
Code Generation and Optimization
ALSU Textbook Chapters 8.4, 8.5, 8.7, 8.8, 9.1

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Introduction

For some compiler, the intermediate code is a pseudo code of
a virtual machine.

• Interpreter of the virtual machine is invoked to execute the intermediate
code.

• No machine-dependent code generation is needed.
• Usually with great overhead.
• Example:

. Pascal: P-code for the virtual P machine.

. JAVA: Byte code for the virtual JAVA machine.

Motivation:
• Statement by statement translation might generate redundant codes.
• Locally improve the target code performance by examine a short se-

quence of target instructions (called a peephole ) and do optimization

on this sequence.
• Note: Complexity depends on the “window size.”

Optimization.
• Machine-dependent issues.
• Machine-independent issues.

Compiler notes #8, 20070622, Tsan-sheng Hsu 2



Machine-dependent issues (1/2)

Input and output formats:
• The formats of the intermediate code and the target program.

Memory management:
• Alignment, indirect addressing, paging, segment, . . .
• Those you learned from your assembly language class.

Instruction cost:
• Special machine instructions to speed up execution.
• Example:

. Increment by 1.

. Multiplying or dividing by 2.

. Bit-wise manipulation.

. Operators applied on a continuous block of memory space.

• Pick a fastest instruction combination for a certain target machine.

Compiler notes #8, 20070622, Tsan-sheng Hsu 3



Machine-dependent issues (2/2)

Register allocation: in-between machine dependent and inde-
pendent issues.

• C language allows the user to management a pool of registers.
• Some language leaves the task to compiler.
• Idea: save mostly used intermediate result in a register. However,

finding an optimal solution for using a limited set of registers is
NP-hard.

• Example:
t := a + b load R0,a load R0,a

load R1,b add R0,b
add R0,R1 store R0,T
store R0,T

• Heuristic solutions: similar to the ones used for the swapping problem.

Compiler notes #8, 20070622, Tsan-sheng Hsu 4



Machine-independent issues

Techniques.
• Analysis of dependence graphs.
• Analysis of basic blocks and flow graphs.
• Semantics-preserving transformations.
• Algebraic transformations.

Compiler notes #8, 20070622, Tsan-sheng Hsu 5



Dependence graphs

Issues:
• In an expression, assume its dependence graph is given.

• We can evaluate this expression using any topological ordering.
• There are many legal topological orderings.
• Pick one to increase its efficiency.

Example:

E 0
�

E 2
� E 1

E 3
� E 4

�

E 5
� E 6

�

order#1 reg# order#2 reg#
E2 1 E6 1
E3 2 E5 2
E5 3 E4 1
E6 4 E3 2
E4 3 E1 1
E1 2 E2 2
E0 1 E0 1

On a machine with only 2 free registers, some of the
intermediate results in order#1 must be stored in the temporary
space.

• STORE/LOAD takes time.

Compiler notes #8, 20070622, Tsan-sheng Hsu 6



Basic blocks and flow graphs

Basic block : a sequence of code such that
• jump statements, if any, are at the end of the sequence;
• codes in other basic block can only jump to the beginning of this

sequence, but not in the middle.
• Example:

. t1 := a ∗ a

. t2 := a ∗ b

. t3 := 2 ∗ t2

. goto outter

• Single entry, single exit.

Flow graph :

Using a flow chart-like
graph to represent a pro-
gram where nodes are
basic blocks and edges
are flow of control.

B2
�

B3
�

B1

Compiler notes #8, 20070622, Tsan-sheng Hsu 7



How to find basic blocks

How to find leaders , which are the first statements of basic
blocks?

• The first statement of a program is a leader.
• For each conditional and unconditional goto,

. its target is a leader;

. its next statement is also a leader.

Using leaders to partition the program into basic blocks.
Ideas for optimization:

• Two basic blocks are equivalent if they compute the same expression.
• Use transformation techniques below to perform machine-independent

optimization.

Compiler notes #8, 20070622, Tsan-sheng Hsu 8



Finding basic blocks — examples

Example: Three-address code for computing the dot product of
two vectors a and b.

. prod := 0

. i := 1

. loop: t1 := 4 ∗ i

. t2 := a[t1]

. t3 := 4 ∗ i

. t4 := b[t3]

. t5 := t2 ∗ t4

. t6 := prod + t5

. prod := t6

. t7 := i + 1

. i := t7

. if i ≤ 20 goto loop

. · · ·

There are three blocks in the above example.

Compiler notes #8, 20070622, Tsan-sheng Hsu 9



DAG representation of a basic block

Inside a basic block:
• Expressions can be expressed using a DAG that is similar to the idea

of a dependence graph.
• Graph might not be connected.

Example:
(1) t1 := 4 ∗ i
(2) t2 := a[t1]
(3) t3 := 4 ∗ i
(4) t4 := b[t3]
(5) t5 := t2 ∗ t4
(6) t6 := prod + t5
(7) prod := t6
(8) t7 := i + 1
(9) i := t7
(10) if i ≤ 20 goto (1)

+

*

[] []

* +

<=

i 1
20

4baprod

(1)

t1

t2

t3

t4

t5

t6

t7

prod’

i’

Compiler notes #8, 20070622, Tsan-sheng Hsu 10



Semantics-preserving transformations (1/3)

Techniques: using the information contained in the flow graph
and DAG representation of basic blocks to do optimization.

• Common sub-expression elimination.

a := b+c
b := a−d
c := b+c
d := a−d

a := b+c
b := a−d
c := b+c
d := b

• Dead-code elimination: remove unreachable codes.
• Remove redundant codes such as loads and stores.

. MOV R0, a

. MOV a, R0

• Code motion.

. Find loop-invariants inside a loop.

. Obtain the values of loop-invariants outside the loop.

. Example:

t = limit - 2
while(i <= limit - 2) while (i <= t)

... ...

• Renaming temporary variables: better usage of registers and avoiding
using unneeded temporary variables.

Compiler notes #8, 20070622, Tsan-sheng Hsu 11



Semantics-preserving transformations (2/3)

More techniques:
• Copy propagation:

. De-reference a chain of variable copies.

. Example:

a = x; a = x;
y = a; y = x;
b = y; b = x;

• Flow of control simplification:
. De-reference a chain of goto’s.
. Example:

goto L1

· · ·

L1: goto L2

goto L2

· · ·

L1: goto L2

Compiler notes #8, 20070622, Tsan-sheng Hsu 12



Semantics-preserving transformations (3/3)

Interchange of two independent adjacent statements, which
might be useful in discovering the above transformations.

• Same expressions that are too far away to store E1 into a register.

. Example:

t1 := E1
t2 := const // swap t2 and tn
...
tn := E1

• Note: The order of dependence cannot be altered after the exchange.

. Example:

t1 := E1
t2 := t1 + tn // canoot swap t2 and tn
...
tn := E1

Compiler notes #8, 20070622, Tsan-sheng Hsu 13



Algebraic transformations

Algebraic identities:
• x + 0 ≡ 0 + x ≡ x
• x− 0 ≡ x
• x ∗ 1 ≡ 1 ∗ x ≡ x
• x/1 ≡ x

Reduction in strength:
• x2 ≡ x ∗ x
• 2.0 ∗ x ≡ x + x
• x/2 ≡ x ∗ 0.5

Constant folding:
• 2 ∗ 3.14 ≡ 6.28

Standard representation for subexpression by commutativity and
associativity:

• n ∗m ≡ m ∗ n.
• b < a ≡ a > b.

Compiler notes #8, 20070622, Tsan-sheng Hsu 14



Correctness after optimization

When side effects are expected, different evaluation orders may
produce different results for expressions.

E 0
�

E 2
� E 1

E 3
� E 4

�

E 5
� E 6

�

E 0
�

E 2
� E 1

E 3
� E 4

�

E 5
� E 6

�

LL LR

• Assume E5 is a procedure call with the side effect of changing some
values in E6.

• LL and LR parsing produce different results.

Watch out precisions when doing algebraic transformations.
• if (x = 321.00000123456789− 321.00000123456788) > 0 then · · ·

Need to make sure code before and after optimization produce
the same result.
Complications arise when debugger is involved.

Compiler notes #8, 20070622, Tsan-sheng Hsu 15


