarrow X - 1 \\
 & \quad Y \leftarrow Y + 1 \\
 & \quad \text{IF } X \neq 0 \text{ GOTO } A
 \end{align*}
 \]

A Bug?

- What does this program do?

 \[
 \begin{align*}
 [A] & \quad X \leftarrow X - 1 \\
 & \quad Y \leftarrow Y + 1 \\
 & \quad \text{IF } X \neq 0 \text{ GOTO } A
 \end{align*}
 \]

- The above program computes the function

 \[
 f(x) = \begin{cases}
 1 & \text{if } x = 0 \\
 x & \text{otherwise.}
 \end{cases}
 \]
A Program That Computes $f(x) = x$

[A] \hspace{1em} IF $X \neq 0$ GOTO B
\hspace{2em} $Z \leftarrow Z + 1$
\hspace{2em} IF $Z \neq 0$ GOTO E

[B] \hspace{1em} $X \leftarrow X - 1$
\hspace{2em} $Y \leftarrow Y + 1$
\hspace{2em} $Z \leftarrow Z + 1$
\hspace{2em} IF $Z \neq 0$ GOTO A

- What does Z actually do?
- What does the following do?

\[
\begin{align*}
Z &\leftarrow Z + 1 \\
\text{IF } Z \neq 0 &\text{ GOTO } L \\
\end{align*}
\]

A **Macro** for Unconditional GOTO

- Before macro expansion:

[A] \hspace{1em} IF $X \neq 0$ GOTO B
\hspace{2em} GOTO E

[B] \hspace{1em} $X \leftarrow X - 1$
\hspace{2em} $Y \leftarrow Y + 1$
\hspace{2em} GOTO A

- After macro expansion:

[A] \hspace{1em} IF $X \neq 0$ GOTO B
\hspace{2em} $Z_1 \leftarrow Z_1 + 1$
\hspace{2em} IF $Z_1 \neq 0$ GOTO E

[B] \hspace{1em} $X \leftarrow X - 1$
\hspace{2em} $Y \leftarrow Y + 1$
\hspace{2em} $Z_2 \leftarrow Z_2 + 1$
\hspace{2em} IF $Z_2 \neq 0$ GOTO A

- *Fresh local variables are always used during macro expansions.*
Copy The Value of Variable X to Variable Y

- \[A\] IF $X \neq 0$ GOTO B
 GOTO E
- \[B\] $X \leftarrow X - 1$
 $Y \leftarrow Y + 1$
 GOTO A

- Anything wrong?
- The value of X is “destroyed” while copied to Y!

Copy The Value of Variable X to Variable Y, Continued

- \[A\] IF $X \neq 0$ GOTO B
 GOTO C
- \[B\] $X \leftarrow X - 1$
 $Y \leftarrow Y + 1$
 $Z \leftarrow Z + 1$
 GOTO A
- \[C\] IF $Z \neq 0$ GOTO D
 GOTO E
- \[D\] $Z \leftarrow Z - 1$
 $X \leftarrow X + 1$
 GOTO C

- Anything wrong?
- This program is correct only when Y and Z are initialized to the value 0. It cannot be used as a macro.

A Macro for $V \leftarrow V'$

- $V \leftarrow 0$
- \[A\] IF $V' \neq 0$ GOTO B
 GOTO C
- \[B\] $V \leftarrow V' - 1$
 $V \leftarrow V + 1$
 $Z \leftarrow Z + 1$
 GOTO A
- \[C\] IF $Z \neq 0$ GOTO D
 GOTO E
- \[D\] $Z \leftarrow Z - 1$
 $V' \leftarrow V' + 1$
 GOTO C
• Anything wrong?
• $V \leftarrow 0$ is not an instruction in S.

A Macro for $V \leftarrow 0$

L

\[
V \leftarrow V - 1
\]
\[
\text{IF } V \neq 0 \text{ GOTO } L
\]

A Program That Computes $f(x_1, x_2) = x_1 + x_2$

\[
Y \leftarrow X_1
\]
\[
Z \leftarrow X_2
\]
[B]

\[
\text{IF } Z \neq 0 \text{ GOTO } A
\]
\[
\text{GOTO } E
\]
[A]

\[
Z \leftarrow Z - 1
\]
\[
Y \leftarrow Y + 1
\]
\[
\text{GOTO } B
\]

Note that Z is used to preserve the value of X_2 so that it will not be destroyed during the computation.

A Program That Computes $f(x_1, x_2) = x_1 \cdot x_2$

• $Z_2 \leftarrow X_2$
[B]

\[
\text{IF } Z_2 \neq 0 \text{ GOTO } A
\]
\[
\text{GOTO } E
\]
[A]

\[
Z_2 \leftarrow Z_2 - 1
\]
\[
Z_1 \leftarrow X_1 + Y
\]
\[
Y \leftarrow Z_1
\]
\[
\text{GOTO } B
\]

• OK!

A Shorter Program That Computes $f(x_1, x_2) = x_1 \cdot x_2$?

• $Z_2 \leftarrow X_2$
[B]

\[
\text{IF } Z_2 \neq 0 \text{ GOTO } A
\]
\[
\text{GOTO } E
\]
[A]

\[
Z_2 \leftarrow Z_2 - 1
\]
\[
Y \leftarrow X_1 + Y
\]
\[
\text{GOTO } B
\]

• NO GOOD!
• Why?
• The macro for $f(x_1, x_2) = x_1 + x_2$

$$
Y ← X_1 \\
Z ← X_2 \\
[B] \text{ IF } Z ≠ 0 \text{ GOTO } A \\
\text{ GOTO } E \\
[A] \text{ Z ← Z - 1 } \\
Y ← Y + 1 \\
\text{ GOTO } B \\
$$

• Macro expanding $Y ← X_1 + Y$:

$$
Y ← X_1 \\
Z ← Y \\
[B] \text{ IF } Z ≠ 0 \text{ GOTO } A \\
\text{ GOTO } E \\
[A] \text{ Z ← Z - 1 } \\
Y ← Y + 1 \\
\text{ GOTO } B \\
$$

• The above actually computes $f(x_1, x_2) = 2 \cdot x_1$

A Program That Computes $f(x_1, x_2) = x_1 \cdot x_2$, Revisited

• Need to macro expand $Z_1 ← X_1 + Y$.
• After macro expansion:

$$
Z_2 ← X_2 \\
[B] \text{ IF } Z_2 ≠ 0 \text{ GOTO } A \\
\text{ GOTO } E \\
[A] \text{ Z_2 ← Z_2 - 1 } \\
Z_1 ← X_1 \\
Z_3 ← Y \\
[B_2] \text{ IF } Z_3 ≠ 0 \text{ GOTO } A_2 \\
\text{ GOTO } E_2 \\
[A_2] \text{ Z_3 ← Z_3 - 1 } \\
Z_1 ← Z_1 + 1 \\
\text{ GOTO } B_2 \\
[E_2] \text{ Y ← Z_1 } \\
\text{ GOTO } B \\
$$
Note on The Macro Expansion

- The output variable Y in the macro $f(x_1, x_2) = x_1 + x_2$ is now fresh variable Z_1 in the expanded form.
- The local variable Z in the macro $f(x_1, x_2) = x_1 + x_2$ is now fresh variable Z_3 in the expanded form (as variables Z_1 and Z_2 are already used).
- Fresh labels A_2, B_2, and E_2 are used in the expanded form (as the original labels A, B, and E are already used).
- The instruction GOTO E_2 only terminates the addition. The computation must continue to place following the addition. Hence, the instruction immediately following the addition is labeled E_2.
- *Unlimited supply of fresh local variables and local labels!*
- More about macro expansion next week.

A Final Example

- What does this program compute?

```
Y ← X_1
Z ← X_2
[C] IF Z ≠ 0 GOTO A
     GOTO E
[A] IF Y ≠ 0 GOTO B
     GOTO A
[B] Y ← Y − 1
    Z ← Z − 1
    GOTO C
```

- If we begin with $X_1 = 5$ and $X_2 = 2, \ldots$
- If we begin with $X_1 = 2$ and $X_2 = 5, \ldots$
- This program computes the following *partial function*

$$g(x_1, x_2) = \begin{cases}
 x_1 - x_2 & \text{if } x_1 \geq x_2 \\
 \uparrow & \text{if } x_1 < x_2
\end{cases}$$