1

Context-Free Languages (10)

1.1 Pushdown Automata (10.8)

Automata That Accept Context-free Languages?
What kind of automaton is needed for accepting context-free languages? For a Chomsky normal form context-free grammar Γ with terminals T, and additional bracket symbols P,

- Theorem 7.2 says $E_{P}(L(\Gamma_s)) = L(\Gamma)$.

Theorem 7.3 says $L(\Gamma_s) = R \cap \text{PAR}_n(T)$.

We shall first try to construct an appropriate automaton for recognizing $L(\Gamma_s)$.

R is accepted by a finite automaton; we need additional facilities to check if some given words belong to $\text{PAR}_n(T)$.

A first-in-last-out “pushdown stack” is needed to recognize $\text{PAR}_n(T)$.

Pushdown Stack

At each step, one or both of the following operations can be performed:

1. The symbol at the “top” of the stack may be read and discarded. This operation is called “popping the stack”.

2. A new symbol may be “pushed” onto the stack.

A stack can be used to identify a string as belonging to $\text{PAR}_n(T)$ as follows:

- A special symbol J_i is introduced for each pair $(i,)_i, i = 1, 2, \ldots, n$.

- As the automaton moves from left to right over a string, it pushes J_i onto the stack whenever it sees $(i$, and it pops the stack, eliminating a J_i, whenever it sees $)_i$.

- In case the string belongs to $\text{PAR}_n(T)$, the automaton will terminate with an empty stack after moving to the right end of the string.

Notations

Let T be a given alphabet and let $P = \{(i,)_i | i = 1, 2, \ldots, n\}$. Let $\Omega = \{J_1, J_2, \ldots, J_n\}$, where we have introduced a single symbol J_i for each pair $(i,)_i, 1 \leq i \leq n$. Let $u \in (T \cup P)^*$, say, $u = c_1c_2 \ldots c_k$, where $c_1, c_2, \ldots, c_k \in T \cup P$.

We define a sequence $\gamma_j(u)$ of elements of Ω^* to characterize the content of the pushdown stack as follows:

\[
\begin{align*}
gamma_1(u) &= 0 \\
gamma_{j+1}(u) &= \begin{cases}
gamma_j(u) & \text{if } c_j \in T \\
J_i \gamma_j(u) & \text{if } c_j = (i \\
\alpha & \text{if } c_j =)_i \text{ and } \gamma_j(u) = J_i \alpha \end{cases}
\end{align*}
\]

for $j = 1, 2, \ldots, k$. Note that if $c_j =)_i$, $\gamma_{j+1}(u)$ will be undefined unless γ_j begins with the symbol J_i for the very same value of i. Furthermore, if a particular $\gamma_r(u)$ is undefined, all $\gamma_j(u)$ with $j > r$ will also be undefined.
Words in \(\text{PAR}_n(T) \) Are Balanced

Definition. We say that the words \(u \in (T \cup P)^* \) is balanced if \(\gamma_j(u) \) is defined for \(1 \leq j \leq |u| + 1 \) and \(\gamma_{|u|+1}(u) = 0 \).

Theorem 8.1. Let \(T \) be an alphabet and let
\[
P = \{(i, i) \mid i = 1, 2, \ldots, n\}, \quad T \cap P = \emptyset.
\]
Let \(u \in (T \cup P)^* \). Then \(u \in \text{PAR}_n(T) \) if and only if \(u \) is balanced. The proof of Theorem 8.1 is via a series of easy lemmas.

Lemmas

Lemma 1. If \(u \in T^* \), then \(U \) is balanced. **Lemma 2.** If \(u \) and \(v \) are balanced, so \(uv \).

Lemma 3. Let \(v = (i \ u \)_i \). Then \(u \) is balanced if and only if \(v \) balanced. **Lemma 4.** If \(u \) is balanced and \(uv \) balanced, then \(v \) is balanced.

Lemma 5. If \(u \in \text{PAR}_n(T) \), then \(u \) is balanced. **Lemma 6.** If \(u \) is balanced, the \(u \in \text{PAR}_n(T) \).

Pushdown Automata

A pushdown automaton \(\mathcal{M} \) consists of

- a finite set of states \(Q = \{q_1, \ldots, q_m\} \), where \(q_1 \) is the initial state, and \(F \subseteq Q \) is the set of final, or accepting, states,

- a tape alphabet \(A \),

- a pushdown alphabet \(\Omega \),

- a symbol \(0 \) not in \(A \) nor in \(\Omega \), and

- a finite set of transitions which each is a quintuple of the form

\[
q_i a U : V q_j
\]

where \(a \in \tilde{A} = A \cup \{0\}, U, V \in \tilde{\Omega} = \Omega \cup \{0\} \).

Intuitively, if \(a \in A \) and \(U, V \in \Omega \), the quintuple reads: “In state \(q_i \) scanning \(a \), with \(U \) on top of the stack, move one square to the right, ‘pop’ the stack removing \(U \), ‘push’ \(V \) onto the stack, and enter state \(q_j \).”

Pushdown Automata, Continued

For the quintuple
\[
q_i a U : V q_j
\]
where either \(a, U, V \) is \(0 \), the transition is defined as the following.

- If \(a = 0 \), motion to the right does not take place and the stack action can occur regardless of what the symbol is actually being scanned.

- If \(U = 0 \), then nothing is to be popped.
• If \(V = 0 \), then nothing is to be pushed.

Furthermore, the distinct transitions \(q_i aU : V q_j \), \(q_ibW : Xq_k \) are called incompatible if one of the following is the case:

1. \(a = b \), and \(U = W \);
2. \(a = b \), and \(U \) or \(W \) is 0;
3. \(U = W \), and \(a \) or \(b \) is 0;
4. \(a \) or \(b \) is 0, and \(U \) or \(W \) is 0.

A pushdown automaton is deterministic if it has no pair of incompatible transitions.

Configurations of Pushdown Automata

Let \(u \in A^* \) and let \(M \) be a pushdown automaton. Then a **u-configuration for** \(M \) is a triple \(\Delta = (k, q_i, \alpha) \), where \(1 \leq k \leq |u| + 1 \), \(q_i \) is a state of \(M \), and \(\alpha \in \Omega^* \). Intuitively, the u-configuration \((k, q_i, \alpha) \) stands for the situation in which \(u \) is written on \(M \)’s tape, \(M \) is scanning the \(k \)th symbol of \(U \) — or, if \(k = |u| + 1 \), has completed scanning \(u \) — and \(\alpha \) is the string of symbols on the pushdown stack. We speak of \(q_i \) as the state of configuration \(\Delta \), and of \(\alpha \) as the stack contents at configuration \(\Delta \). If \(\alpha = 0 \), we say the stack is empty at \(\Delta \).

Configurations of Pushdown Automata, Continued

For a pair of \(u \)-configurations, we write \(u : (k, q_i, \alpha) \vdash_M (l, q_k, \beta) \) if \(M \) contains a transition \(q_i aU : V q_j \), where \(\alpha = U\gamma, \beta = V\gamma \) for some \(\gamma \in \Omega^* \), and either

1. \(l = k \) and \(a = 0 \), or
2. \(l = k + 1 \) and the \(k \)th symbol of \(u \) is \(a \).

Note that the equation \(\alpha = U\gamma \) is to be read simply \(\alpha = \gamma \) in case \(U = 0 \); likewise for \(\beta = V\gamma \).

Computation by Pushdown Automata

A sequence \(\Delta_1, \Delta_2, \ldots, \Delta_m \) of u-configurations is called a **u-computation by** \(M \) if

1. \(\Delta_1 = (1, q, 0) \) for some \(q \in Q \);
2. \(\Delta_m = (|u| + 1, p, \gamma) \) for some \(p \in Q \) and \(\gamma \in \Omega^* \), and
3. \(u : \Delta_i \vdash_M \Delta_{i+1} \), for \(1 \leq i < m \).

This u-computation is called accepting if the state at \(\Delta_1 \) is the initial state \(q_1 \), the state \(p \) at \(\Delta_m \) is in \(F \), and the stack at \(\Delta_m \) is empty. We say that \(M \) accepts the string \(u \in A^* \) if there is an accepting u-computation by \(M \). We write \(L(M) \) for the set of strings accepted by \(M \), and we call \(L(M) \) the **language accepted by** \(M \).
Pushdown Automata, Examples
See Examples M_1, M_2, and M_3 at page 312 in the textbook.

Separators and Deterministic Pushdown Automata

Theorem 8.2. Let Γ be a Chomsky normal form grammar with separator Γ_s. Then there is a deterministic pushdown automaton M such that $L(M) = L(\Gamma_s)$. **Proof Outline.**

By Theorem 7.3, for suitable n,

$$L(\Gamma_s) = R \cap \text{PAR}_n(T),$$

where R is a regular language, and T is the set of terminals of Γ. Let $P = \{(i_i) | i = 1, 2, \ldots, n\}$, and M_0 be a dfa with alphabet $T \cup P$ that accepts R. Let $Q = \{q_1, q_2, \ldots, q_m\}$ be the states of M_0, q_1 the initial states, $F \subseteq Q$ the accepting states, and δ the transition function. We construct a pushdown automaton M with tape alphabet $T \cup P$ and the same states, initial state, and accepting states as M_0. M is to have the pushdown alphabet $\Omega = \{J_1, \ldots, J_n\}$.

Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). The transitions of M are as follows for all $a \in Q$:

1. for each $a \in T$, $qa0 : 0p$, where $p = \delta(q, a)$;
2. for $i = 1, 2, \ldots, n$, $q_i0 : J_i p_i$, where $p_i = \delta(q, (i))$;
3. for $i = 1, 2, \ldots, n$, $q_i J_i : 0 \bar{p}_i$, where $\bar{p}_i = \delta(q, (i))$

Note that, by definition, M is deterministic. It remains to be proved that, for any $u \in L(\Gamma_s)$, there is an accepting u-computation by M (\Rightarrow). Conversely, we need to prove that, if M accepts $u \in (T \cup P)^*$, then there is a derivation of u in Γ_s (\Leftarrow). \square

Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). (\Rightarrow) Let $u = c_1c_2 \ldots c_K \in L(\Gamma_s)$, where $c_1, c_2, \ldots, c_K \in (T \cup P)$. Then there is a sequence of states $p_1, p_2, \ldots, p_{K+1} \in Q$ such that $p_1 = q_1, p_{K+1} \in F$, and $\delta(p_i, c_i) = p_{i+1}, i = 1, 2, \ldots, K$. Since $u \in \text{PAR}_n(T)$, by Theorem 8.1, u is balanced, so that $\gamma_j(u)$ is defined for $j = 1, 2, \ldots, K + 1$ and $\gamma_{K+1}(u) = 0$. We let

$$\Delta_j = (j, p_j, \gamma_j(u)), \quad j = 1, 2, \ldots, K + 1.$$

It follows that

$$u : \Delta_j \vdash_M \Delta_{j+1}, \quad j = 1, 2, \ldots, K.$$

Thus $\Delta_1, \Delta_2, \ldots, \Delta_{K+1}$ is an accepting u-computation by M. 5
Separators and Deterministic Pushdown Automata, Continued

Proof Outline (Continued). \(\Leftarrow\) Conversely, let \(\mathcal{M}\) accept \(u = c_1 c_2 \ldots c_K\). Thus \(\Delta_1, \Delta_2, \ldots, \Delta_{K+1}\) is an accepting \(u\)-computation by \(\mathcal{M}\). Let \(\Delta_j = (j, p_j, \gamma_j), j = 1, 2, \ldots, K + 1\). Since

\[u : \Delta_j \vdash \mathcal{M} \Delta_{j+1}, \quad j = 1, 2, \ldots, K \]

and \(\gamma_1 = 0\), we see that \(\gamma_j\) satisfies the defining recursion for \(\gamma_j(u)\) and hence, \(\gamma_j = \gamma_j(u)\) for \(j = 1, 2, \ldots, K + 1\). Since \(\gamma_{K+1} = 0\), \(u\) is balanced and hence \(u \in \text{PAR}_n(T)\). Finally, we have \(p_1 = q_1, p_{K+1} \in F\), and \(\delta(p_j, c_j) = p_{j+1}\). Therefore the dfa \(\mathcal{M}_0\) accepts \(u\), and \(u \in R\). We conclude that \(u \in L(\Gamma_s)\).

\(\square\)

Atomic Pushdown Automata

A pushdown automaton is called atomic (whether or not it is deterministic) if all of its transition are one of the following forms:

1. \(pa_0 : 0q\),
2. \(p0U : 0q\),
3. \(p00 : Vq\).

Thus, at each step in a computation an atomic pushdown automaton can read the tape and move right, or pop a symbol off the stack or push a symbol on the stack. But, unlike pushdown automata in general, it cannot perform more than one of these actions in a single step. We will later show that for any pushdown automata \(\mathcal{M}\), there is an atomic pushdown automata \(\bar{\mathcal{M}}\) such that \(L(\mathcal{M}) = L(\bar{\mathcal{M}})\).

Computation Records of Atomic Pushdown Automata

Let \(\mathcal{M}\) be a given atomic pushdown automata with tape alphabet \(T\) and pushdown alphabet \(\Omega = \{J_1, J_2, \ldots, J_n\}\). We set

\[P = \{(i,)i \mid i = 1, 2, \ldots, n\} \]

and show how to use the “brackets” to define a kind of “records” of a computation by \(\mathcal{M}\). Let \(\Delta_1, \Delta_2, \ldots, \Delta_m\) be a \(v\)-computation by \(\mathcal{M}\), where \(v = c_1 c_2 \ldots, c_K\) and \(c_k \in T, k = 1, 2, \ldots, K\), and where \(\Delta_i = (l_i, p_i, \gamma_i), i = 1, 2, \ldots, m\). We set

\[
\begin{align*}
 w_1 &= 0 \\
 w_{i+1} &= \begin{cases}
 w_i c_i & \text{if } \gamma_{i+1} = \gamma_i \\
 w_{i+j} & \text{if } \gamma_{i+1} = J_j \gamma_i \\
 w_i j & \text{if } \gamma_i = J_j \gamma_{i+1}
 \end{cases} \quad 1 \leq i < m
\end{align*}
\]
Computation Records of Atomic Pushdown Automata, Continued

Now let \(w = w_m \), so that \(\text{Exp}(w) = v \) and \(m = |w| + 1 \). This word \(w \) is called the record of the given \(v \)-computation \(\Delta_1, \ldots, \Delta_m \) by \(\mathcal{M} \). From \(w \) we can read off not only the word \(v \) but also the sequence of “pushes” and “pops” as they occur. In particular, \(w_i, 1 < i \leq m \), indicates how \(\mathcal{M} \) goes from \(\Delta_{i-1} \) to \(\Delta_i \).

An Atomic Automaton for \(L(\Gamma) \)

We now modify the pushdown automaton \(\mathcal{M} \) of Theorem 8.2 so that it will accept \(L(\Gamma) \) instead of \(L(\Gamma_s) \). The idea is to use nondeterminism to “guess” the location of the “brackets” \((i, j)\). Continuing to use the notation of the proof of Theorem 8.2, We define a pushdown automaton \(\mathcal{M} \) with the same states, initial state, accepting states, the pushdown alphabet as \(\mathcal{M} \). However, the tape alphabet of \(\mathcal{M} \) will be \(T \) (rather than \(T \cup P \)). The transitions of \(\mathcal{M} \) are, for all \(q \in Q \):

1. for each \(a \in T \), \(qa0 : 0p \), where \(p = \delta(q, a) \);
2. for \(i = 1, 2, \ldots, n \), \(q00 : J_ip_i \), where \(p_i = \delta(q, (i)) \);
3. for \(i = 1, 2, \ldots, n \), \(q0J_i : 0p_i \), where \(p_i = \delta(q, i) \).

Depending on the transition function \(\delta \), \(\mathcal{M} \) can certainly be non-deterministic. Note that \(\mathcal{M} \) is atomic (though \(\mathcal{M} \) is not). It remains to be proved that \(L(\mathcal{M}) = L(\Gamma) \).

\(v \in L(\Gamma) \Rightarrow v \in L(\mathcal{M}) \)

Let \(v \in L(\Gamma) \). Then, since \(\text{Exp}(L(\Gamma_s)) = L(\Gamma) \), there is a word \(w \in L(\Gamma_s) \) such that \(\text{Exp}(w) = v \). By Theorem 8.2, \(w \in L(\mathcal{M}) \). Let

\[
\Delta_i = (i, p_i, \gamma_i), \quad i = 1, 2, \ldots, m
\]

be an accepting \(w \)-computation by \(\mathcal{M} \) (with \(m = |w| + 1 \)). Let \(n_i = 1 \) if \(w : \Delta_i \vdash_{\mathcal{M}} \Delta_{i+1} \) is via transition \(qa0 : 0p \) (with \(p = \delta(q, a) \)); otherwise \(n_i = 0, 1 \leq i < m \). Let

\[
l_1 = 1, \\
l_{i+1} = l_i + n_i, \quad 1 \leq i < m.
\]

Finally let

\[
\bar{\Delta}_i = (l_i, p_i, \gamma_i), \quad 1 \leq i < m.
\]

Now, it can be checked that

\[
v : \bar{\Delta}_i \vdash_{\mathcal{M}} \bar{\Delta}_{i+1}, \quad 1 \leq i < m.
\]

Since \(\bar{\Delta}_m = (|v| + 1, q, 0) \) with \(q \in F \), we conclude \(v \in L(\mathcal{M}) \).
Let \(v \in L(A) \Rightarrow v \in L(\Gamma) \).
Let \(v \in L(A) \). Let
\[
\bar{\Delta}_i = (l_i, p_i, \gamma_i), \quad i = 1, 2, \ldots, m
\]
be an accepting \(v \)-computation by \(A \). Using the fact that \(A \) is atomic, we can let \(w \) be the record of this computation as defined earlier so that \(\text{Er}_P(w) = v \) and \(m = |w| + 1 \). Let \(\Delta_i = (i, p_i, \gamma_i), i = 1, 2, \ldots, m \), and we observe that
\[
w : \Delta_i \vdash_A \Delta_{i+1}, \quad i = 1, 2, \ldots, m.
\]
Since \(p_m \in F \) and \(\gamma_m = 0 \), \(\Delta_1, \Delta_2, \ldots, \Delta_m \) is an accepting \(w \)-computation by \(A \). Thus by Theorem 8.2, \(w \in L(\Gamma_s) \). Hence, \(v \in L(\Gamma) \).

Context-free Languages and Pushdown Automata

Theorem 8.3. Let \(\Gamma \) be a Chomsky normal form context-free grammar. Then there is a pushdown automaton \(A \) such that \(L(A) = L(\Gamma) \). \(\square \)

Theorem 8.4. For every context-free grammar \(L \), there is a pushdown automaton \(A \) such that \(L = L(A) \).

Note that to prove Theorem 8.4, we need to take care of the case where \(0 \in L \), hence \(L = L(\Gamma) \cup \{0\} \) for a Chomsky normal form context-free grammar \(\Gamma \). For such a case, we need to modify the pushdown automaton \(A \) that accepts \(L(\Gamma) \). Actually we modify the dfa component \(A_0 \) of \(A \) to build an equivalent nonrestarting dfa. After that, we add the initial state of this new dfa to the set of accepting states so that \(0 \) will be recognized.

Atomic Pushdown Automata, Revisited

Theorem 8.5. Let \(A \) be a pushdown automaton. Then there is an atomic pushdown automaton \(\bar{A} \) such that \(L(A) = L(\bar{A}) \).

Proof. For each transition \(paU : Vq \) of \(A \) for which \(a, U, v \neq 0 \), we introduce two new states \(r, s \) and let \(\bar{A} \) have the transitions
\[
pr : 0r, \quad r0U : 0s, \quad s00 : Vq.
\]
If exactly one of \(a, U, V \) is 0, the only two transitions are needed for \(\bar{A} \). For each transition \(p00 : 0q \), we introduce a new state \(t \) and replace \(p00 : 0q \) with the transitions
\[
p00 : Jt, \quad t0J : 0q
\]
where \(J \) is an arbitrary symbol of the pushdown alphabet. Otherwise, \(\bar{A} \) is exactly like \(A \). Clearly, \(L(A) = L(\bar{A}) \). \(\square \)
Context-free Languages and Pushdown Automata

Theorem 8.6. For every pushdown automaton \mathcal{M}, $L(\mathcal{M})$ is a context-free language.

Proof Outline. Without loss of generality, we assume \mathcal{M} is atomic. The plan is to prove that for the language L consisting exactly of the records of all accepting u-computation by \mathcal{M}, where $u \in L(\mathcal{M})$, we will have $L = R \cap \text{PAR}_n(T)$. R will be a regular language accepted by a ndfa \mathcal{M}_0 devised from \mathcal{M}, and T is tape alphabet of \mathcal{M}. As $L(\mathcal{M}) = \text{Er}_P(L)$, it follows that $L(\mathcal{M})$ is a context-free language. To prove $L = R \cap \text{PAR}_n(T)$, we need to show both $L \subseteq R \cap \text{PAR}_n(T)$ and $R \cap \text{PAR}_n(T) \subseteq L$.

Context-free Languages and Pushdown Automata

Proof Outline of Theorem 8.6, Continued. Let \mathcal{M} have states $Q = \{q_1, q_2, \ldots, q_m\}$, initial state q_1, final states F, tape alphabet T, and pushdown alphabet $\Omega = \{J_1, \ldots, J_m\}$. To devise ndfa \mathcal{M}_0, we need $P = \{(i, i) \mid i = 1, \ldots, m\}$. \mathcal{M}_0 has the same states, initial state, and accepting states as \mathcal{M}, and transition function δ defined as follows. For each $q \in Q$,

$$\delta(q, a) = \{p \in Q \mid \mathcal{M} \text{ has the transition } qa0: 0p\} \text{ for } a \in T$$
$$\delta(q, (i) = \{p \in Q \mid \mathcal{M} \text{ has the transition } q00: J_ip\}, \quad i = 1, \ldots, n,$$
$$\delta(q, (i) = \{p \in Q \mid \mathcal{M} \text{ has the transition } q0J_i: 0p\}, \quad i = 1, \ldots, n.$$

Let $w \in L$ be the record of an accepting u-computation $\Delta_1, \ldots, \Delta_m$, where $\Delta_i = (l_i, p_i, \gamma_i), i = 1, \ldots, m$. By an induction, we can show that $p_m \in \delta^*(q_1, w)$. As $p_m \in F$, we have $w \in R$. By another induction, we can show that $\gamma_i(w) = \gamma_i, i = 1, \ldots, m$. As $\gamma_{|w|+1}(w) = \gamma_{|w|+1} = 0$, we know w is balanced. We conclude that $w \in R \cap \text{PAR}_n(T)$.

Context-free Languages and Pushdown Automata

Proof Outline of Theorem 8.6, Continued. Conversely, let $w = c_1 \ldots c_r \in R \cap \text{PAR}_n(T)$, and let $u = \text{Er}_P(w) = d_1, \ldots, d_k$. Let p_1, \ldots, p_{r+1} be some sequence of states such that $p_1 = q_1, p_{r+1} \in \delta(p_i, c_i)$ for $i = 1, \ldots, r$. We claim that

$$(l_1, p_1, \gamma_1(w)), \quad (l_2, p_2, \gamma_2(w)), \quad \ldots, \quad (l_{r+1}, p_{r+1}, \gamma_{r+1}(w))$$

where

$$l_1 = 1$$
$$l_{i+1} = \begin{cases} l_i + 1 & \text{if } c_i \in T \\ l_i & \text{otherwise} \end{cases}$$

is an accepting u-computation by \mathcal{M} and w is its record. That is, we need to show that

$$u : (l_r, p_r, \gamma_r(w)) \vdash_{\mathcal{M}} (l_{r+1}, p_{r+1}, \gamma_{r+1}(w))$$

for $i = 1, \ldots, r$. This is done by an induction i and based on the transitions that are used. We then conclude $w \in L$, the language of the records of all accepting u-computation by \mathcal{M}. \qed