An Introduction to Functional Programming

Tyng–Ruey Chuang

Institute of Information Science
Academia Sinica, Taiwan

2007 Formosan Summer School
on Logic, Language, and Computation
July 2–13, 2007
This course note . . .

▶ . . . is prepared for the 2007 Formosan Summer School on Logic, Language, and Computation (held in Taipei, Taiwan),
▶ . . . is made available from the Flolac ’07 web site:

http://www.iis.sinica.edu.tw/~scm/flolac07/

▶ . . . and is released to the public under a Creative Commons Attribution-ShareAlike 2.5 Taiwan license:

http://creativecommons.org/licenses/by-sa/2.5/
Course outline

Unit 2. Fold/unfold functions for data types; (Untyped) lambda calculus.

Unit 3. Parametric modules.

Each unit consists of 2 hours of lecture and 1 hour of lab/tutor. Examples will be given in Objective Caml (O’Caml). Useful online resources about O’Caml:

- Web site: http://caml.inria.fr/
- Book: Developing Applications with Objective Caml. URL: http://caml.inria.fr/pub/docs/oreilly-book/
Untyped lambda calculus

- Introduced by Alonzo Church and his student Stephen Cole Kleene in the 1930s to study computable functions — even before there are computers!
- A (very simple) formal system for defining functions and their operational meanings, yet is shown to be as powerful as other systems.
- It is a basis of early programming languages (such as Lisp). Typed lambda calculi — there are many variations — are the bases of modern functional languages (such as O’Caml and Haskell).
Untyped lambda terms

The set of all (untyped) lambda terms T consists of the following terms:

- x where x is a variable;
- $\lambda x . t$ where x is a variable and $t \in T$ is a lambda term; (to denote function abstraction)
- $t_1 \; t_2$ where $t_1, t_2 \in T$ are lambda terms; (to denote function application)
- (t) where $t \in T$ is a lambda term.

Examples:

- $x, \ y, \ z, \ xyz$
- $x \; y \; z, \ \lambda x . \lambda y . z, \ (\lambda x . \lambda y . x) \; u \; v, \ (\lambda x . x \; x)(\lambda x . x \; x)$
Notational conventions

- Function application is left associative. For example:
 \[(\lambda x . \lambda y . x)(\lambda x . x)z\]
 means
 \[((\lambda x . \lambda y . x)(\lambda x . x))z\]

- The body of a function abstraction extends to the right as far as possible. For example,
 \[\lambda x . \lambda y . \lambda z . z y x\]
 means
 \[\lambda x . (\lambda y . (\lambda z . (z y x)))\]

In case of doubt, use parentheses to make clear the intended meaning of a term.
Scope of variables

- An occurrence of variable x is **bound** if it appears in the body t of a function abstraction $\lambda x . t$.
- An occurrence of variable x is **free** if it appears in a position where it is not bound by an enclosing abstraction of x.

In the following example,

$$(\lambda x . \lambda y . (\lambda z . y) \ x) \ x$$

the outer occurrence of x is free while the inner occurrence of x is bound. The only occurrence of y is bound. The variable z does not occur in the function abstraction $\lambda z . y$.
Two computational rules

alpha renaming Two lambda terms are equivalent if they differ only in the naming of bound variables. For example, these two terms are equivalent:

$$(\lambda x . \lambda y . x \; y \; (\lambda x . x)) \; y \equiv_{\alpha} (\lambda x . \lambda z . x \; z \; (\lambda x . x)) \; y$$

beta reduction A term $(\lambda x . t_1) \; t_2$ — called a redex — is converted to the term $t_1 \; [t_2/x]$ where all free variables x in t_1 are replaced by term t_2. For example,

$$(\lambda x . \lambda z . x \; z \; (\lambda x . x)) \; y \rightarrow_{\beta} \lambda z . y \; z \; (\lambda x . x)$$

Use alpha renaming to avoid accidental capture of free variables during a beta reduction!
Normal forms and reduction strategies

A lambda term is in normal form if it has no more redex. A lambda term may contain many redexes. Several strategies to select redex for beta reduction:

Normal order reduction always selects the leftmost, outermost redex, until no more redexes is left.

Call-by-name reduction always selects the leftmost, outermost redex, but never reduces inside function abstractions. (Haskell; call-by-need actually)

Call-by-value reduction always selects the leftmost, innermost redex, but never reduces inside function abstractions. (O’Caml)

Church-Rosser theorem: the normal order reduction strategy will always lead to the normal form if there is one.
Non-terminating reduction sequences

There are lambda terms that have no normal form. An example:

\[(\lambda x . x x)(\lambda x . x x) \rightarrow^\beta (\lambda x . x x)(\lambda x . x x) \rightarrow^\beta \ldots\]

Let \(\omega\) denote the lambda term \(((\lambda x . x x)(\lambda x . x x))\), and \(Q\) denote the lambda term \((\lambda x . \lambda y . x) \omega\). Then,

Normal order reduction

\[Q \rightarrow^\beta \lambda y . \omega \rightarrow^\beta \lambda y . \omega \rightarrow^\beta \ldots\]

Call-by-name reduction

\[Q \rightarrow^\beta \lambda y . \omega \not\rightarrow\]

Call-by-value reduction

\[Q \rightarrow^\beta Q \rightarrow^\beta Q \rightarrow^\beta \ldots\]
Church booleans

true := λ t. λ f. t
false := λ t. λ f. f

if := λ b. λ p. λ q. b p q

Example:

if true P Q = (λ b. λ p. λ q. b p q) true P Q
→ true P Q
= (λ t. λ f. t) P Q
→ P

More definitions:

and := λ p. λ q. if p q false
or := λ p. λ q. if p true q
Lambda calculus

Church numerals

\[
\begin{align*}
0 & := \lambda f . \lambda x . x \\
1 & := \lambda f . \lambda x . f \ x \\
2 & := \lambda f . \lambda x . f \ (f \ x) \\
n & := \lambda f . \lambda x . f^n \ x \\
succ & := \lambda x . \lambda f . \lambda n . f \ (x \ f \ n) \\
plus & := \lambda x . \lambda y . \lambda f . \lambda n . x \ f \ (y \ f \ n) \\
times & := \lambda x . \lambda y . x \ (plus \ y \ 0) \\
iszero & := \lambda n . n \ (\lambda x . false) \ true
\end{align*}
\]

Example:

\[
succ \ 2 \ = \ (\lambda x . \lambda f . \lambda n . f \ (x \ f \ n)) \ 2 \\
\rightarrow \ \lambda f . \lambda n . f \ (2 \ f \ n) \\
= \ \lambda f . \lambda n . f \ ((\lambda f . \lambda n . f \ (f \ n)) \ f \ n) \\
\rightarrow \ \lambda f . \lambda n . f \ (f \ (f \ n)) \ = \ 3
\]
Recursion via fixed-point

\[Y := \lambda f . (\lambda x . f (x \ x))(\lambda x . f (x \ x)) \]

\(Y \) is a fixed-point computing function. For any lambda term \(F \),

\[
Y \ F \quad = \quad (\lambda f . (\lambda x . f (x \ x))(\lambda x . f (x \ x))) \ F \\
\quad \rightarrow \quad (\lambda x . F (x \ x))(\lambda x . F (x \ x)) \\
\quad \rightarrow \quad F ((\lambda x . F (x \ x))(\lambda x . F (x \ x))) \\
\quad = \quad F (Y \ F)
\]

That is, \((Y \ F)\) is a fixed-point of \(F \).
The factorial function, once again

Let

\[F := \lambda f . \lambda n . \text{if} (\text{iszero } n) 1 (\times n (f (\text{pred } n))) \]

Then

\[YF3 \rightarrow F(YF)3 \]

\[\rightarrow \text{if} (\text{iszero } 3) 1 (\times 3 ((YF)(\text{pred } 3))) \]
\[\rightarrow \times 3 (YF2) \]
\[\rightarrow \times 3 (F(YF)2) \]
\[\rightarrow \times 3 (\times 2 (YF1)) \]
\[\rightarrow \times 3 (\times 2 (F(YF)1)) \]
\[\rightarrow \times 3 (\times 2 (\times 1 (YF0))) \]
\[\rightarrow \times 3 (\times 2 (\times 1 (F(YF)0))) \]
\[\rightarrow \times 3 (\times 2 (\times 1 1)) \]
\[\rightarrow 6 \]
Is that all?
Is that all?

\[
\text{succ} := \lambda x. \lambda f. \lambda n. f (x f n)
\]
Is that all?

\[\text{succ} := \lambda x . \lambda f . \lambda n . f (x f n) \]
\[\text{pred} := ??? \]
Is that all?

succ := \(\lambda x. \lambda f. \lambda n. f \ (x \ f \ n) \)

pred := ???

The definition of pred turns out to be not so easy!