1 A Universal Program (4)

1.1 Recursively Enumerable Sets (4.4)

Review: Sets and Characteristic Functions

Given a predicate P on a set S, there is a corresponding subset R of S consisting of all elements $a \in S$ for which $P(a) = 1$. We write

$$R = \{a \in S \mid P(a)\}.$$
Conversely, given a subset R of a given set S, the expression $x \in R$ defines a predicate P on S:

$$P(x) = \begin{cases} 1 & \text{if } x \in R \\ 0 & \text{if } x \notin R. \end{cases}$$

The predicate P is called the characteristic function of the set R. Note the easy translations between the two notations:

$$\{x \in S \mid P(x) \& Q(x)\} = \{x \in S \mid P(x)\} \cap \{x \in S \mid Q(x)\},$$
$$\{x \in S \mid P(x) \lor Q(x)\} = \{x \in S \mid P(x)\} \cup \{x \in S \mid Q(x)\},$$
$$\{x \in S \mid \sim P(x)\} = S - \{x \in S \mid P(x)\}.$$

Sets and Classes of Functions

- The predicate HALT(x, y) is the characteristic function of the set
 $$\{(x, y) \in N^2 \mid \text{HALT}(x, y)\}.$$

- A set $B \subseteq N^m$ is said to belong to some class of functions means that the characteristic function $P(x_1, \ldots, x_n)$ of B belongs to the class in question.

- B is computable or recursive is just to say that $P(x_1, \ldots, x_n)$ is a computable function.

- B is a primitive recursive set if $P(x_1, \ldots, x_n)$ is primitive recursive.

Theorem 4.1. Let the sets B, C belong to some PRC class \mathcal{C}. The so do the sets $B \cup C$, $B \cap C$, and \bar{B}. □

Need Only Consider Subsets of N

Theorem 4.2. Let \mathcal{C} be a PRC class, and let B be a subset of $N^m, m \geq 1$. Then B belongs to \mathcal{C} if and only if

$$B' = \{[x_1, \ldots, x_m] \in N \mid (x_1, \ldots, x_m) \in B\}$$

belongs to \mathcal{C}. □. Proof. If $P_B(x_1, \ldots, x_m)$ is the characteristic function of B, then

$$P_{B'} \Leftrightarrow P_B((x_1), \ldots, (x)_m) \& Lt(x) \leq m \& x > 0$$

is the characteristic function of B'. Clearly, $P_{B'}$ belongs to \mathcal{C} if P_B belongs to \mathcal{C}. On the other hand, if $P_{B'}(x)$ is the characteristic function of B', then

$$P_B(x_1, \ldots, x_m) \Leftrightarrow P_{B'}([x_1, \ldots, x_m])$$

is the characteristic function of B. Clearly, P_B belongs to \mathcal{C} if $P_{B'}$ belongs to \mathcal{C}. □
Recursively Enumerable

Definition. The set \(B \subseteq \mathbb{N} \) is called **recursively enumerable** if there is a partially computable function \(g(x) \) such that

\[
B = \{ x \in \mathbb{N} \mid g(x) \downarrow \}.
\]

- A set is recursively enumerable just when it is the domain of a partially computable function.
- If \(P \) is a program that computes function \(g \) above, then \(B \) is the set of all input to \(P \) for which \(P \) eventually halts.
- \(B \) can be thought of intuitively as a set for which there exists a semi-decision procedure to solve the membership problem of \(B \). This algorithm answers “yes” for number \(n \in B \), but never terminates for \(n \notin B \).
- The term *recursively enumerable* is usually abbreviated *r.e.*

Recursive Sets

Theorem 4.3. If \(B \) is a recursive set, then \(B \) is r.e.

Proof. Consider the following program \(P \)

\[
[A] \text{ IF } \neg (X \in B) \text{ GOTO } A
\]

Since \(B \) is recursive, the predicate \(x \in B \) is computable and \(P \) can be expanded to a program of \(T \). Let \(P \) computes the function \(h(x) \). Then, clearly,

\[
B = \{ x \in \mathbb{N} \mid h(x) \downarrow \}.
\]

What If Both \(B \) and \(\overline{B} \) Are r.e.?

Theorem 4.4. The set \(B \) is recursive if and only if \(B \) and \(\overline{B} \) are both r.e.

Proof. (\(\Rightarrow \)) If \(B \) is recursive, then by Theorem 4.1 so is \(B \). By Theorem 4.3, they are both r.e.

(\(\Leftarrow \)) If both \(B \) and \(\overline{B} \) are r.e., then there are programs \(P \) and \(Q \) such that

\[
B = \{ x \in \mathbb{N} \mid \psi_{1}^{p}(x) \downarrow \}
\]

\[
\overline{B} = \{ x \in \mathbb{N} \mid \psi_{1}^{q}(x) \downarrow \}
\]

Then \(B \) is recursive as it is computed by the following program:

\[
[A] \text{ IF STP}^{(1)}(X,\#(P),T) \text{ GOTO } C
\]

IF STP\(^{(1)}\)(X,\(\#(P),T\)) GOTO E

\[
T \leftarrow T + 1
\]

GOTO A

\[
[C] Y \leftarrow 1
\]

\[
\]
The Union of Two r.e. Sets

Theorem 4.5. If \(B \) and \(C \) are r.e. sets so are \(B \cup C \) and \(B \cap C \). Proof. Let
\[
B = \{ x \in N \mid g(x) \downarrow \}
\]
\[
C = \{ x \in N \mid h(x) \downarrow \}
\]
where \(g \) and \(h \) are partially computable. Let \(f(x) \) be the function computed by the program
\[
Y \leftarrow g(X)
\]
\[
Y \leftarrow h(X)
\]
Hence
\[
B \cap C = \{ x \in N \mid f(x) \downarrow \}
\]
hence \(B \cap C \) is r.e.

The Intersection of Two r.e. Sets

Proof. (Continued) Let \(g \) and \(h \) be computed by programs \(P \) and \(Q \), respectively. Let \(k(x) \) be the function computed by the program:

\[
[A] \quad \text{IF STP}^{(1)}(X, #(P), T) \quad \text{GOTO E}
\]
\[
\text{IF STP}^{(1)}(X, #(Q), T) \quad \text{GOTO E}
\]
\[
T \leftarrow T + 1
\]
\[
\text{GOTO A}
\]
Then \(k(x) \) is defined just in case \(\text{either } g(x) \text{ or } h(x) \) is defined. That is,
\[
B \cup C = \{ x \in N \mid k(x) \downarrow \}
\]
so that \(B \cup C \) is also r.e. \(\square \)

Enumeration Theorem

Definition. We write
\[
W_n = \{ x \in N \mid \Phi(x, n) \downarrow \}.
\]
Then we have Theorem 4.6. A set \(B \) is r.e. if and only if there is an \(n \) for which \(B = W_n \). Proof. This is simply by the definition of \(\Phi(x, n) \). \(\square \) Note that
\[
W_0, W_1, W_2, \ldots
\]
is an enumeration of all r.e. sets.
The Set K

Let

$$K = \{ n \in N \mid n \in W_n \}.$$

Now

$$n \in K \iff \Phi(n, n) \downarrow \iff \text{HALT}(n, n)$$

This, K is the set of all numbers n such that program number n eventually halts on input n.

K Is r.e. but Not Recursive

Theorem 4.7. K is r.e. but not recursive. _Proof._ By the universality theorem, $\Phi(n, n)$ is partially computable, hence K is r.e. If K were recursive, then by Theorem 4.4, \overline{K} must be r.e. Therefore, by the enumeration theorem,

$$\overline{K} = W_i$$

for some i. We then arrive at

$$i \in K \iff i \in W_i \iff i \in \overline{K}$$

which is a contradiction. We conclude that K is not recursive. \(\square\)

r.e. Sets and Primitive Recursive Predicates

Theorem 4.8. Let B be an r.e. set. Then there is a primitive recursive predicate $R(x, t)$ such that

$$B = \{ x \in N \mid (\exists t) R(x, t) \}.$$

Proof. Let $B = W_n$. Then

$$B = \{ x \in N \mid (\exists t) \text{STP}^{(1)}(x, n, t) \}.$$

By Theorem 3.2, $\text{STP}^{(1)}$ is primitive recursive. \(\square\)

A r.e. Set Is the Range of A Primitive Recursive Function

Theorem 4.9. Let S be a nonempty r.e. set. Then there is a primitive recursive function $f(u)$ such that

$$S = \{ f(n) \mid x \in N \} = \{ f(0), f(1), f(2), \ldots \}$$

That is, S is the range of f. _Proof._ By Theorem 4.8

$$S = \{ x \mid (\exists t) R(x, t) \}$$

where R is primitive recursive. Let x_0 be some fixed member of S (say, the smallest), and let

$$f(u) = \begin{cases} l(u) & \text{if } R(l(u), r(u)) \\ x_0 & \text{otherwise.} \end{cases}$$

Clearly f is primitive recursive. It follows that the range of f is a subset of S. Conversely, if $x \in S$, then $R(x, t_0)$ is true for some t_0. Then $f(\langle x, t_0 \rangle) = l(\langle x, t_0 \rangle) = x$. That is, S is a subset of the range of f. We conclude $S = \{ f(n) \mid x \in N \}$. \(\square\)
The Range of A Partially Computable Function Is r.e.

Theorem 4.10. Let $f(x)$ be a partially computable function and let $S = \{ f(x) \mid f(x) \downarrow \}$. Then S is r.e.

Proof. Let

$$g(x) = \begin{cases} 0 & \text{if } x \in S \\ \uparrow & \text{otherwise.} \end{cases}$$

Clearly $S = \{ x \mid g(x) \downarrow \}$. It suffices to show that g is partially computable. Let \mathcal{P} be a program that computes f and let $\#(\mathcal{P}) = p$. Then the following program computes $g(x)$:

\[
\begin{align*}
[A] & \text{IF } \sim \text{STP}(1)(Z, p, T) \text{ GOTO } B \\
& V \leftarrow f(Z) \\
& \text{IF } V = X \text{ GOTO } E \\
[B] & Z \leftarrow Z + 1 \\
& \text{IF } Z \leq T \text{ GOTO } A \\
& T \leftarrow T + 1 \\
& Z \leftarrow 0 \\
& \text{GOTO } A
\end{align*}
\]

Recursively Enumerable Sets, Revisited

Theorem 4.11. Suppose that $S \neq \emptyset$. Then the following statements are all equivalent:

1. S is r.e.
2. S is the range of a primitive recursive function;
3. S is the range of a recursive function;
4. S is the range of a partially recursive function.

Proof. By Theorem 4.9, 1. implies 2. Obviously, 2. implies 3., and 3. implies 4. By Theorem 4.10, 4. implies 1. Hence all four statements are equivalent. □

1.2 The Parameter Theorem (4.5)

The Parameter Theorem

The Parameter theorem (which has also been called the $s - m - n$ theorem) relates the various functions $\Phi^{(n)}(x_1, x_2, \ldots, x_n, y)$ for different values of n.

Theorem 5.1. For each $n, m > 0$, there is a primitive recursive function $S^n_m(u_1, u_2, \ldots, u_n, y)$ such that

$$\Phi^{(m+n)}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, S^n_m(u_1, \ldots, u_n, y))$$
The Parameter Theorem, Continued

\[\Phi^{(m+n)}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, S^m_m(u_1, \ldots, u_n, y)) \]

Suppose the values for variables \(u_1, \ldots, u_n \) are fixed and we have in mind some particular value of \(y \). Then left hand side of the above equation is a partially computable function \(f \) of \(m \) arguments \(x_1, \ldots, x_m \).

Let \(q \) be the number of a program that computes this function of \(m \) variables, we have

\[\Phi^{(m+n)}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, q) \]

The parameter theorem tells us that not only does there exist such a number \(q \), but it can be obtained from \(u_1, \ldots, u_n, y \) by using a primitive recursive function \(S^m_m \).

The Parameter Theorem, Continued

\[\Phi^{(m+n)}(x_1, \ldots, x_m, u_i, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, S^m_m(u_i, \ldots, u_n, y)) \]

Suppose the values for variables \(u_1, \ldots, u_n \) are fixed and we have in mind some particular value of \(y \). Then left hand side of the above equation is a partially computable function \(f \) of \(m \) arguments \(x_1, \ldots, x_m \).

Let \(q \) be the number of a program that computes this function of \(m \) variables, we have

\[\Phi^{(m+n)}(x_1, \ldots, x_m, u_i, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, q) \]

The parameter theorem tells us that not only does there exist such a number \(q \), but it can be obtained from \(u_1, \ldots, u_n, y \) by using a primitive recursive function \(S^m_m \).

The Parameter Theorem, Proof

The proof is by a mathematical induction on \(n \). For \(n = 1 \), we need to show that there is a primitive recursive function \(S^1_m(u, y) \) such that

\[\Phi^{(m+1)}(x_1, \ldots, x_m, u, y) = \Phi^{(m)}(x_1, \ldots, x_m, S^1_m(u, y)) \]

Let \(\mathcal{P} \) be the program such that \(\#(\mathcal{P}) = y \). Then \(S^1_m(u, y) \) can be taken to the number of the program which first gives variable \(X_{m+1} \) the value \(u \) and then proceeds to carry out \(\mathcal{P} \).

The Parameter Theorem, Proof

\(X_{m+1} \) will be given the value \(u \) by the program:

\[
\begin{align*}
X_{m+1} &\leftarrow X_{m+1} + 1 \\
&\vdots \\
X_{m+1} &\leftarrow X_{m+1} + 1
\end{align*}
\]

\[u \]
The number of the instruction \(X_{m+1} \leftarrow X_{m+1} + 1 \) is \(\langle 0, (1, 2m + 1) \rangle = 16m + 10 \). So we may take
\[
S^1_m(u, y) = [(\prod_{i=1}^u p_i)^{16m+10} \cdot (\prod_{j=1}^{Lt(y+1)} p_{u+j}^{(y+1)_j})^1 - 1
\]
as the primitive recursive function.

The Parameter Theorem, Proof

To complete the proof, suppose the result is known for \(n = k \). Then we have
\[
\Phi^{(m+k+1)}(x_1, \ldots, x_m, u_1, \ldots, u_k, u_{k+1}, y) \\
= \Phi^{(m+k)}(x_1, \ldots, x_m, u_1, \ldots, u_k, S^1_{m+k}(u_{k+1}, y)) \\
= \Phi^{(m)}(x_1, \ldots, x_m, S^k_m(u_1, \ldots, u_k, S^1_{m+k}(u_{k+1}, y)))
\]
using first the result for \(n = 1 \) and then the induction hypothesis.

By now, if we define
\[
S^{k+1}_m(u_1, \ldots, u_k, u_{k+1}, y) = S^k_m(u_1, \ldots, u_k, S^1_{m+k}(u_{k+1}, y))
\]
we have the desired result.

The Parameter Theorem, Examples

Is there a computable function \(g(u, v) \) such that
\[
\Phi_g(\Phi_v(x)) = \Phi_{g(u,v)}(x)
\]
for all \(u, v, x \)? Yes! Note that
\[
\Phi_g(\Phi_v(x)) = \Phi(\Phi(x, v), u)
\]
is a partially computable function of \(x, u, v \). Hence, we have
\[
\Phi(\Phi(x, v), u) = \Phi^{(3)}(x, u, v, z_0)
\]
for some number \(z_0 \). By the parameter theorem,
\[
\Phi^{(3)}(x, u, v, z_0) = \Phi(x, S^2_1(u, v, z_0)) = \Phi_{S^2_1(u,v,z_0)}(x).
\]