
Syntax-Directed Translation

ALSU Textbook Chapter 5.1–5.4, 4.8, 4.9

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

What is syntax-directed translation?

Definition:
• The compilation process is driven by the syntax.
• The semantic routines perform interpretation based on the syntax

structure.
• Attaching attributes to the grammar symbols.

• Values for attributes are computed by semantic actions associated
with the grammar productions.

Compiler notes #4, 20130502, Tsan-sheng Hsu 2

Example: Syntax-directed translation

Example in a parse tree:
• Annotate the parse tree by attaching semantic attributes to the nodes

of the parse tree.
• Generate code by visiting nodes in the parse tree in a given order.
• Input: y := 3 ∗ x+ z

:=

+

*

id

id

const id

:=

+

*

id

id

const id

(y)

(3) (x)

(z)

parse tree annotated parse tree

Compiler notes #4, 20130502, Tsan-sheng Hsu 3

Syntax-directed definitions

Each grammar symbol is associated with a set of attributes.

• Synthesized attribute : value computed from its children or associated

with the meaning of the tokens.

• Inherited attribute : value computed from parent and/or siblings.

• General attribute : value can be depended on the attributes of any
nodes.

Compiler notes #4, 20130502, Tsan-sheng Hsu 4

Format for writing syntax-directed definitions

Production Semantic actions
L→ E print(E.val)
E → E1 + T E.val := E1.val + T.val
E → T E.val := T.val
T → T1 ∗ F T.val := T1.val ∗ F.val
T → F T.val := F.val
F → (E) F.val := E.val
F → digit F.val := digit.lexval

E.val is one of the attributes of E.
To avoid confusion, recursively defined nonterminals are num-
bered on the RHS.
Semantic actions are performed when this production is “used”.

Compiler notes #4, 20130502, Tsan-sheng Hsu 5

Order of evaluation (1/2)

Order of evaluating attributes is important.
General rule for ordering:

• Dependency graph :

. If attribute b needs attributes a and c, then a and c must be evaluated
before b.

. Represented as a directed graph without cycles.

. Topologically order nodes in the dependency graph as n1, n2, . . ., nk
such that there is no path from ni to nj with i > j.

:=

+

*

id

id

const id

(y)

(3) (x)

(z)

:=

+

*

id

id

const id

(y)

(3) (x)

(z)

Compiler notes #4, 20130502, Tsan-sheng Hsu 6

Order of evaluation (2/2)

It is always possible to rewrite syntax-directed definitions using
only synthesized attributes, but the one with inherited attributes
is easier to understand.
• Use inherited attributes to keep track of the type of a list of variable

declarations.
. Example: int i, j

• Grammar 1: using inherited
attributes

. D → TL

. T → int | char

. L→ L, id | id

• Grammar 2: using only syn-
thesized attributes

. D → L id

. L→ L id, | T

. T → int | char

T L

L , j

i

int

D
L j

i ,

T

int

D

L

Compiler notes #4, 20130502, Tsan-sheng Hsu 7

Attribute grammars

Attribute grammar: a grammar with syntax-directed definitions

and having no side effects .
• Side effect: change values of others not related to the return values of

functions themselves.

Tradeoffs:
• Synthesized attributes are easy to compute, but are sometimes difficult

to be used to express semantics.
. S-attributes.

• Inherited and general attributes are difficult to compute, but are
sometimes easy to express the semantics.

• The dependence graph for computing some inherited and general
attributes may contain cycles and thus not be computable.

• A restricted form of inherited attributes is invented.
. L-attributes.

Compiler notes #4, 20130502, Tsan-sheng Hsu 8

S-attributed definition

Definition: a syntax-directed definition that uses synthesized
attributed only.
• A parse tree can be represented using a directed graph.

• A post-order traverse of the parse tree can properly evaluate gram-

mars with S-attributed definitions.
• Goes naturally with LR parsers.

Example of an S-attributed definition: 3 ∗ 5 + 4 return

E.val = 19

E.val = 15 + T.val = 4

T.val = 15
F.val = 4

digit.lexval = 4
T.val = 3 * F.val = 5

F.val = 3 digit.lexval = 5

digit.lexval = 3

L

return

1

2

3
4

5

6

7

8
9

10

11

12

13 14
15

Compiler notes #4, 20130502, Tsan-sheng Hsu 9

Illustration: S-attributed definition

A

X 1 X i−1 X iX 2 X i+1 X n
... ...

...

Compiler notes #4, 20130502, Tsan-sheng Hsu 10

L-attributed definitions

Each grammar symbol can have many attributes. However,
each attribute must be either
• a synthesized attribute, or
• an inherited attribute with the following constraints.

Assume there is a production A → X1X2 · · ·Xn and the inherited
attribute is associated with Xi. Then this inherited attribute depends
only on

. the inherited attributes of its parent node A;

. either inherited or synthesized attributes from its elder siblings
X1, X2, . . . , Xi−1;

. inherited or synthesized attributed associated from itself Xi, but only
in such a way that there are no cycles in a dependency graph formed
by the attributes of this Xi.

Every S-attributed definition is an L-attributed definition.

Compiler notes #4, 20130502, Tsan-sheng Hsu 11

Illustration: L-attributed definition

A

X 1 X i−1 X iX 2 X i+1 X n
... ...

...

Compiler notes #4, 20130502, Tsan-sheng Hsu 12

Evaluations of L-attributed definitions

For grammars with L-attributed definitions, special evaluation
algorithms must be designed.
L-attributes are always computable.
• Similar arguments as the one used in discussing Algorithm 4.19 for

removing left recursion.
Evaluation of L-attributed grammars.
• Goes together naturally with LL parsers.

. Parse tree generate by recursive descent parsing corresponds naturally
to a top-down tree traversal using DFS by visiting the sibling nodes
from left to right.

High level ideas for tree traversal.
• Visit a node v first.

. Compute inherited attributes for v if they do not depend on synthesized
attributes of v.

• Recursively visit each children of v one by one from left to right.
• Visit the node v again.

. Compute synthesized attributes for v.

. Compute inherited attributes for v if they depend on synthesized at-
tributes of v.

Compiler notes #4, 20130502, Tsan-sheng Hsu 13

Format for writing L-attributed definitions
• D → T {L.in := T.type} L

• T → int {T.type := integer}

• T → real {T.type := real}

• L→ {L1.in := L.in} L1, id {addtype(id.entry, L.in)}

• L→ id {addtype(id.entry, L.in)}

Some semantic actions can be inserted between symbols on the
RHS of a production.
• A→ B {action} C
• When A expands to B and C, after finishes expanding B, performs
action, then expands C.

Compiler notes #4, 20130502, Tsan-sheng Hsu 14

Example: L-attributed definitions
• D → T {L.in := T.type} L
• T → int {T.type := integer}
• T → real {T.type := real}
• L→ {L1.in := L.in} L1, id {addtype(id.entry, L.in)}
• L→ id {addtype(id.entry, L.in)}

Parsing and dependency graph:

STACK input production used

int p, q, r
D int p, q, r
L T int p, q, r D → TL

L int int p, q, r T → int

L p, q, r

id , L p, q, r L→ L, id

id , id , L p, q, r L→ L, id

id , id , id p, q, r L→ id

id , id q, r

id q

D

T L

L , r

, q

p

int

in

in

in

type

integer

L

3,4

2,5

9,10

8,11

12,13
14,15

7,16 17,18
19,20

6,21
1,22

Compiler notes #4, 20130502, Tsan-sheng Hsu 15

Problems with L-attributed definitions

Comparisons:
• L-attributed definitions go naturally with LL parsers.
• S-attributed definitions go naturally with LR parsers.
• L-attributed definitions are more flexible than S-attributed definitions.
• LR parsers are more powerful than LL parsers.

Some cases of L-attributed definitions cannot be in-cooperated
into LR parsers.
• Assume the next handle to take care is A → X1X2 · · ·Xi · · ·Xk, and
X1, . . . , Xi is already on the top of the STACK.

• Attribute values of X1, . . . , Xi−1 can be found on the STACK at this
moment.

• No information about A can be found anywhere at this moment.
• Thus the attribute values of Xi cannot be depended on the value of A.

L−-attributed definitions:
• Same as L-attributed definitions, but do not depend on

. the inherited attributes of parent nodes, or

. any attributes associated with itself.

• Can be handled by LR parsers.

Compiler notes #4, 20130502, Tsan-sheng Hsu 16

Illustration: L−-attributed definition

A

X 1 X i−1 X iX 2 X i+1 X n
... ...

...

Compiler notes #4, 20130502, Tsan-sheng Hsu 17

Using ambiguous grammars

ambiguous grammars

unambiguous grammars

LR(1)

Ambiguous grammars often provide a shorter, more natural
specification than their equivalent unambiguous grammars.
Sometimes need ambiguous grammars to specify important
language constructs.
• Example: declare a variable before its usage.

var xyz : integer

begin

...

xyz := 3;

...

Use symbol tables to create “side effects.”

Compiler notes #4, 20130502, Tsan-sheng Hsu 18

Ambiguity from precedence and associativity

Precedence and associativity are important language constructs.
Example:
• G1:

. E → E + E | E ∗ E | (E) | id

. Ambiguous, but easy to understand and maintain!

• G2:
. E → E + T | T
. T → T ∗ F | F
. F → (E) | id
. Unambiguous, but difficult to understand and maintain!

Compiler notes #4, 20130502, Tsan-sheng Hsu 19

Illustration: using ambiguous grammars

Input: 1+2*3

E

E +

*

3

T

T T F

FF

1 2

Parse tree: G 2

E

E + E

1 E * E

2 3

Parse tree#1: G 1 1Parse tree#2: G

E

E E

1

E E

2

3

*

+

Compiler notes #4, 20130502, Tsan-sheng Hsu 20

Deal with precedence and associativity

When parsing the following input for G1: id+ id ∗ id.
• Assume the input parsed so far is id+ id.
• We now see “*”.
• We can either shift or perform “reduce by E → E + E”.
• When there is a conflict, say in LALR(1) parsing, we use precedence

and associativity information to resolve conflicts.
. Here we need to shift because of seeing a higher precedence operator.

Need a mechanism to let user specify what to do when a
conflict is seen based on the viable prefix on the STACK so far
and the token currently encountered.

Compiler notes #4, 20130502, Tsan-sheng Hsu 21

Ambiguity from dangling-else

Grammar:
• Statement→ Other Statement

| if Condition then Statement
| if Condition then Statement else Statement

When seeing
if C then S else S

• there is a shift/reduce conflict,
• we always favor a shift.
• Intuition: favor a longer match.

Need a mechanism to let user specify the default conflict-
handling rule when there is a shift/reduce conflict.

Compiler notes #4, 20130502, Tsan-sheng Hsu 22

Special cases

Ambiguity from special-case productions:
• Sometime a very rare happened special case causes ambiguity.
• It is too costly to revise the grammar. We can resolve the conflicts by

using special rules.
• Example:

. E → E sub E sup E

. E → E sub E

. E → E sup E

. E → {E} | character
• Meanings:

. W sub U : WU .

. W sup U : WU .

. W sub U sup V is W V
U , not WU

V .

• Resolve by semantic and special rules.
• Pick the right one when there is a reduce/reduce conflict.

. Reduce the production listed earlier.

• Need a mechanism to let user specify the default conflict-handling rule
when there is a reduce/reduce conflict.

Compiler notes #4, 20130502, Tsan-sheng Hsu 23

Implementation

Passing of synthesized attributes is best.
• Without using global variables.

Cannot use information from its younger siblings because of the
limitation of LR parsing.
• During parsing, the STACK contains information about the elder

siblings.

It is difficult and usually impossible to pass information from its
parent node.
• May be possible to use the state information to pass some information.

Some possible choices:
• Build a parse tree first, then evaluate its semantics.
• Parse and evaluate the semantic actions on the fly.

YACC, an LALR(1) parser generator, can be used to implement
L−-attributed definitions.
• Use top of STACK information to pass synthesized attributes.
• Use global variables and internal STACK information to pass the

inherited values from its elder siblings.

• Cannot process inherited values from its parent.

Compiler notes #4, 20130502, Tsan-sheng Hsu 24

YACC

Yet Another Compiler Compiler [Johnson 1975]:
• A UNIX utility for generating LALR(1) parsing tables.
• Convert your YACC code into C programs.

• file.y −→ yacc file.y −→ y.tab.c

• y.tab.c −→ cc y.tab.c -ly -ll −→ a.out

Format:
• declarations
• %%
• grammars and semantic actions.
• %%
• supporting C-routines.

Libraries:
• Assume the lexical analyzer routine is yylex().

. Need to include the scanner routines.

• There is a parser routine yyparse() generated in y.tab.c.
• Default main routines both in LEX and YACC libraries.

. Need to search YACC library first.

Compiler notes #4, 20130502, Tsan-sheng Hsu 25

YACC code example (1/2)

%{

#include <stdio.h>

#include <ctype.h>

#include <math.h>

#define YYSTYPE int /* integer type for YACC stack */

%}

%token NUMBER ERROR ’(’ ’)’

%left ’+’ ’-’

%left ’*’ ’/’

%right UMINUS

%%

Compiler notes #4, 20130502, Tsan-sheng Hsu 26

YACC code example (2/2)

lines : lines expr ’\n’ {printf("%d\n", $2);}

| lines ’\n’

| /* empty, i.e., epsilon */

| lines error ’\n’ {yyerror("Please reenter:");yyerrok;}

;

expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’-’ expr { $$ = $1 - $3; }

| expr ’*’ expr { $$ = $1 * $3; }

| expr ’/’ expr { $$ = $1 / $3; }

| ’(’ expr ’)’ { $$ = $2; }

| ’-’ expr %prec UMINUS { $$ = - $2; }

| NUMBER { $$ = atoi(yytext);}

;

%%

#include "lex.yy.c"

Compiler notes #4, 20130502, Tsan-sheng Hsu 27

Included LEX program

%{

%}

Digit [0-9]

IntLit {Digit}+

%%

[\t] {/* skip white spaces */}

[\n] {return(’\n’);}

{IntLit} {return(NUMBER);}

"+" {return(’+’);}

"-" {return(’-’);}

"*" {return(’*’);}

"/" {return(’/’);}

"(" {return(’(’);}

")" {return(’)’);}

. {printf("error token <%s>\n",yytext); return(ERROR);}

%%

Compiler notes #4, 20130502, Tsan-sheng Hsu 28

YACC: Declarations

System used and C language declarations.
. %{ · · · %} to enclose C declarations.
. Type of attributes associated with each grammar symbol on the STACK:

YYSTYPE declaration.
. This area will not be translated by YACC.

Tokens with associativity and precedence assignments.
. In increasing precedence from top to the bottom.
. %left, %right or %token (non-associativity): e.g., dot products of vectors has

no associativity.

Other declarations.
. %type
. %union
. · · ·

Compiler notes #4, 20130502, Tsan-sheng Hsu 29

YACC: Productions and semantic actions

Format: for productions P with a common LHS
. <common LHS of P>: <RHS1 of P> { semantic actions # 1}
. |<RHS2 of P> { semantic actions # 2}
. · · ·

The semantic actions are performed, i.e., C routines are
executed, when this production is reduced.
Special symbols and usages.
• Accessing attributes associated with grammar symbols:

. $$: the return value of this production if it is reduced.

. $i: the returned value of the ith symbol in the RHS of the production.

• %prec declaration.

When there are ambiguities:
• reduce/reduce conflict: favor the one listed first.
• shift/reduce conflict: favor shift, i.e., longer match.
• Q: How to implement this?

Compiler notes #4, 20130502, Tsan-sheng Hsu 30

YACC: Error handling

Example: lines: error ’\n’ {...}
. When there is an error, skip until newline is seen.

error: special nonterminal.
. A production with error is “inserted” or “processed” only when it is in the

reject state.
. It matches any sequence on the STACK as if the handle “error → · · · ” is

seen.
. Use a special token to immediately follow error for the purpose of skipping

until something special is seen.
. Q: How to implement this?

Use error to implement statement terminators in language
designs.

. The token after error is a synchronizing token for panic mode recovery.

. Difficult to implement statement separators using error.

yyerrok: a macro to reset error flags and make error invisible
again.
yyerror(string): pre-defined routine for printing error messages.

Compiler notes #4, 20130502, Tsan-sheng Hsu 31

In-production actions

Actions can be inserted in the middle of a production, each
such action is treated as a nonterminal.
• Example:
expr : expr {actions} ’+’ expr {$$ = $1 + $4; }
is translated into
expr : expr $ACT ’+’ expr {$$ = $1 + $4;}
$ACT : {actions}

. Split a production into two.

. Create a nonterminal $ACT and an ε-production.

Avoid in-production actions.
• An ε-production, e.g., A→ ε, can easily generate conflicts.

. A reduce by “A→ ·” for states including this item.

Split the production yourself.
. May generate some conflicts.
. May be difficult to specify precedence and associativity.
. May change the parse tree and thus the semantic.

expr : exprhead exptail {$$ = $1 + $2;}

exphead : expr { perform some semantic actions; $$ = $1;}

exptail : ’+’ expr {$$ = $2;}

Compiler notes #4, 20130502, Tsan-sheng Hsu 32

Some useful YACC programming styles

Keep the RHS of a production short, but not too short.
• Better to have 3 to 4 symbols.

Language issues.
• Avoiding using names starting with “$”.

. YACC auto-generated variable names.

• Watch out C-language rules.
. goto

• Some C-language reserved words are used by YACC.
. union

• Some YACC pre-defined routines are macros, not procedures.
. yyerrok

Rewrite the productions with L-attributed definitions to pro-
ductions with S-attributed definitions.
• Grammar 1: Array → id [Elist]
• Grammar 2:

. Array → Aelist]

. Aelist → Aelist, id | Ahead

. Ahead → id [id

Compiler notes #4, 20130502, Tsan-sheng Hsu 33

Limitations of syntax-directed translation

Limitation of syntax-directed definitions: Without using global
data to create side effects, some of the semantic actions cannot
be performed.
Examples:
• Checking whether a variable is defined before its usage.
• Checking the type and storage address of a variable.
• Checking whether a variable is used or not.

• Need to use a symbol table : global data to create controlled side

effects of semantic actions.

Common approaches in using global variables:
• A program with too many global variables is difficult to understand and

maintain.
• Restrict the usage of global variables to essential ones and use them

as objects.
. Symbol table.
. Labels for GOTO’s.
. Forwarded declarations.

• Tradeoff between ease of coding and ease of maintaining.

Compiler notes #4, 20130502, Tsan-sheng Hsu 34

