1 A Universal Program (4)

1.1 Coding Programs by Numbers (4.1)

Coding Programs by Numbers

For each program P in language S, we will devise a method

- to associate a unique number, (P), to the program P, and
- to retrieve a program from its number.

In addition, for each number $n \in N$, we will retrieve from n a program.
Arranging Variables and Labels

- The variables are arranged in the following order
 \[Y, X_1, Z_1, X_2, Z_2, X_3, Z_3, \ldots \]

- The labels are arranged in the following order
 \[A_1, B_1, C_1, D_1, E_1, A_2, B_2, C_2, D_2, E_2, A_3, \ldots \]

- \#(V) is the position of variable \(V \) in the ordering. So is \#(L) for label \(L \).

- Thus, \#(X_2) = 4, \#(Z_1) = \#(Z) = 3, \#(E) = 5, \#(B_2) = 7, \ldots \]

Coding Instructions by Numbers

Let \(I \) be an instruction of language \(\mathcal{S} \). We write
\[
\#(I) = \langle a, \langle b, c \rangle \rangle
\]
where

1. if \(I \) is unlabeled, then \(a = 0 \); if \(I \) is labeled \(L \), then \(a = \#(L) \);
2. if variable \(V \) is mentioned in \(I \), then \(c = \#(V) - 1 \);
3. if the statement in \(I \) is
 \[V \leftarrow V \quad \text{or} \quad V \leftarrow V + 1 \quad \text{or} \quad V \leftarrow V - 1 \]
 then \(b = 0 \) or 1 or 2, respectively;
4. if the statement in \(I \) is
 \[\text{IF} \ V \neq 0 \ \text{GOTO} \ L' \]
 then \(b = \#(L') + 2 \).

Coding Instructions by Numbers, Examples

- The number of the unlabeled instruction

 \[X \leftarrow X + 1 \]

 is

 \[\langle 0, \langle 1, 1 \rangle \rangle = \langle 0, 5 \rangle = 10. \]

- The number of the labeled instruction

 \[[A] \ X \leftarrow X + 1 \]

 is

 \[\langle 1, \langle 1, 1 \rangle \rangle = \langle 1, 5 \rangle = 21. \]
Retrieving The Instruction from A Number

For any given number \(q \), there is a unique instruction \(I \) with \(#(I) = q\). How?

- First we compute \(l(q) \). If \(l(q) = 0 \), \(I \) is unlabeled; otherwise \(I \) has the \(l(q) \)th label \(L \) in our list.
- Then we compute \(i = r(r(q)) + 1 \) to locate the \(i \)th variable \(V \) in our list as the variable mentioned in \(I \).
- Then the statement in \(I \) will be

\[
\begin{align*}
V \leftarrow V & \quad \text{if } l(r(q)) = 0 \\
V \leftarrow V + 1 & \quad \text{if } l(r(q)) = 1 \\
V \leftarrow V - 1 & \quad \text{if } l(r(q)) = 2 \\
\text{IF } V \neq 0 \text{ GOTO } L' & \quad \text{if } j = l(r(q)) - 2 > 0
\end{align*}
\]

and \(L' \) is the \(j \)th label in the list.

Coding Programs by Numbers, Finally

Let a program \(\mathcal{P} \) consists of the instructions \(I_1, I_2, \ldots, I_k \). Then we set

\[
#(\mathcal{P}) = [\#(I_1), \#(I_2), \ldots, \#(I_k)] - 1
\]

We call \#(\(\mathcal{P} \)) the number of program \(\mathcal{P} \). Note that the empty program has number 0.

Coding Programs by Numbers, Examples

Consider the following “nowhere defined” program \(\mathcal{P} \)

\[
[A] \quad X \leftarrow X + 1 \\
\text{IF } X \neq 0 \text{ GOTO } A
\]

Let \(I_1 \) and \(I_2 \), respectively, be the first and the second instruction in \(\mathcal{P} \), then

\[
\begin{align*}
#(I_1) & = \langle 1, \langle 1, 1 \rangle \rangle = \langle 1, 5 \rangle = 21 \\
#(I_2) & = \langle 0, \langle 3, 1 \rangle \rangle = \langle 0, 23 \rangle = 46
\end{align*}
\]

Therefore

\[
#(\mathcal{P}) = 2^{21} \cdot 3^{46} - 1
\]
Coding Programs by Numbers, Examples

What is the program whose number is 199? We first compute

\[199 + 1 = 200 = 2^3 \cdot 3^0 \cdot 5^2 = [3, 0, 2] \]

Thus, if \#(\mathcal{P}) = 199, then \mathcal{P} consists of 3 instructions whose numbers are 3, 0, and 2. As

\[3 = \langle 2, 0 \rangle = \langle 2, \langle 0, 0 \rangle \rangle \]
\[2 = \langle 0, 1 \rangle = \langle 0, \langle 1, 0 \rangle \rangle \]

We conclude that \mathcal{P} is the following program

\[\begin{align*}
[B] & \ Y \leftarrow Y \\
 & \ Y \leftarrow Y \\
 & \ Y \leftarrow Y + 1
\end{align*} \]

This is not a very interesting program, as it just computes \(f(x) = 1 \).

A Problem with Number 0

- The number of the unlabeled instruction \(Y \leftarrow Y \) is

\[\langle 0, \langle 0, 0 \rangle \rangle = \langle 0, 0 \rangle = 0 \]

- By the definition of Gödel number, the number of a program will be unchanged if an unlabeled \(Y \leftarrow Y \) is appended to its end. Note that this does not change the output of the program.

- However, we remove even this ambiguity by requiring that the final instruction in a program is not permitted to be the unlabeled statement \(Y \leftarrow Y \).

- Now, each number determines a unique program (just as each program determines a unique number)!

1.2 The Halting Problem (4.2)

\textbf{HALT}(x, y): A Predicate on Programs and Their Inputs}

We define predicate HALT\((x, y)\) such that

\[\text{HALT}(x, y) \iff \text{program number } y \text{ eventually halts on input } x. \]

Let \(\mathcal{P} \) be the program such that \#(\mathcal{P}) = y. Then

\[\text{HALT}(x, y) = \begin{cases}
1 & \text{if } \Psi^{(1)}_{\mathcal{P}}(x) \text{ is defined}, \\
0 & \text{if } \Psi^{(1)}_{\mathcal{P}}(x) \text{ is undefined}.
\end{cases} \]

Note that HALT\((x, y)\) is a total function. But, is HALT\((x, y)\) computable?
HALT(x, y) Is Not Computable

Theorem 2.1. HALT(x, y) is not a computable predicate. **Proof.** Suppose HALT(x, y) were computable. Then we could construct the following program P:

[A] IF HALT(X, X) GOTO A

It is clear that

$$
\Psi^{(1)}_{\mathcal{P}}(x) = \begin{cases}
\text{undefined} & \text{if HALT(x, x)} \\
0 & \text{if } \sim \text{HALT(x, x)}.
\end{cases}
$$

Let $\#(\mathcal{P}) = y_0$. Then, for all x,

$$
\text{HALT(x, y_0)} \iff \Psi^{(1)}_{\mathcal{P}}(x) \text{ is defined} \iff \mathcal{P} \text{ halts on } x \iff \sim \text{HALT(x, x)}
$$

Let $x = y_0$, we arrive at

$$
\text{HALT(y_0, y_0)} \iff \sim \text{HALT(y_0, y_0)}
$$

which is a contradiction. \qed

“HALT(x, y) Is Not Computable.” **What’s that?**

Let’s be precise on what have be proved.

- HALT(x, y) is a predicate on programs in language \mathcal{I}. It is a predicate on the computational behavior of the programs, i.e., whether a program y of language \mathcal{I} will halt on input x.
- It is shown there exists no program in language \mathcal{I} that computes HALT(x, y).
- As HALT(x, y) is a total function, we now have as an example a total function that cannot be expressed as a program in \mathcal{I}.
- But can HALT(x, y) be expressed in languages other than \mathcal{I}? Will HALT(x, y) become “computable” if other (more powerful) formalisms of computation are used?

The Unsolvability of Halting Problem

There is no algorithm that, given a program of \mathcal{I} and an input to the program, can determine whether or not the given program will eventually halt on the given input.

- In this form, the result is called the unsolvability of halting problem.
- The statement above is stronger than the statement “there exists no program in language \mathcal{I} that computes HALT(x, y),” as an algorithm can refer to a method in any formalism of computation.
- However, language \mathcal{I} can be been shown to be as powerful as any known computational formalism. Therefore, we reason that if no program in \mathcal{I} can solve it, no algorithm can.
Church’s Thesis

Any algorithm for computing on numbers can be carried out by a program of \mathcal{I}.

- This assertion is called *Church’s Thesis*.
- As the word *algorithm* has no general definition separated from a particular language, Church’s thesis cannot be proved as a mathematical theorem.
- We will use Church’s thesis freely in asserting the nonexistence of algorithms whenever we have shown that the problem cannot be solved by a program of \mathcal{I}.

Why The Halting Program Is So Hard? (Unsolvable!)

- This shall not be too surprising, as it is easy to construction short programs of \mathcal{I} such that it is very difficult to tell whether they will ever halt.
- Example: Fermat’s last theorem.
- Example: Goldbach’s conjecture.
- Actually it is always hard to prove whether programs of \mathcal{I} will exhibit specific computational behaviors (which are of sufficient interest).

Fermat’s Last Theorem

The equation $x^n + y^n = z^n$ has no solution in positive x, y, z and $n > 2$.

- It is easy to write a program \mathcal{P} of language \mathcal{I} that will search all positive integers x, y, z and numbers $n > 2$ for a solution to the equation $x^n + y^n = z^n$.
- Program \mathcal{P} never halts if only if Fermat’s last theorem is true.
- That is, if we can solve the halting problem, then we can easily prove (or dis-prove) the Fermat’s last theorem!
- (Fermat’s last theorem was finally proved in 1995 by Andrew Wiles with help from Richard Taylor.)
Goldbach’s Conjecture

Every even number \(\geq 4 \) is the sum of two prime numbers.

- Check: \(4 = 2 + 2, \ 6 = 3 + 3, \ 8 = 3 + 5, \ldots \)
- Is there a counterexample?
- Let’s write a program \(\mathcal{P} \) in \(\mathcal{I} \) to search for a counterexample!
- Note that the test that a given even number \(n \) is an counterexample only requires checking the primitive recursive predicate:

\[
\sim (\exists x)_{\leq n}(\exists y)_{\leq n}[\text{Prime}(x) \& \text{Prime}(y) \& x + y = n]
\]

- The statement that \(\mathcal{P} \) never halts is equivalent to Goldbach’s conjecture.
- The conjecture is still open; nobody knows yet whether \(\mathcal{P} \) will eventually halt.

1.3 Universality (4.3)

Compute with Numbers of Programs

- Programs taking programs as input: Compilers, interpreters, evaluators, Web browsers,

- Can we write a program in language \(\mathcal{I} \) to accept the number of another program \(\mathcal{P} \),
 as well as the input \(x \) to \(\mathcal{P} \), then compute \(\Psi^{(n)}(x) \) as output?
- Yes, we can! The program above is called a universal program.

Universality

For each \(n > 0 \), we define

\[
\Phi^{(n)}(x_1, \ldots, x_n, y) = \Psi^{(n)}(x_1, \ldots, x_n), \quad \text{where } \#(\mathcal{P}) = y.
\]

Theorem 3.1. For each \(n > 0 \), the function \(\Phi^{(n)}(x_1, \ldots, x_n, y) \) is partially computable. \(\square \)

We shall prove this theorem by showing how to construct, for each \(n > 0 \), a program \(\mathcal{U}_n \)
which computes \(\Phi^{(n)} \). That is,

\[
\Psi^{(n+1)}_{\mathcal{U}_n}(x_1, \ldots, x_n, x_{n+1}) = \Phi^{(n)}(x_1, \ldots, x_n, x_{n+1}).
\]

The programs \(\mathcal{U}_n \) are called universal.
“Computer Organization” of U_n

- Program U_n accepts $n + 1$ input variables of which X_{n+1} is a number of a program P, and X_1, \ldots, X_n are provided to P as input variables.
- All variables used by P are arranged in the following order

\[Y, X_1, Z_1, X_2, Z_2, \ldots \]

and their state is coded by the Gödel number $[y, x_1, z_1, x_2, z_2, \ldots]$.
- Let variable S in program U_n store the current state of program P coded in the above manner.
- Let variable K in program U_n store the number such that the Kth instruction of program P is about to be executed.
- Let variable Z in program U_n store the instruction sequence of program P coded as a Gödel number.

Setting Up

As program U_n computes $\Phi^{(n)}(X_1, \ldots, X_n, X_{n+1})$, we begin U_n by setting up the initial environment for program (number) X_{n+1} to execute:

\[
Z \leftarrow X_{n+1} + 1 \\
S \leftarrow \prod_{i=1}^{n} (p_{2i})^{X_i} \\
K \leftarrow 1
\]

- If $X_{n+1} = \#(P)$, where P consists of instructions I_1, \ldots, I_m, then Z gets the value $[\#(I_1), \ldots, \#(I_m)]$.
- S is initialized as $[0, X_1, 0, X_2, \ldots, 0, X_n]$ which gives the first n input variables their appropriate values and gives all other variables the value 0.
- K, the instruction counter, is given the initial value 1.

Decoding Instruction

We first see if the execution of program P shall halt. If not, we fetch the Kth instruction and decode the instruction.

\[
[C] \quad \text{IF } K = Lt(Z) + 1 \lor K = 0 \text{ GOTO } F \\
U \leftarrow r((Z)_k) \\
P \leftarrow p_{r(U)+1}
\]

- If the computation has ended, GOTO F, where the proper value will be output. (The case for $K = 0$ will be explained later.)
• \((Z)_k = \langle a, \langle b, c \rangle \rangle\) is the number of the \(K\)th instruction. Thus \(U = \langle b, c \rangle\) is the code of the statement to be executed.

• The variable mentioned in the statement is the \((r(U) + 1)\)th in our list \(S\), and its current value is stored as the exponent to which \(P\) divides \(S\).

Instruction Execution

IF \(l(U) = 0\) GOTO \(N\)
IF \(l(U) = 1\) GOTO \(A\)
IF \(\sim (P \mid S)\) GOTO \(N\)
IF \(l(U) = 2\) GOTO \(M\)

• If \(l(U) = 0\), the instruction is a dummy \([V \leftarrow V]\) and the computation does nothing. Hence, it goes to \(N\) (for Nothing).

• If \(l(U) = 1\), the instruction is \([V \leftarrow V + 1]\). The computation goes to \(A\) (for Add) to add 1 to the exponent on \(P\) in the prime power factorization of \(S\).

• If \(l(U) \neq 0,1\), the instruction is either \([V \leftarrow V - 1]\), or \([\text{IF } V \neq 0 \text{ GOTO } L]\). In both cases, if \(V = 0\), the computation does nothing so goes to \(N\). This happens when \(P\) is not a divisor of \(S\).

• If \(P \mid S\) and \(l(U) = 2\), the computation goes to \(M\) (for Minus).

Branching

\[
K \leftarrow \min_{i \leq Ll(Z)}[l((Z)_i) + 2 = l(U)]
\]

GOTO \(C\)

• If \(l(U) > 2\) and \(P \mid S\), the current instruction is of the form \([\text{IF } V \neq 0 \text{ GOTO } L]\) where \(V\) has a nonzero value and \(L\) is the label whose position in our label list is \(l(U) - 2\).

• The next instruction should be the first with this label.

• That is, \(K\) should get as its value the least \(i\) for which \(l((Z)_i) = l(U) - 2\). If there is no instruction with the appropriate label, \(K\) gets the 0, which will lead to termination the next time through the main loop.

• Once the instruction counter \(K\) is adjusted, the execution enters the main loop by \([\text{GOTO } C]\).
Subtraction and Addition

\[M \] \(S \leftarrow \lfloor S/P \rfloor \)
GOTO \(N \)

\[A \] \(S \leftarrow S \cdot P \)

\[N \] \(K \leftarrow K + 1 \)
GOTO \(C \)

- 1 is subtracted from the variable by dividing \(S \) by \(P \).
- 1 is added to the variable by multiplying \(S \) by \(P \).
- The instruction counter is increased by 1 and the computation returns to the main loop to fetch the next instruction.

Finalizing

\[F \] \(Y \leftarrow (S)_1 \)

- One termination, the value of \(Y \) for the program being simulated is stored at the exponent on \(p_1 \) in \(S \).

\(\forall n, \text{ Finally} \)

\(Z \leftarrow X_{n+1} + 1 \)
\(S \leftarrow \prod_{i=1}^{n}(p_{2i})^{X_i} \)
\(K \leftarrow 1 \)

\[C \] IF \(K = Lt(Z) + 1 \lor K = 0 \) GOTO \(F \)
\(U \leftarrow r((Z)_k) \)
\(P \leftarrow Pr(U)+1 \)
IF \(l(U) = 0 \) GOTO \(N \)
IF \(l(U) = 1 \) GOTO \(A \)
IF \(\sim (P|S) \) GOTO \(N \)
IF \(l(U) = 2 \) GOTO \(M \)
\(K \leftarrow \min_{1 \leqLt(Z)}[l((Z)_i) + 2 = l(U)] \)
GOTO \(C \)

\[M \] \(S \leftarrow \lfloor S/P \rfloor \)
GOTO \(N \)

\[A \] \(S \leftarrow S \cdot P \)

\[N \] \(K \leftarrow K + 1 \)
GOTO \(C \)

\[F \] \(Y \leftarrow (S)_1 \)
Notations

For each $n > 0$, the sequence

$$\Phi^{(n)}(x_1, \ldots, x_n, 0), \Phi^{(n)}(x_1, \ldots, x_n, 1), \ldots$$

enumerates all partially computable functions of n variables. When we want to emphasize this aspect we write

$$\Phi_{y}^{(n)}(x_1, \ldots, x_n) = \Phi^{(n)}(x_1, \ldots, x_n, y)$$

It is often convenient to omit the superscript when $n = 1$, writing

$$\Phi_{y}(x) = \Phi(x, y) = \Phi^{(1)}(x, y).$$