An Introduction to Functional Programming

Tyng–Ruey Chuang

2007 Formosan Summer School
on Logic, Language, and Computation
July 2–13, 2007

This course note ...

• ... is prepared for the 2007 Formosan Summer School on Logic, Language, and Computation (held in Taipei, Taiwan),

• ... is made available from the Flolac '07 web site:

 http://www.iis.sinica.edu.tw/~scm/flolac07/

• ... and is released to the public under a Creative Commons Attribution-ShareAlike 2.5 Taiwan license:

 http://creativecommons.org/licenses/by-sa/2.5/

Course outline

Unit 2. Fold/unfold functions for data types;
(Untyped) lambda calculus.

Unit 3. Parametric modules.

Each unit consists of 2 hours of lecture and 1 hour of lab/tutor. Examples will be given in Objective Caml (O’Caml). Useful online resources about O’Caml:

• Web site: http://caml.inria.fr/

• Book: Developing Applications with Objective Caml.
 URL: http://caml.inria.fr/pub/docs/oreilly-book/
1 Lambda calculus

Untyped lambda calculus

- Introduced by Alonzo Church and his student Stephen Cole Kleene in the 1930s to study computable functions — even before there are computers!
- A (very simple) formal system for defining functions and their operational meanings, yet is shown to be as powerful as other systems.
- It is a basis of early programming languages (such as Lisp). Typed lambda calculi — there are many variations — are the bases of modern functional languages (such as O’Caml and Haskell).

Untyped lambda terms

The set of all (untyped) lambda terms T consists of the following terms:

- x where x is a variable;
- $\lambda x . t$ where x is a variable and $t \in T$ is a lambda term; (to denote function abstraction)
- $t_1 \ t_2$ where $t_1, t_2 \in T$ are lambda terms; (to denote function application)
- (t) where $t \in T$ is a lambda term.

Examples:

$x, \ y, \ z, \ xyz$
$x \ y \ z, \ \lambda x . \lambda y . \ z, \ (\lambda x . \lambda y . x) u v, \ (\lambda x . x x)(\lambda x . x x)$

Notational conventions

- Function application is left associative. For example:

 $(\lambda x . \lambda y . x)(\lambda x . x)z$

 means

 $((\lambda x . \lambda y . x)(\lambda x . x))z$

- The body of a function abstraction extends to the right as far as possible. For example,

 $\lambda x . \lambda y . \lambda z . z \ y \ x$

 means

 $\lambda x . (\lambda y . (\lambda z . (z \ y \ x)))$

In case of doubt, use parentheses to make clear the intended meaning of a term.
Scope of variables

- An occurrence of variable \(x \) is *bound* if it appears in the body \(t \) of a function abstraction \(\lambda x . t \).
- An occurrence of variable \(x \) is *free* if it appears in a position where it is not bound by an enclosing abstraction of \(x \).

In the following example,

\[
(\lambda x . \lambda y . (\lambda z . y) x) x
\]

the outer occurrence of \(x \) is free while the inner occurrence of \(x \) is bound. The only occurrence of \(y \) is bound. The variable \(z \) does not occur in the function abstraction \(\lambda z . y \).

Two computational rules

alpha renaming Two lambda terms are equivalent if they differ only in the naming of bound variables. For example, these two terms are equivalent:

\[
(\lambda x . \lambda y . x y (\lambda x . x)) y \equiv_\alpha (\lambda x . \lambda z . x z (\lambda x . x)) y
\]

beta reduction A term \((\lambda x . t_1) t_2\) — called a redex — is converted to the term \(t_1 [t_2/x]\) where all free variables \(x \) in \(t_1 \) are replaced by term \(t_2 \). For example,

\[
(\lambda x . \lambda z . x z (\lambda x . x)) y \rightarrow_\beta \lambda z . y z (\lambda x . x)
\]

Use alpha renaming to avoid accidental capture of free variables during a beta reduction!

Normal forms and reduction strategies

A lambda term is in normal form if it has no more redex. A lambda term may contain many redexes. Several strategies to select redex for beta reduction:

Normal order reduction always selects the leftmost, outermost redex, until no more redexes is left.

Call-by-name reduction always selects the leftmost, outermost redex, but never reduces inside function abstractions. (Haskell; call-by-need actually)

Call-by-value reduction always selects the leftmost, innermost redex, but never reduces inside function abstractions. (O’Caml)

Church-Rosser theorem: the normal order reduction strategy will always lead to the normal form if there is one.
Non-terminating reduction sequences
There are lambda terms that have no normal form. An example:

\[(\lambda x.x x)(\lambda x.x x) \rightarrow_{\beta} (\lambda x.x x)(\lambda x.x x) \rightarrow_{\beta} \ldots\]

Let \(\omega\) denote the lambda term \(((\lambda x.x x)(\lambda x.x x))\), and \(Q\) denote the lambda term \((\lambda x.\lambda y.x)\omega\). Then,

Normal order reduction

\[Q \rightarrow_{\beta} \lambda y.\omega \rightarrow_{\beta} \lambda y.\omega \rightarrow_{\beta} \ldots\]

Call-by-name reduction

\[Q \rightarrow_{\beta} \lambda y.\omega \nrightarrow\]

Call-by-value reduction

\[Q \rightarrow_{\beta} Q \rightarrow_{\beta} Q \rightarrow_{\beta} \ldots\]

Church booleans

true := \(\lambda t.\lambda f.t\)
false := \(\lambda t.\lambda f.f\)
if := \(\lambda b.\lambda p.\lambda q. b \ p \ q\)

Example:

\[\text{if true } P \ Q = (\lambda b.\lambda p.\lambda q. b \ p \ q) \text{ true } P \ Q\]
\[= (\lambda t.\lambda f.t) \ P \ Q\]
\[\rightarrow P\]

More definitions:

and := \(\lambda p.\lambda q.\text{if } p \ q \text{ false}\)

or := \(\lambda p.\lambda q.\text{if } p \ true \ q\)
Church numerals

\[O := \lambda f . \lambda x . x\]

\[1 := \lambda f . \lambda x . f x\]

\[2 := \lambda f . \lambda x . f (f x)\]

\[n := \lambda f . \lambda x . f^{(n)} x\]

\[\text{succ} := \lambda x . \lambda f . \lambda n . f (x f n)\]

\[\text{plus} := \lambda x . \lambda y . \lambda f . \lambda n . x f (y f n)\]

\[\text{times} := \lambda x . \lambda y . x (\text{plus} y 0)\]

\[\text{iszero} := \lambda n . n (\lambda x . \text{false}) \text{true}\]

Example:

\[\text{succ} 2 = (\lambda x . \lambda f . \lambda n . f (x f n)) 2 \]
\[\quad\rightarrow \lambda f . \lambda n . f (2 f n)\]
\[\quad= \lambda f . \lambda n . f ((\lambda f . \lambda n . f (f n)) f n)\]
\[\quad\rightarrow \lambda f . \lambda n . f (f (f n)) = 3\]

Recursion via fixed-point

\[Y := \lambda f . (\lambda x . f (x x)) (\lambda x . f (x x))\]

\(Y\) is a fixed-point computing function. For any lambda term \(F\),

\[Y F = (\lambda f . (\lambda x . f (x x)) (\lambda x . f (x x))) F\]
\[\quad\rightarrow (\lambda x . F (x x)) (\lambda x . F (x x))\]
\[\quad\rightarrow F ((\lambda x . F (x x)) (\lambda x . F (x x)))\]
\[\quad= F \,(Y \,F)\]

That is, \((Y \,F)\) is a fixed-point of \(F\).
The factorial function, once again

Let

\[F := \lambda f . \lambda n . \text{if} \ (\text{iszero} \ n) \ 1 \ (\text{times} \ n \ (f \ (\text{pred} \ n))) \]

Then

\[Y F \ 3 \rightarrow F (Y F) 3 \]
\[= \text{if} \ (\text{iszero} \ 3) \ 1 \ (\text{times} \ 3 \ ((Y F) \ (\text{pred} \ 3))) \]
\[\rightarrow \text{times} \ 3 \ (Y F \ 2) \]
\[\rightarrow \text{times} \ 3 \ (F (Y F) 2) \]
\[\rightarrow \text{times} \ 3 \ (\text{times} \ 2 \ (Y F \ 1)) \]
\[\rightarrow \text{times} \ 3 \ (\text{times} \ 2 \ (F (Y F) 1)) \]
\[\rightarrow \text{times} \ 3 \ (\text{times} \ 2 \ (\text{times} \ 1 \ (Y F \ 0))) \]
\[\rightarrow \text{times} \ 3 \ (\text{times} \ 2 \ (\text{times} \ 1 \ (F (Y F) 0))) \]
\[\rightarrow \text{times} \ 3 \ (\text{times} \ 2 \ (\text{times} \ 1 \ 1)) \]
\[\rightarrow 6 \]

Is that all?

\[\text{succ} := \lambda x . \lambda f . \lambda n . f \ (x \ f \ n) \]

\[\text{pred} := \ ??? \]

The definition of pred turns out to be not so easy!