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SUMMARY

This work describes a parallel divide-and-conquer Delaunay triangulation scheme. This algorithm finds
the affected zone, which covers the triangulation and may be modified when two sub-block triangulations
are merged. Finding the affected zone can reduce the amount of data required to be transmitted between
processors. The time complexity of the divide-and-conquer scheme remains O(n log n), and the affected
region can be located in O(n) time steps, where n denotes the number of points. The code was implemented
with C, FORTRAN and MPI, making it portable to many computer systems. Experimental results on an
IBM SP2 show that a parallel efficiency of 44–95% for general distributions can be attained on a 16-node
distributed memory system. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Meshes are commonly employed in finite-element and finite-volume analysis in many fields such
as computational solid mechanics, computational fluid dynamics, computational electro magnetics
and computer graphics. Large point set problems are frequently solved using parallel computers,
since their large computation requirement makes the mesh generation beyond the storage and power
of a single processor. Therefore, parallel computers are needed to create the mesh of a very large
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data set. Automatic mesh generation has two main classes of methods—Delaunay triangulation and
the advancing front method. Delaunay triangulation’s max–min angle criterion makes the triangulation
a well-shaped mesh. Many Delaunay triangulation sequential algorithms have been presented including
the Bowyer–Watson algorithm, quick hull, sweep line, incremental construction and divide-and-
conquer (D&C). Among these algorithms, the D&C scheme is the most efficient and powerful for
generating Delaunay triangulation [1]. This study uses the D&C scheme in the parallel implementation.

Past literature has included some parallel Delaunay mesh generation methods. Said et al. [2]
discretized the inter-domain boundary leading to independent grid generation. A grid must exist in the
inter-domain boundary between sub-domains. Cignoni et al. [3] proposed the parallel implementation
of the incremental construction algorithm, which uses the ‘marriage before conquest’ strategy. Blelloch
et al. [4] also applied this strategy. Blelloch et al.’s algorithm identifies the median line between
sub-domains by the convex hull algorithm, then triangulates sub-domain using the D&C algorithm.
The parallel efficiency of Blelloch et al.’s algorithm at 128k points is 48–90% on an IBM SP2 with
eight nodes.

Details of the D&C Delaunay algorithm are reported in [5–8]. This algorithm splits the original point
set into small data sets each containing two or three points, then recursively merges the triangulation of
small data sets to create the complete Delaunay triangulation. The major complexity of this algorithm
is in the merge phase. The merge algorithm performs the merge operation between the upper and lower
common tangent of the two sub-convex hulls. D&C’s merge operation only works on the neighbor
triangulation of the merging area, which has an efficient data structure [9]. However, for the parallel
Delaunay triangulation, the continuous operation on neighbor triangulation produces continuous data
exchange between processors, which is the main problem in parallelizing D&C schemes [10].

An effective means of preventing massive data exchange between processors is to find the neighbor
triangulations which may be modified during the merge operation, and then only exchange those
neighbor triangulations. This neighbor triangulation on each processor is called the ‘affected zone’.
This study devises a novel algorithm to find the affected area. The algorithm’s associated time
complexity is O(n), where n denotes the number of points assigned to a processor. This work also
presents an error-prone line circle test in constructing the affected region.

The rest of this paper is organized as follows. Section 2 presents an overview of the proposed
parallelization method. Section 3 presents the theory and the algorithm to determine affected zone.
Section 4 discusses the line circle test. Section 5 reports the experimental results with various
distributions of the point sets. Section 6 draws conclusions.

2. PARALLEL D&C DELAUNAY TRIANGULATION SCHEME

The D&C Delaunay triangulation algorithm is O(n log n). This method was chosen because it
efficiently merges two triangulations. During the merge operation, the algorithm must access the
neighbor triangulation in the merge area, and therefore requires successive exchanges of data between
processors to merge between them. The proposed algorithm resolves this difficulty by estimating the
affected areas of two triangulations, and then exchanging and merging them. The next section shows
the algorithm and the theoretical properties of affected zone. Figures 1–3 depict the parallel merge of
block triangulations by decomposing the domain into four sub-domains. The block triangulation data
structure is the same as that of Shewchuk’s algorithm [9] introduced in Section 3.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1595–1612



PARALLEL DIVIDE-AND-CONQUER SCHEME FOR 2D DELAUNAY TRIANGULATION 1597

      P0
Processor Processor

      P1
Processor

      P2

Processor
      P3

Figure 1. Delaunay triangulation of each block.

Figure 2. Processors P0 and P2 merge their triangulation with the triangulation from P1 and P3.

At the beginning of the parallel scheme, the point set must be partitioned. A parallel partitioning
method of Hoare’s median finding algorithm [11] is designed to partition the point set into 2D blocks.
In the merging phase of the parallel scheme, the processors in the same column merge parts of the
x-direction cut (Figure 1). Only the processors which merge across columns are needed to merge the
full y-direction cuts (Figure 2).

This parallel algorithm assumes that the total number of processors are powers of two, and configure
them into a 2D array. As shown in Figure 4, the point set is partitioned in the x-direction and distributed
to the first processor of each column. Then, the points of every column are partitioned in the y-direction
and distributed to the other processors. Every processor sorts its points, triangulates the point set and
generates the affected zone. Then, the combination of the triangulations are performed by merging the
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Figure 3. Processor P0 merge its triangulation with the triangulation from P2.
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Figure 4. Processors are configured into a 2D array.

affected zones. The merging order is the reverse of parallel partitioning point sequence, therefore the
merge needs O(log P) phases. This method is conducted as follows.

1. Configure the P processors (where P is a power of two) as a 2D array (Figure 4).
2. Partition the whole point set to the first processors of each column.
3. Partition the point set on the first processor to the other processors on its column.
4. Triangulate each block by applying D&C on individual processors.
5. Create the affected zone on individual processors.
6. Merge the affected zones in the reverse order of partitioning the point set and transmit the

modified triangles back to the associated processors.
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Affected zone

Figure 5. The affected zones of two triangulations.

3. AFFECTED ZONE

The affected zone is the triangulation region (Figure 5) that may be modified when two sub-Delaunay
triangulations are combined. Triangulations can be combined between processors by merging the
affected regions.

3.1. The data structure of the affected zone

For efficiency, a data structure similar to that of Shewchuk’s [9] (Figure 6) was employed for the
affected zone. Therefore, the affected zone has two types of triangles, real and ghost zone triangles.
Each triangle includes eight pointers, of which three point to nodes, three point to neighbor triangles,
one points to the processor containing the triangle, and the last pointer points to the index of the
triangle on the processor. The data structure of the block triangulation, like Shewchuk’s data structure,
only includes the first six pointers. Since one neighboring triangle pointer in the boundary real triangle
points to a null triangle outside, a ghost triangle is created instead of a null triangle. A ghost zone
triangle has the same data structure as a real zone triangle. The three node pointers of the ghost
zone triangle point to one null node (negative or zero value) and two boundary nodes, and the other
three triangle pointers point to the boundary triangle and two neighbor ghost triangles. When the two
affected zones are merged on the other processor, the last two pointers can be used to address and
remove the non-Delaunay triangles on the associated processor.
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ghost triangle
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Figure 6. (a) A triangulation with its ghost triangles and (b) its data structure.

3.2. The affected zone theory and algorithm

Before discussing how to find the affected area, two Delaunay triangulation characteristics required to
identify the affected region are outlined. The first property is the well-known circumcircle criterion,
often applied to construct a Delaunay triangulation. The second rule [6] states that, for a specified
direction from a node, the circumcircles of the node’s neighboring triangles move monotonically from
the farthest circles in the reverse direction.

Fact 1. A triangulation is Delaunay if and only if the circumcircle of every interior triangle is point-
free; that is, none of the given sites are constrained in the circle.

Fact 2. Let N1, N2, . . . , Nk(k ≥ 1) be some Delaunay neighbors of a site P and lies above a line L

in counterclockwise order as in Figure 7. The circumcircle of triangle PNiNi+1, i = 1, 2, . . . , k − 1,
move monotonically to the left.

Two problems exist in creating the affected zone. Which triangles should be incorporated into the
affected area? How are these triangles identified? Lemma 1, presented below, specifies the triangles
to be included in the affected region. Lemma 2 presents the rule for searching the triangles specified
in Lemma 1. To compute the union of two block triangulations, the points of the right(left) block are
added to left(right) block triangulation together. The two lemmas address the condition that adds the
right block points to the left block triangulation, and this condition is the same for the left block points
added to the right block triangulation.

Lemma 1. For a given Delaunay triangulation, new points are added to form a new Delaunay
triangulation. Assuming a specified line outside the given triangulation, the newly added points are on
different sides of the line. In the given triangulation, the interior triangles whose circumcircles touch
the line may not be Delaunay triangles for the new point set. That is, these triangles are indeterminate.
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Figure 7. The neighboring circumcircles of a node of Delaunay triangulation monotonically move towards the
reverse of a specified direction (right-hand side is the specified direction here).

Proof. According to Fact 1, none of the circumcircles of the interior triangles contain any points in the
Delaunay triangulation. Since the newly added points are outside the line, the interior triangles whose
circumcircles do not touch the line do not contain these new points, and, therefore, are still point-free.
Only the triangles whose circumcircles touch the line may not be Delaunay triangles for the new point
set. �

Lemma 1 defines the indeterminate triangles to be included in the affected region. Then, the
following Lemma 2 demonstrates the convergence of the affected zone searching algorithm.

Lemma 2. For a point P in the left block triangulation, let its neighbor triangles T1, T2, . . . , Tk(k ≥ 1)

lie in counterclockwise order (Figure 7). Let Q1,Q2, . . . ,Qk denote the point set of the right block,
and let line V represent the left-most line of the right block. If the circumcircle of triangle Ti+1 does
not touch line V , then the triangle Ti+1, Ti+2, . . . , Tk(k ≥ i + 1) is point-free from the point set Q.

Proof. As in Fact 2, the circumcircles of a point move monotonically to the left. This result follows
accordingly. �

Now, the indeterminate triangles can be searched inwardly from the triangles on the convex hull.
The affected region can be constructed by discovering all the triangles that pass the line-incircle test.
The line-incircle test is described in Section 4. Figure 8 illustrates a simple inward searching process.

The affected zone has three parts, the affected triangle set, the real affected-zone triangle set and the
ghost triangle set. The affected triangle set is the set of interior ghost triangles of the affected zone.
The real affected-zone triangle is the indeterminate triangle. The real affected-zone triangle contains the
same first six pointers as the same position of the triangle of block triangulation. The ghost triangle set
is the set of exterior ghost triangles with a zero-value null node. Figure 9(a) depicts an initially empty
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Figure 8. The construction of affected zone begins from the test of neighbor triangles of the sites on
convex hull (test T1 first, then T2).

affected area and its affected and ghost triangle sets. The triangle in the affected triangle set includes the
same six data as the same position triangle of block triangulation except the negative value of the null
node. These data are applied to perform the line-incircle test on the triangles. When the triangle of the
affected triangle set passes the line-incircle test, it becomes a real affected-zone triangle. The affected
triangle set is then updated as in Figure 9(b). If the triangle of affected triangle set does not pass the
line-incircle test, this triangle becomes a ghost triangle by setting its null node to zero. Every triangle
in the affected triangle set performs the line-incircle test one-by-one in clockwise or counterclockwise
order.

If the triangles of the affected triangle set (such as T3, T4, T5 or T6 in Figure 10) turn into real
affected-zone triangles, three cases may result.

1. The new triangle does not contact the interior boundary of the real affected-zone triangle set
(T4).

2. The new triangle shares an edge with the interior boundary of the real affected-zone triangle set
(T3 and T5).

3. The new triangle shares a point with the interior boundary of the real affected-zone triangle set
(T6).
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Figure 9. (a) At the initial stage of affected zone algorithm, only the affected triangle set and ghost triangle set
exist. (b) The neighbor triangle of affected triangle set around P1 performs a line-incircle test. After twice passing

the test, T1 and T2 are the real affected zone triangles in the affected region.

The first case is the most general. For this instance, after T4 becomes the real affected-zone triangle,
two new triangles are added to the affected triangle set. For the second case, T3(T5) becomes the real
affected-zone triangle, and the other affected triangle on the contacted edge becomes the new affected
triangle. Therefore, no new triangle is generated in this case. In the third case, T6 becomes the real
affected-zone triangle, and the affected triangle set is cut into two sets, with a new triangle created in
each new sets. The affected zones are generated on each set separately.

ALGORITHM AFFECTED ZONE

1. Initialize the affected triangle set and the ghost triangle set.
Choose one triangle in the affected triangle set as the active triangle (Figure 9(a)).

2. Verify whether the circumcircle of the active triangle will touch the dividing line between two
block triangulations.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1595–1612
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Figure 10. There are three cases when the triangles in the affected triangle set turn into the real affected zone
triangles: (i) T4 does not contact with any triangle of the real affected zone set; (ii) T3 and T5 share an edge with
the interior boundary of the real affected zone triangle set; (iii) T6 is the triangle that share a point with the interior

boundary of the real affected zone triangle set.

3. IF (the circumcircle of active triangle does not contact the dividing line) THEN
Turn the active triangle into a ghost affected zone triangle and check whether the affected set is
empty. If the affected triangle set is not empty, move to the next active triangle and go to step 2.
However, if this affected triangle set is empty and another affected triangle set exists, select one
triangle in the next set as the active triangle and go to step 2. If this affected triangle is empty
and no other affected triangle set is left, then stop.
ELSE
Determine whether the null node of the active triangle (the unsigned value of null node is used)
is a point on the interior boundary of the real affected-zone triangle set, and go to step 4.

4. IF (the null node of active triangle is not a point on the interior boundary of the real affected-zone
triangle set) THEN
Change the active triangle into a real affected-zone triangle, add two new triangles to the affected
triangle set, then set one of the new triangles as the active triangle and go to step 2.
ELSE
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Verify whether the left or right edge connected to the null node of active triangle is an edge on
the internal boundary of the real affected zone. Then, go to step 5.

5. IF (one of the edges connected to the null node of active triangle is the next neighbor edge, e.g.
T5 in Figure 10) THEN

IF (this affected triangle set only has three affected triangles) THEN

Turn the active triangle into a real affected-zone triangle, then end this set and search for
another affected set.

IF (another affected triangle set is discovered) THEN

Choose one triangle in the next affected triangle set as the active triangle and go to step 2.

IF (no other affected triangle sets exist) THEN

Stop the AFFECTED ZONE algorithm.

IF (this affected triangle set has more than three triangles) THEN

Convert the active triangle to a real affected-zone triangle. Transform the next triangle in
the affected triangle set to an active triangle, and update the associated data, then go to
step 2.

ELSE IF (one of the edges connected to the null node of active triangle is the previous neighbor
edge, e.g. T3 in Figure 10) THEN

Convert the active triangle into a real affected-zone triangle. Turn the previous triangle in
the affected triangle set into active triangle and update the associated data is updated, then
go to step 2.

ELSE

Change the active triangle into an affected-zone triangle. The affected triangle set is split
into two sets and two new affected-zone triangles are added in each set with the appropriate
data. Then, select one of the triangles in one of the two sets as the active triangle, and go
to step 2.

The above discussion demonstrates that the proposed algorithm can discover all of the triangles
which may be changed when two Delaunay triangulations are combined. Since every triangle is tested
at most once, the time complexity of the affected-zone algorithm is O(n). Thus, the D&C approach
can be applied to merge the affected zones from different processors while reducing the amount of data
required to be transmitted between processors.

4. ISSUE IN THE SCHEME

This section discusses the robust line-incircle test for finding the affected area. The algorithm for
calculating the affected area involves a line-incircle test, i.e. an incircle test of one circumcircle and
the nearest straight line of another triangulation (Figure 11). If the line is inside the circumcircle of the
triangle, then the triangle passes the line-incircle test.
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Figure 11. The line-incircle test.

Lemma 3. In the line-incircle test, let (xA, yA), (xB, yB), (xC, yC) be the coordinates of point A,B,C

on the tips of triangle and xD is the x-coordinate of the line:
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Then, if

� = β2 − 4γ (γ x2
D + αxD − δ) > 0

the triangle passes the line-incircle test.

Proof. As in Guibas and Stalfi’s paper [6], if
∣∣∣∣∣∣∣∣∣∣∣

xA yA x2
A + y2

A 1

xB yB x2
B + y2

B 1

xC yC x2
C + y2

C 1

xD yD x2
D + y2

D 1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (1)

A, B, C, D are cocircular. Assume point D be the contact point of the circumcircle with the line, so the
y-coordinate of D is unknown. Then, we expand the above determinant of array by the last row to be

−xDα + yDβ − (x2
D + y2

D)γ + δ = 0 (2)

or, equivalently,

γy2
D − βyD + γ x2

D + αxD + δ = 0 (3)

From the previous equation, the circumcircle touches the line L if and only if the determinant � > 0.
Then this lemma is proved. �

5. EXPERIMENTAL STUDIES

5.1. Primary results

The algorithm was executed on an IBM SP cluster system with P655 Node. The IBM SP has
a dedicated processor pool of 16 parallel execution nodes. The main program was written in C
for its flexibility in memory allocation and management. The Delaunay triangulation and affected
zone were written in Fortran 77. The code was compiled using IBM’s mpxlf and mpcc compilers
with standard code optimization. Data were moved between processors with library calls to MPI
(Message Passing Interface) library functions. The program was executed under IBM’s poe (parallel
operating environment) on top of the AIX 5 operating system. The parallel efficiency values were
compared with the uniprocessor running time, which is nearly the same or better than that of the well-
known sequential code in Netlib, package Triangle (see Table I).

The code was executed using three different point distribution; uniform, kuzmin, and line singularity
distributions. Owing to the memory limitation of a single processor, Table II lists the timings of
triangulating 1M to 16M points. All of the timings represent the average CPU time of 20 runs on
each case.

The ideal testing case must represent real-world problems. Therefore, both uniform and non-uniform
distributions were selected to test the efficiency of the parallel code. Three different distributions were
chosen as indicated in Figure 12 and they are described below.
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Table I. Elapsed time of package Triangle [9] with command ‘triangle -NEX’ and our algorithm on
uniprocessor IBM SP2 system.

Uniform Kuzmin Line

Number of points Triangle Ours Triangle Ours Triangle Ours

1M 5.53 5.32 5.37 5.89 5.65 5.89
16M 203.72 105.42 199.80 111.08 215.03 119.08

Table II. Elapsed time (excluding I/O) and relative speedup with three different distributions.

Number of processors

Data size 1 2 4 8 16

Uniform distribution
1M 5.32 (1.00) 2.85 (1.87) 1.51 (3.52) 0.94 (5.66) 0.70 (7.60)
2M 11.34 (1.00) 5.95 (1.91) 3.15 (3.60) 1.95 (5.82) 1.47 (7.71)
4M 25.04 (1.00) 13.12 (1.91) 6.83 (3.67) 4.12 (6.08) 2.99 (8.37)
8M 53.57 (1.00) 27.24 (1.93) 14.56 (3.68) 8.78 (6.10) 6.36 (8.42)

16M 105.42 (1.00) 53.51 (1.97) 28.96 (3.64) 17.31 (6.09) 12.48 (8.44)

Kuzmin distribution
1M 5.86 (1.00) 3.13 (1.87) 1.64 (3.57) 1.01 (5.80) 0.78 (7.51)
2M 12.20 (1.00) 6.49 (1.88) 3.36 (3.63) 2.07 (5.89) 1.59 (7.67)
4M 25.80 (1.00) 13.83 (1.87) 7.23 (3.57) 4.43 (5.82) 3.26 (7.91)
8M 55.18 (1.00) 29.56 (1.87) 15.49 (3.56) 9.41 (5.86) 6.91 (7.99)

16M 119.08 (1.00) 63.55 (1.87) 32.98 (3.61) 19.77 (6.02) 15.06 (7.91)

Line singularity distribution
1M 5.89 (1.00) 2.95 (2.00) 1.70 (3.46) 1.04 (5.66) 0.84 (7.01)
2M 12.05 (1.00) 6.17 (1.95) 3.53 (3.41) 2.12 (5.68) 1.73 (6.97)
4M 25.99 (1.00) 13.28 (1.95) 8.15 (3.19) 4.45 (5.84) 3.37 (7.71)
8M 55.10 (1.00) 29.35 (1.88) 18.39 (3.00) 9.48 (5.81) 6.93 (7.95)

16M 111.08 (1.00) 58.56 (1.89) 33.08 (3.36) 19.06 (5.83) 14.05 (7.91)

• Uniform distribution. The points are generated randomly in a unit square. It forms a common
base to compare with related work. The timing results can be used to contrast those of
non-uniform distributions as well.

• Kuzmin distribution. It is used by astrophysicists to model the distribution of stars in a flat galaxy.
This distribution is highly non-uniform whose density of point falls quickly as r increases.
Its accumulative probability function is

M(r) = 1 − 1√
1 + r2

The radius r is generated by the inverse of the accumulative probability function r = M−1(X)

where X is a random number. Then, the point on the circle of radius r can be picked uniformly.
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Figure 12. Uniform, kuzmin, line singularity distributions.

• Line singularity distribution. This distribution is like the plasma in electromagnetism. Its density
is high along a line segment and falls as far away from the line. The points can be generated with
the following transformation:

(x, y) =
(

b

u − bu + b
, v

)

u and v are two independent, uniform random numbers in range [0, 1]. b is a constant, we set
b = 10.0 in these experiments.

As Table II demonstrates, the speedup was not linear, because of the partition and communication
overheads. The speedup decreased as the number of processors rose, because more levels of recursion
were required. This table also reveals that large problems yielded better speed increases than the small
problems, since the collective communication of large quantities of data is more efficient than that
of small data. The diagonal elements (top-left to bottom-right), which compute the same number of
points on each processor, demonstrate that the overhead increased when more levels of recursion were
required.

Figure 13 illustrates the parallel efficiency of each processor, defined as the speedup divided by
the number of processors, for the uniform and kuzmin distributions. As more processors are added,
per-processor performance falls as more levels of recursion are needed.

Figure 14 presents the scalability of our implementation on various numbers of processors.
For clarity, the timings of the uniform distribution were compared with those of the opposite non-
uniform distribution, i.e. the kuzmin case. From the figures, the performance scales as the problem size
becomes larger.

Table III shows the relative costs of the various substeps at processor 0, where every processor
triangulates the same number of points but processor 0 is last of the triangulations to be updated.
The partition and merge timings incorporate all the partitioning and merging work in processor 0.
The ‘other’ timing in the table is the time spent executing other code, such as changing the index,
waiting for or receiving an affected zone, and sending or receiving triangles to be deleted. The sort and
triangulation timings remained fairly reasonable as the problem size increased.
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 uniform

 kuzmin

   0   16M   32M   64M  128M
  0.0

  20.0

  40.0

  60.0

  80.0

  100.0

  120.0

  140.0

  160.0

  180.0

Number of points

C
PU

 ti
m

e
(s

)

1 proc.
2 proc.

4 proc.

8 proc.

16 proc.

Figure 14. The timings on a fixed number of processors.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1595–1612



PARALLEL DIVIDE-AND-CONQUER SCHEME FOR 2D DELAUNAY TRIANGULATION 1611

Table III. The time and percentage at each substep of processor 0 with three different distributions.

Data Processors Partition Sort Triangulation Affected zone Merge Other Total

Uniform distribution
1M 1 — 0.63 (12%) 4.69 (88%) — — — 5.32
2M 2 0.15 (2.5%) 0.61 (10%) 4.81 (81%) 0.03 (0.5%) 0.002 (0.03%) 0.33 (5.6%) 5.94
4M 4 0.43 (6.3%) 0.64 (9.4%) 4.73 (69%) 0.13 (1.9%) 0.003 (0.04%) 0.88 (13%) 6.82
8M 8 1.10 (13%) 0.63 (7.2%) 4.77 (54%) 0.20 (2.3%) 0.003 (0.03%) 2.07 (23%) 8.78

16M 16 2.94 (23%) 0.67 (5.4%) 4.95 (40%) 0.61 (4.9%) 0.004 (0.03%) 3.30 (26%) 12.46

Kuzmin distribution
1M 1 — 0.64 (11%) 5.23 (89%) — — — 5.87
2M 2 0.14 (2.2%) 0.61 (9.4%) 5.4 (83%) 0.02 (0.3%) 0.007 (0.1%) 0.31 (4.8%) 6.49
4M 4 0.72 (10%) 0.64 (8.9%) 5.17 (72%) 0.02 (0.3%) 0.016 (0.2%) 0.67 (9.3%) 7.23
8M 8 1.55 (16%) 0.63 (6.6%) 5.14 (54%) 0.04 (0.4%) 0.033 (0.3%) 2.11 (22%) 9.50

16M 16 3.57 (24%) 0.63 (4.2%) 5.53 (37%) 0.11 (0.7%) 0.030 (0.2%) 5.15 (34%) 15.05

Line singularity distribution
1M 1 — 0.64 (11%) 5.14 (89%) — — — 5.78
2M 2 0.19 (3.1%) 0.63 (10%) 4.88 (79%) 0.005 (0.08%) 0.004 (0.07%) 0.44 (7.2%) 6.15
4M 4 0.44 (5.4%) 0.65 (8.0%) 5.3 (65%) 0.019 (0.2%) 0.004 (0.05%) 1.75 (21%) 8.15
8M 8 1.38 (15%) 0.73 (7.7%) 5.26 (56%) 0.017 (0.2%) 0.005 (0.05%) 2.07 (22%) 9.46

16M 16 3.00 (21%) 0.65 (4.6%) 5.24 (37%) 0.05 (0.4%) 0.006 (0.04%) 5.11 (36%) 14.06

The linear time of the affected region demonstrates the algorithm’s O(n) nature. The partition,
merge, ‘other’ timings rose as the problem size increased and more levels of recursive steps are
involved. More levels of recursion increase the overhead, reducing the parallel efficiency.

5.2. Memory requirements

The main memory overhead on each processor derives from replicating the affected zone on processors.
The memory requirement for recording deleted triangles is insignificant with respect to that of the
affected region. The data of the affected zone include points, triangulation and the point index on the
original processor. Since two zones are merged on the parent processor, the parent processor needs
data for both affected zones. Processor 0 conducts the final stage merge, and therefore has the largest
affected zone. The memory overhead on points and triangles is frequently below 30% of the memory
needed for block points and Delaunay triangulations.

6. CONCLUSION

This study has described a parallel D&C Delaunay triangulation scheme, which utilizes the affected
zone to reduce the amount of data transmitted when combining triangulations on different processors.
The resulting program can be implemented in FORTRAN 77, C and MPI, and is easily ported to various
platforms. Performance results show that speedups are similar on various distributions.
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