
Symbol Tables
ASU Textbook Chapter 7.6, 6.5 and 6.3

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Definitions

Symbol table: A data structure used by a compiler to keep

track of semantics of variables.
• Data type.
• When is used: scope.

. The effective context where a name is valid.

• Where it is stored: storage address.

Possible implementations:
• Unordered list: for a very small set of variables.
• Ordered linear list: insertion is expensive, but implementation is

relatively easy.
• Binary search tree: O(log n) time per operation for n variables.
• Hash table: most commonly used, and very efficient provided the

memory space is adequately larger than the number of variables.

Compiler notes #5, Tsan-sheng Hsu, IIS 2

Hash table

Hash function h(n): returns a value from 0, . . . ,m− 1, where n
is the input name and m is the hash table size.

• Uniformly and randomly.
Many possible good designs.

• Add up the integer values of characters in a name and then take the
remainder of it divided by m.

• Add up a linear combination of integer values of characters in a name,
and then take the remainder of it divided by m.

Resolving collisions:
• Linear resolution: try (h(n) + 1) mod m, where m is a large prime

number, and then (h(n) + 2) mod m, . . ., (h(n) + i) mod m.
• Chaining: most popular.

. Keep a chain on the items with the same hash value.

. Open hashing.

• Quadratic-rehashing:
. try (h(n) + 12) mod m, and then

. try (h(n) + 22) mod m, . . .,

. try (h(n) + i2) mod m.

Compiler notes #5, Tsan-sheng Hsu, IIS 3

Performance of hash table

Performance issues on using different collision resolution
schemes.
Hash table size must be adequately larger than the maximum
number of possible entries.
Frequently used variables should be distinct.

• Keywords or reserved words.
• Short names, e.g., i, j and k.
• Frequently used identifiers, e.g., main.

Uniformly distributed.

Compiler notes #5, Tsan-sheng Hsu, IIS 4

Contents in symbol tables

Possible entries in a symbol table:
• Name: a string.
• Attribute:

. Reserved word

. Variable name

. Type name

. Procedure name

. Constant name

. · · ·
• Data type.
• Scope information: where and when it can be used.
• Storage allocation, size, . . .
• · · ·

Compiler notes #5, Tsan-sheng Hsu, IIS 5

How names are stored

Fixed-length name: allocate a fixed space for each name
allocated.

• Too little: names must be short.
• Too much: waste a lot of spaces.

NAME ATTRIBUTES
s o r t
a
r e a d a r r a y
i 2

Variable-length name:
• A string of space is used to store all names.
• For each name, store the length and starting index of each name.

NAME ATTRIBUTES
index length

0 5

5 2

7 10

17 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s o r t $ a $ r e a d a r r a y $ i 2 $

Compiler notes #5, Tsan-sheng Hsu, IIS 6

Handling block structures
main() /* C code */
{ /* open a new scope */

int H,A,L; /* parse point A */
...
{ /* open another new scope */
float x,y,H; /* parse point B */
...
/* x and y can only be used here */
/* H used here is float */
...

} /* close an old scope */
...
/* H used here is integer */
...
{ char A,C,M; /* parse point C */
...
}

}

Nested blocks mean nested scopes.
Two major ways for implementation:

• Approach 1: multiple symbol tables in a STACK.
• Approach 2: one symbol table with chaining.

Compiler notes #5, Tsan-sheng Hsu, IIS 7

Multiple symbol tables in a stack

An individual symbol table for each scope.
• Use a stack to maintain the current scope.
• Search top of stack first.
• If not found, search the next one in the stack.
• Use the first one matched.
• Note: a popped scope can be destroyed in a one-pass compiler, but it

must be saved in a multi-pass compiler.
main()
{ /* open a new scope */

int H,A,L; /* parse point A */
...
{ /* open another new scope */
float x,y,H; /* parse point B */
...
/* x and y can only be used here */
/* H used here is float */
...

} /* close an old scope */
...
/* H used here is integer */
...
{ char A,C,M; /* parse point C */
...
}

}

H, A, L
S.T. for

H, A, L
S.T. for

S.T. for
x,y,H

H, A, L
S.T. for

S.T. for
A,C,M

parse point A parse point B parse point C

searching
direction

Compiler notes #5, Tsan-sheng Hsu, IIS 8

Pros and cons for multiple symbol tables

Advantage:
• Easy to close a scope.

Disadvantage:
• Waste lots of spaces.
• Need to allocate adequate amount of entries for each symbol table if

it is a hash table.
. A block within a procedure does not usually have many local variables.
. There may have many global variables and many local variables when

a procedure is entered.

Compiler notes #5, Tsan-sheng Hsu, IIS 9

One hash table with chaining

A single global table marked with the scope information.

. Each scope is given a unique scope number.

. Incorporate the scope number into the symbol table.

Two possible codings (among others):
• Hash table with chaining.

. Chaining at the front when names hashed into the same location.

. When a scope is closed, all entries of that scope are removed.main()
{ /* open a new scope */

int H,A,L; /* parse point A */
...
{ /* open another new scope */

float x,y,H; /* parse point B */
...
/* x and y can only be used here */
/* H used here is float */
...

} /* close an old scope */
...
/* H used here is integer */
...
{ char A,C,M; /* parse point C */
...
}

}

H(1)

L(1)

A(1)

H(2)

symbol table:
hash with chaining

H(1)

L(1)

A(1)

parse point B parse point C

x(2)

y(2)

C(3)

M(3)

A(3)

Compiler notes #5, Tsan-sheng Hsu, IIS 10

One binary search tree with chaining

A second coding choice:
• Binary search tree:

main()
{ /* open a new scope */

int H,A,L; /* parse point A */
...
{ /* open another new scope */

float x,y,H; /* parse point B */
...
/* x and y can only be used here */
/* H used here is float */
...

} /* close an old scope */
...
/* H used here is integer */
...
{ char A,C,M; /* parse point C */
...
}

}

H(1)

L(1)A(1)

H(2)

parse point B parse point C

x(2)

y(2)

H(1)

L(1)A(1) A(3)

C(3) M(3)

Compiler notes #5, Tsan-sheng Hsu, IIS 11

Pros and cons for a unique symbol table

Advantage:
• Does not waste spaces.

Disadvantage: It is difficult to close a scope.
• Need to maintain a list of entries in the same scope.
• Using this list to close a scope and to reactive it for the second pass.

Compiler notes #5, Tsan-sheng Hsu, IIS 12

Records and fields

The “with” construct in PASCAL can be considered an
additional scope rule.

• Field names are visible in the scope that surrounds the record declara-
tion.

• Field names need only to be unique within the record.

Another example is the “using namespace” directive in C++.
Example (PASCAL code):

A, R: record
A: integer
X: record

A: real;
C: boolean;

end
end

...
R.A := 3; /* means R.A := 3; */
with R do

A := 4; /* means R.A := 4; */

Compiler notes #5, Tsan-sheng Hsu, IIS 13

Implementation of field names

Two choices for handling field names:
• Allocate a symbol table for each record type used.

A record

recordR

main symbol table

A integer

recordX

A real

booleanC

another symbol table

another symbol table

A integer

recordX

A real

booleanC

another symbol table

another symbol table

• Associate a record number within the field names.
. Assign record number #0 to names that are not in records.
. A bit time consuming in searching the symbol table.
. Similar to the scope numbering technique.

Compiler notes #5, Tsan-sheng Hsu, IIS 14

Specifying scope info. for records

Example:

with R do
begin

A := 3;
with X do

A := 3.3
end

If each record (each scope) has its own symbol table,
• then push the symbol table for the record onto the STACK.

If the record number technique is used,
• then keep a stack containing the current record number
• during searching, success only if it matches the current record number.
• If fail, then use next record number in the stack as the current record

number and continue to search.
• If everything fails, search the normal main symbol table.

Compiler notes #5, Tsan-sheng Hsu, IIS 15

Overloading (1/3)

A symbol may, depending on context, have more than one
semantics.
Examples.

• operators:
. I := I + 3;
. X := Y + 1.2;

• function call return value and recursive function call:
. f := f + 1;

Compiler notes #5, Tsan-sheng Hsu, IIS 16

Overloading (2/3)

Implementation:
• Link together all possible definitions of an overloading name.

• Call this an overloading chain.

• Whenever a name that can be overloaded is defined
. if the name is already in the current scope, then add the new definition

in the overloading chain;
. if it is not already there, then enter the name in the current scope, and

link the new entry to any existing definitions;
. search the chain for an appropriate one, depending on the context.

• Whenever a scope is closed, delete the overloading definitions from
the head of the chain.

Compiler notes #5, Tsan-sheng Hsu, IIS 17

Overloading (3/3)

Example: PASCAL function name and return variable.
• Within the function body, the two definitions are chained.

. i.e., function call and return variable.

• When the function body is closed, the return variable definition disap-
pears.

[PASCAL]
function f: integer;
begin

if global > 1 then f := f +1;
return

end

Compiler notes #5, Tsan-sheng Hsu, IIS 18

Forward reference

Definition:
• A name that is used before its definition is given.
• To allow mutually referenced and linked data types, names can some-

times be used before it is declared.

Possible usages:
• GOTO labels.
• Recursively defined pointer types.
• Mutually or recursively called procedures.

Compiler notes #5, Tsan-sheng Hsu, IIS 19

GOTO labels

If labels must be defined before its usage, then one-pass
compiler suffices.
Otherwise, we need either multi-pass compiler or one with
“back-patching”.

• Avoid resolving a symbol until all its possible definitions have been
seen.

• In C, ADA and languages commonly used today, the scope of a
declaration extends only from the point of declaration to the end of
the containing scope.

Compiler notes #5, Tsan-sheng Hsu, IIS 20

Recursively defined pointer types

Determine the element type if possible;
Chaining together all references to a pointer to type T until the
end of the type declaration;
All type names can then be looked up and resolved.
Example:

[PASCAL]
type link = ^ cell;
cell = record

info: integer;
next: link;

end;

Compiler notes #5, Tsan-sheng Hsu, IIS 21

Mutually or recursively called procedures

Need to know the specification of a procedure before its
definition.
Example:

procedure A()
{

...
call B();
...

}
...
procedure B()
{

...
call A();
...

}

Compiler notes #5, Tsan-sheng Hsu, IIS 22

Type equivalent and others

How to determine whether two types are equivalent?

• Structural equivalence.

. Express a type definition via a directed graph where nodes are the
elements and edges are the containing information.

. Two types are equivalent if and only if their structures (graphs) are the
same.

. A difficult job for compilers.

entry = record [entry]
info : real; +-----> [info] <real>
coordinates : record +-----> [coordinates]

x : integer; +----> [x] <integer>
y : integer; +----> [y] <integer>
end

end

• Name equivalence.

. Two types are equivalent if and only if their names are the same.

. An easy job for compilers, but the coding takes more time.

Symbol table is needed during compilation, might also be
needed during debugging.

Compiler notes #5, Tsan-sheng Hsu, IIS 23

Usage of symbol table in YACC

Define symbol table routines:
• Find in symbol table(name,scope): check whether a name within a

particular scope is currently in the symbol table or not.
. return not found or
. an entry in the symbol table

• Insert into symbol table(name,scope)
. Return the newly created entry.

• Delete from symbol table(name,scope)

For interpreters:
• Use the attributes associated with the symbols to hold temporary

values.
• Use a structure to record all attributes.
struct YYTYPE {

char type; /* data type of a variable */
int value;
int addr;
char * namelist; /* list of names */

}

Compiler notes #5, Tsan-sheng Hsu, IIS 24

Hints on YACC coding (1/2)

Declaration:
• D → TL

. { insert each name in $2.namelist into symbol table, i.e., use
Find in symbol table to check for possible duplicated names;

. use Insert into symbol table to insert each name in the list with the
type $1.type;

. allocate sizeof($1.type) bytes

. record the storage address in the symbol table entry}
• T → int

. {$$.type = int}
• L → L, id

. {insert the new name yytext into $1.namelist;

. return $$.namelist as $1.namelist}
| id

. {the variable name is in yytext;

. create a list of one name, i.e., yytext, $$.namelist}

Compiler notes #5, Tsan-sheng Hsu, IIS 25

Hints on YACC coding (2/2)

Usage of variables:
• Assign S → L var := Expression;

. {$1.addr is the address of the variable to be stored;

. $3.value is the value of the expression;

. generate code for storing $3.value into $1.addr}
• L var → id

. { use Find in symbol table to check whether yytext is already de-
clared;

. $$.addr = storage address}
• Expression → Expression + Expression

. {$$.value = $1.value + $3.value}
| Expression− Expression

. {$$.value = $1.value - $3.value}
· · ·
| id

. { use Find in symbol table to check whether yytext is already de-
clared;

. $$.value = the value of the variable yytext}

Compiler notes #5, Tsan-sheng Hsu, IIS 26

