1 Preliminaries (1)

1.1 Alphabets and Strings (1.3)

Alphabets and Strings

- An alphabet is a finite nonempty set A of symbols.
- An n-tuple of symbols of A is called a word or a string on A. In stead of writing a word as (a_1, a_2, \ldots, a_n) we write simply $a_1a_2\ldots a_n$.
If $u = a_1a_2 \ldots a_n$, then we say that n is the length of u and we write $|u| = n$.

We allow a unique null word, written 0, of length 0.

The set of all words on the alphabet A is written as A^*.

Any subset of A^* is called a language on A or a language with alphabet A.

Alphabets and Strings, More

- If $u, v \in A^*$, then we write \hat{uv} for the word obtained by placing the string v after the string u. For example, if $A = \{a, b, c\}, u = bab$, and $v = caa$, then $\hat{uv} = babcaa$.

- Where no confusion can result, we write uv instead of \hat{uv}.

- It is obvious that, for all u, $u0 = 0u = u$, and that, for all u, v, w, $u(vw) = (uv)w$.

- If u is a string, and $n \in \mathbb{N}, n > 0$, we write

 $$u^n = uu \ldots u$$

 We also write $n^0 = 0$.

- If $u \in A^*$, we write u^R for u written backward; i.e., if $u = a_1a_2 \ldots a_n$, then $u^R = a_n \ldots a_2a_1$. Clearly, $0^R = 0$, and $(uv)^R = v^Ru^R$ for $u, v \in A^*$.

2 Regular Languages (9)

2.1 Finite Automata (9.1)

The Concept of Finite Automata

- A finite automaton has a finite number of internal states that control its behavior. The states function as memory in the sense that the current state keeps track of the progress of the computation.

- The automaton begins by reading the leftmost symbol on a finite input tape, in a specific state called the initial state.

- If at a given time, the automaton is in a state q_i, reading a given symbol s_j on the input tape, the machine moves one square to the right on the tape and enters a state q_k.

- The current state plus the symbol being read from the tape completely determine the automaton’s next state.

- When all symbols have been read, the automaton either stops at an accepting state or a non-accepting state.
Definition of Finite Automaton

Definition. A finite automaton \mathcal{M} consists of

- an alphabet $A = \{s_1, s_2, \ldots, s_n\}$,
- a set of states $Q = \{q_1, q_2, \ldots, q_m\}$,
- a transition function δ that maps each pair $(q_i, s_j), 1 \leq i \leq m, 1 \leq j \leq n$, into a state q_k,
- a set $F \subseteq Q$ of final or accepting states, and
- an initial state $q_1 \in Q$.

We can represent the transition function δ using a state versus symbol table.

What Does This Automaton Do?

The finite automaton \mathcal{M} has

- alphabet $A = \{a, b\}$,
- the set of states $Q = \{q_1, q_2, q_3, q_4\}$,
- the transition function δ defined by the following table:

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_2</td>
<td>q_4</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_3</td>
</tr>
<tr>
<td>q_3</td>
<td>q_4</td>
<td>q_3</td>
</tr>
<tr>
<td>q_4</td>
<td>q_4</td>
<td>q_4</td>
</tr>
</tbody>
</table>

- the set $F = \{q_3\}$ as the accepting states, and
- q_1 as the initial state.

What Does Automaton \mathcal{M} Do?

For strings $aabb, baba, aaba, \text{ and } abb$, the finite automaton \mathcal{M}

- accepts $aabb$ as \mathcal{M} terminates in state q_3, which is an accepting state;
- rejects $baba$ as \mathcal{M} terminates in state q_4, which is not an accepting state;
- rejects $aaba$ as \mathcal{M} terminates in state q_4, which is not an accepting state;
- accepts abb as \mathcal{M} terminates in state q_3, which is an accepting state.
Function $\delta^*(q_i, u)$

If q_i is any state of \mathcal{M} and $u \in A^*$, we shall write $\delta^*(q_i, u)$ for the state which \mathcal{M} will enter if it begins in state q_i at the left end of the string u and moves across u until the entire string has been processed.

- $\delta^*(q_1, aabbb) = q_3$,
- $\delta^*(q_1, baba) = q_4$,
- $\delta^*(q_1, aaba) = q_4$,
- $\delta^*(q_1, abbb) = q_3$.

Definition of Function $\delta^*(q_i, u)$

A formal definition of function $\delta^*(q_i, u)$ is by the following recursion:

\[
\begin{align*}
\delta^*(q_i, 0) &= q_i, \\
\delta^*(q_i, us_j) &= \delta(\delta^*(q_i, u), s_j).
\end{align*}
\]

Obviously, $\delta^*(q_i, s_j) = \delta(q_i, s_j)$. We say that \mathcal{M} accepts a word u provided that $\delta^*(q_1, u) \in F$. \mathcal{M} rejects a word u means that $\delta^*(q_1, u) \in Q - F$.

Regular Languages

The language accepted by a finite automaton \mathcal{M}, written $L(\mathcal{M})$, is the set of all $u \in A^*$ accepted by \mathcal{M}:

\[L(\mathcal{M}) = \{u \in A^* | \delta^*(q_1, u) \in F\}.\]

A language is called regular if there exists a finite automaton that accepts it.

What Language Does This Automaton Accept?

The finite automaton \mathcal{M} has

- the alphabet $A = \{a, b\}$,
- the set of states $Q = \{q_1, q_2, q_3, q_4\}$,
- the transition function δ defined by the following table:

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_2</td>
<td>q_4</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_3</td>
</tr>
<tr>
<td>q_3</td>
<td>q_4</td>
<td>q_3</td>
</tr>
<tr>
<td>q_4</td>
<td>q_4</td>
<td>q_4</td>
</tr>
</tbody>
</table>
- the set $F = \{q_3\}$ as the accepting states, and
- q_1 as the initial state.
What Language Does Automaton \mathcal{M} Accept?

The language it accepts is

$$\{a^n b^m \mid n, m > 0 \}.$$

As the above language is accepted by a finite automaton, we say it is a regular language.

State Transition Diagram

- Another way to represent the transition function δ is to draw a graph in which each state is represented by a vertex.
- The fact that $\delta(q_i, s_j) = q_k$ is represented by drawing an arrow from vertex q_i to vertex q_k and labeling it s_j.
- The diagram thus obtained is called the state transition diagram for the given automaton.
- See Fig. 1.1 in the textbook (p. 240) for the state transition diagram for the finite automaton we just showed in the previous two slides.

2.2 Nondeterministic Finite Automata (9.2)

Nondeterministic Finite Automata

- We modify the definition of a finite automaton to permit transitions at each stage to either zero, one, or more than one states.
- That is, we make the the values of the transition function δ be sets of states, i.e., sets of elements of Q (rather than members of Q).
- The devices so obtained are called nondeterministic finite automata (ndfa).
- Sometimes the ordinary finite automata are then called deterministic finite automata (dfa).

Definition of Nondeterministic Finite Automaton

Definition. A nondeterministic finite automaton \mathcal{M} consists of

- an alphabet $A = \{s_1, s_2, \ldots, s_n\}$,
- a set of states $Q = \{q_1, q_2, \ldots, q_m\}$,
- a transition function δ that maps each pair $(q_i, s_j), 1 \leq i \leq m, 1 \leq j \leq n$, into a subset of states $Q_k \subseteq Q$,
- a set $F \subseteq Q$ of final or accepting states, and
- an initial state $q_1 \in Q$.

Definition of Function $\delta^*(q_i, u)$

The formal definition of function $\delta^*(q_i, u)$ is now by:

$$
\begin{align*}
\delta^*(q_i, 0) &= \{q_i\}, \\
\delta^*(q_i, us_j) &= \bigcup_{q \in \delta^*(q_i, u)} \delta(q, s_j).
\end{align*}
$$

- A ndfa \mathcal{M} with initial state q_1 accepts $u \in A^*$ if $\delta^*(q_1, u) \cap F \neq \emptyset$.
- That is, at least one of the states at which \mathcal{M} ultimately arrives belongs to F.
- $L(\mathcal{M})$, the language accepted by \mathcal{M}, is the set of all strings accepted by \mathcal{M}.

What Does This Automaton Do?

The nondeterministic finite automaton \mathcal{M} has

- the alphabet $A = \{a, b\}$,
- the set of states $Q = \{q_1, q_2, q_3, q_4\}$,
- the transition function δ defined by the following table:

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>${q_1, q_2}$</td>
<td>${q_1, q_3}$</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_1}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_3</td>
<td>\emptyset</td>
<td>${q_4}$</td>
</tr>
<tr>
<td>q_4</td>
<td>${q_4}$</td>
<td>${q_4}$</td>
</tr>
</tbody>
</table>

- the set $F = \{q_4\}$ as the accepting states, and
- q_1 as the initial state.
- For the state transition diagram of \mathcal{M}, see Fig. 2.1 in the textbook (p. 243).

What Strings Does Automaton \mathcal{M} Accept?

M accepts a string on the alphabet $\{a, b\}$ just in case at least one of the symbols has two successive occurrence in the string. Why?

Viewing dfa as ndfa

- Strictly speaking, a dfa is not just a special kind of ndfa.
- This is because for a dfa, $\delta(q, s)$ is a state, where for a ndfa it is a set of states.
- But it is natural to identify a dfa \mathcal{M} with transition function δ, with the closely related ndfa \mathcal{M} whose transition function $\bar{\delta}$ is given by

$$
\bar{\delta}(q, s) = \{\delta(q, s)\},
$$

and which has the same final states as \mathcal{M}.
- It is obviously that $L(\mathcal{M}) = L(\mathcal{M})$. 6
Theorem 2.1. A language is accepted by a ndfa if and only if it is regular. Equivalently, a language is accepted by an ndfa if and only if it is accepted by a dfa. Proof Outline. As we have seen, a language accepted by a dfa is also accepted by an ndfa. Conversely, let \(L = L(\mathcal{M}) \), where \(\mathcal{M} \) is an ndfa with transition function \(\delta \), set of states \(Q = \{ q_1, \ldots, q_m \} \), and set of final states \(F \). We will construct a dfa \(\tilde{\mathcal{M}} \) such that \(L(\tilde{\mathcal{M}}) = L(\mathcal{M}) = L \). The idea of the construction is that the individual states of \(\tilde{\mathcal{M}} \) will be sets of states of \(\mathcal{M} \).

Constructing \(\tilde{\mathcal{M}} \)

The dfa \(\tilde{\mathcal{M}} \) consists of

- the same alphabet \(A = \{ s_1, s_2, \ldots, s_n \} \) of the ndfa \(\mathcal{M} \),
- the set of states \(\tilde{Q} = \{ Q_1, Q_2, \ldots, Q_{2^m} \} \) which consists of all the \(2^m \) subsets of the set of states of the ndfa \(\mathcal{M} \),
- the transition function \(\tilde{\delta} \) defined by
 \[
 \tilde{\delta}(Q_i, s) = \bigcup_{q \in Q_i} \delta(q, s),
 \]
- the set \(\mathcal{F} \) of final states given by
 \[\mathcal{F} = \{ Q_i \mid Q_i \cap F \neq \emptyset \};\]
- the initial state \(Q_1 = \{ q_1 \} \), where \(q_1 \) is the initial state of \(\mathcal{M} \).

Lemma 1. Let \(R \subseteq \tilde{Q} \). Then
 \[
 \tilde{\delta}(\bigcup_{Q_i \in R} Q_i, s) = \bigcup_{Q_i \in R} \tilde{\delta}(Q_i, s).
 \]

Proof. Let \(\bigcup_{Q_i \in R} Q_i = Q \). Then by definition,

\[
\tilde{\delta}(Q, s) = \bigcup_{q \in Q} \delta(q, s) = \bigcup_{Q_i \in R} \bigcup_{q \in Q_i} \delta(q, s) = \bigcup_{Q_i \in R} \tilde{\delta}(Q_i, s).
\]

\(\square \)
Lemma 2. For any string u,
\[
\tilde{\delta}^*(Q_i, u) = \bigcup_{q \in Q_i} \delta^*(q, u).
\]

Proof. The proof is by induction on $|u|$. If $|u| = 0$, then $u = 0$ and
\[
\tilde{\delta}^*(Q_i, 0) = Q_i = \bigcup_{q \in Q_i} \{q\} = \bigcup_{q \in Q_i} \delta^*(q, 0).
\]

Proof. (Continued) If $|u| = l + 1$ and the result is known for $|u| = l$, we write $u = vs$, where $|v| = l$, and observe that, using Lemma 1 and the induction hypothesis,
\[
\tilde{\delta}^*(Q_i, u) = \tilde{\delta}^*(Q_i, vs) = \tilde{\delta}(\tilde{\delta}^*(Q_i, v), s) = \tilde{\delta}(\bigcup_{q \in Q_i} \delta^*(q, v), s) = \bigcup_{q \in Q_i} \tilde{\delta}(\delta^*(q, v), s) = \bigcup_{q \in Q_i, r \in \delta^*(q, v)} \delta(r, s) = \bigcup_{q \in Q_i} \delta^*(q, vs) = \bigcup_{q \in Q_i} \delta^*(q, u).
\]

\[\square\]

Lemma 3. $L(M) = L(\tilde{M})$. Proof. $u \in L(\tilde{M})$ if and only if $\tilde{\delta}^*(Q_1, u) \in \mathcal{F}$. But, by Lemma 2,
\[
\tilde{\delta}^*(Q_1, u) = \tilde{\delta}^*(\{q_1\}, u) = \delta^*(q_1, u).
\]
Hence,
\[
u \in L(\tilde{M}) \text{ if and only if } \delta^*(q_1, u) \in \mathcal{F}
\]
if and only if $\delta^*(q_1, u) \cap F \neq \emptyset$
if and only if $u \in L(M)$

\[\square\]
Note that Theorem 2.1 is an immediate consequence of Lemma 3.
2.3 Additional Examples (9.3)

Additional Examples

- Construct a dfa that accepts the language:
 \[\{(11)^n \mid n \geq 0\}\]
- The vendor machine example. (Fig. 3.2 in textbook, p. 248)
- Construct an ndfa that accepts all and only strings which end in \(bab\) or \(aaba\).
- Construct an ndfa that accepts the language:
 \[\{a^{n_1}b^{m_1}\ldots a^{n_k}b^{m_k} \mid n_1, m_1, \ldots, n_k, m_k > 0\} \].

2.4 Closure Properties (9.4)

Closure properties

- To show that the class of regular languages is closed under a large number of operations.
- To use deterministic or nondeterministic finite automata whenever necessary, as the two classes of automata are equivalent in expressiveness (Theorem 2.1).

Nonrestarting dfa

Definition. A dfa is called nonrestarting if there is no pair \(q, s\) for which

\[\delta(q, s) = q_1 \]

where \(q_1\) is the initial state.

Theorem 4.1. There is an algorithm that will transform a given dfa \(M\) into a nonrestarting dfa \(\tilde{M}\) such that \(L(M) = L(\tilde{M})\).

Constructing a nonrestarting dfa from a dfa

Proof of Theorem 4.1. From a dfa \(M\), we can construct an equivalent nonrestarting dfa \(\tilde{M}\) by adding a new “returning initial” state \(q_{n+1}\), and by redefining the transition function accordingly. That is, for \(\tilde{M}\), we define

- the set of states \(\tilde{Q} = Q \cup \{q_{n+1}\}\)
- the transition function \(\tilde{\delta}\) by
 \[\tilde{\delta}(q, s) = \begin{cases} \delta(q, s) & \text{if } q \in Q \text{ and } \delta(q, s) \neq q_1 \\ q_{n+1} & \text{if } q \in Q \text{ and } \delta(q, s) = q_1 \end{cases} \]
 \[\tilde{\delta}(q_{n+1}, s) = \tilde{\delta}(q_1, s) \]
- the set of final states \(\tilde{F} = \begin{cases} F & \text{if } q_1 \notin F \\ F \cup \{q_{n+1}\} & \text{if } q_1 \in F \end{cases} \)

To see that \(L(M) = L(\tilde{M})\) we observe that \(\tilde{M}\) follows the same transitions as \(M\) except whenever \(M\) reenters \(q_1\), \(M\) enters \(q_{n+1}\). \(\square\)
L ∪ ˜L

Theorem 4.2. If L and ˜L are regular languages, then so is L ∪ ˜L. Proof. Let ሺand ሺ be nonrestarting dfas that accept L and ˜L respectively. We now construct a ndfa ሺ by “merging” ሺ and ሺ but with a new initial state ˇq₁. That is, we define ሺ by

- the set of states ˇQ = Q ∪ ˜Q ∪ {ˇq₁} – {q₁, ˜q₁}
- the transition function ˇδ by

 \[
 ˇδ(q, s) = \begin{cases}
 \{δ(q, s)\} & \text{if } q ∈ Q – \{q₁\} \\
 \{δ(q, s)\} & \text{if } q ∈ ˜Q – \{˜q₁\}
 \end{cases}
 \]

 \[
 ˇδ(ˇq₁, s) = \{δ(q₁, s)\} ∪ \{δ(˜q₁, s)\}
 \]

- the set of final states
 \[
 ˇF = \begin{cases}
 F ∪ ˜F ∪ \{ˇq₁\} – \{q₁, ˜q₁\} & \text{if } q₁ ∈ F or ˜q₁ ∈ ˜F \\
 F ∪ ˜F & \text{otherwise}
 \end{cases}
 \]

Note that once a first transition has been selected, ሺ is locked into either ሺ or ሺ. Hence L(.ˇ) = L ∪ ˜L.

A* – L

Theorem 4.3. Let L ⊆ A* be a regular language. Then A* – L is regular. Proof. Let ሺ be a dfa that accept L. Let dfa ሺ be exactly like ሺ except that it accepts precisely when ሺ rejects. That is, the set of accepting states of ሺ is Q – F. Then L(.ˇ) = A* – L.

L₁ ∩ L₂

Theorem 4.4. If L₁ and L₂ are regular languages, then so is L₁ ∩ L₂. Proof. Let L₁, L₂ ⊆ A*. Then, by the De Morgan identity, we have

\[
\]

Theorem 4.2 and 4.3 then give the result.

∅ and {0}

Theorem 4.5. ∅ and {0} are regular languages. Proof. ∅ is clearly the language accepted by any automaton whose set of accepting states is empty. For {0}, we can construct a two-state dfa such that F = {q₁} and δ(q₁, a) = δ(q₂, a) = q₂ for every symbol a ∈ A, the alphabet. Clearly this dfa accepts {0}.
Every finite subset of A^* is regular

Theorem 4.5. Let $u \in A^*$. Then $\{u\}$ is a regular language.

Proof. Theorem 4.4 proves the case for $u = 0$. For the other case, let $u = a_1a_2\ldots a_l$ where $l \geq 1, a_1, a_2, \ldots a_l \in A$. We now construct a $(l + 1)$–state ndfa \mathcal{M} with initial state q_1, accepting state q_{l+1}, and the transition function δ given by

\[\delta(q_i, a_i) = \{q_{i+1}\}, \quad i = 1, \ldots, l\]
\[\delta(q_i, a) = \emptyset \quad \text{for} \quad a \in A \setminus \{a_i\}, \quad i = 1, \ldots, l\]

Clearly $L(\mathcal{M}) = \{u\}$.

Corollary 4.7. Every finite subset of A^* is regular.

□