Depth-First Iterative-Deepening: An Optimal Admissible Tree Search
by R. E. Korf

Tsan-sheng Hsu

徐詠昇

tshu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Abstract

The complexities of various search algorithms are considered in terms of time, space, and cost of the solution paths.

- Brute-force search
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
 - Depth-first Iterative-deepening (DFID)
 - Bi-directional search

- Heuristic search: best-first search
 - A*
 - IDA*

- The issue of storing information in DISK instead of main memory.
- Solving 15-puzzle.
Definitions

- **Node branching factor** b: the number of different new states generated from a state.
 - Average node branching factor.
 - Assumed to be a constant here.

- **Edge branching factor** e: the number of possible new, maybe duplicated, states generated from a state.
 - Average node branching factor.
 - Assumed to be a constant here.

- **Depth** of a solution d: the shortest length from the initial state to one of the goal states
 - The depth of the root is 0.

- A search program finds a goal state starting from the initial state by exploring states in the state space.
 - Brute-force search
 - Heuristic search
Brute-force search

- A **brute-force search** is a search algorithm that uses information about
 - the initial state,
 - operators on finding the states adjacent to a state,
 - and a test function whether a goal is reached.

- A “pure” brute-force search program.
 - A state maybe re-visited many times.

- An “intelligent” brute-force search algorithm.
 - Make sure a state will be visited a limited number of times.
 - Make sure a state will be eventually visited.
A “pure” brute-force search

- A “pure” brute-force search is a brute-force search algorithm that does not care whether a state has been visited before or not.

- Algorithm Brute-force(N_0)

  ```
  {* do brute-force search from the starting state $N_0 *$
  
  - current ← $N_0$
  - While true do
    ▶ If current is a goal, then return success
    ▶ current ← a state that can reach current in one step
  ```

- Comments
 - Very easy to code and use very little memory.
 - May take infinite time because there is no guarantee that a state will be eventually visited.
Intelligent brute-force search

- An “intelligent” brute-force search algorithm.
 - Assume S is the set of all possible states
 - Use a systematic way to examine each state in S one by one so that
 - A state is not examined too many times — does not have too many duplications.
 - It is efficient to find an unvisited state in S.

- Need to know whether a state has been visited before efficiently.

- Some notable algorithms.
 - Breadth-first search (BFS).
 - Depth-first search (DFS) and its variations.
 - Depth-first Iterative deepening (DFID).
 - Bi-directional search.
Breadth-first search (BFS)

- **deeper**(*N*)**: gives the set of all possible states that can be reached from the state *N*.
 - It takes at least *O*(e) time to compute deeper(*N*).
 - The number of distinct elements in deeper(*N*) is *b*.

Algorithm BFS(*N*_0) \{ \(*\) do BFS from the starting state *N*_0 \(*\)\}

- If the starting state *N*_0 is a goal, then return success
- Initialize a Queue *Q*
- Add *N*_0 to *Q*
- While *Q* is not empty do
 - Remove a state *N* from *Q*
 - If one of the states in deeper(*N*) is goal, then return success
 - Add states in deeper(*N*) that have not been visited before to *Q*;
 - Mark these newly added states as visited;
 - if there are duplications in deeper(*N*), add only once;
- Return fail
BFS: analysis

- **Space complexity:**
 - \(O(b^d) \)
 - The average number of distinct elements at depth \(d \) is \(b^d \).
 - We need to store all distinct elements at depth \(d \) in the Queue.
 - We need to keep a record on visited nodes in order not to re-visit them.

- **Time complexity:**
 - \(1 \cdot e + b \cdot e + b^2 \cdot e + b^3 \cdot e + \cdots + b^{d-1} \cdot e = (b^d - 1) \cdot e / (b - 1) = O(b^{d-1} \cdot e), \) if \(b \) is a constant.
 - For each element \(N \) in the Queue, it takes at least \(O(e) \) time to find \(\text{deeper}(N) \).
 - It is always true that \(e \geq b \).
BFS: comments

- Always finds an optimal solution, i.e., one with the smallest possible depth \(d \).
 - Do not need to worry about falling into loops.
- Most critical drawback: huge space requirement.
 - It is tolerable for an algorithm to be 100 times slower, but not so for one that is 100 times larger.
BFS: ideas when there is little memory

What can be done when you do not have enough main memory?

- DISK
 - Store states that has been visited before into DISK and maintain them as sorted.
 - Store the QUEUE into DISK.

- Memory: buffers
 - Most recently visited nodes.
 - Candidates of possible newly explored nodes.

- Merge the buffer of visited nodes with the one in DISK when memory is full.
 - We only need to know when a newly explored node has been visited or not when it is about to be removed from the QUEUE.
 - The decision of whether it has been visited or not can be delayed.

- Append the buffer of newly explored nodes to the QUEUE the DISK when memory is full or it is empty.
Algorithm \(\text{BFS}_{\text{disk}}(N_0) \)
\(* \text{ do disk based BFS from the starting state } N_0 *\)

- If the starting state \(N_0 \) is a goal, then return success
- Initialize a Queue \(Q_d \) using DISK
- Initialize a buffer \(Q_m \) of potential states to visit using main memory
- Initialize a sorted list \(V_d \) of visited nodes using DISK
- Initialize a buffer \(V_m \) of visited nodes using main memory
- Add \(N_0 \) to \(Q_d \)
- While \(Q_d \) and \(Q_m \) are not both empty do
 - If \(Q_d \) is empty, then \{ Sort \(Q_m \); Write \(Q_m \) to \(Q_d \); Empty \(Q_m \) \}
 - Remove a state \(N \) from \(Q_d \)
 - Add \(N \) to \(V_m \)
 - If \(V_m \) is full, then \{ Sort \(V_m \); Merge \(V_m \) into \(V_d \); Empty \(V_m \) \}
 - If one of the states in \(\text{deeper}(N) \) is goal, then return success
 - Add unvisited states in \(\text{deeper}(N) \) to \(Q_m \); Mark them as visited;
 - If \(Q_m \) is full, then \{
 Sort \(Q_m \);
 Add states in \(Q_m \) that are not in \(V_d \) and \(V_m \) to \(Q_d \);
 Empty \(Q_m \) \}

- Return fail
When data cannot be loaded into the memory, you need to re-invent algorithms even for tasks that may look simple.

- Batched processing.
 - Accumulate tasks and then try to perform these tasks when they need to.
 - Combine tasks into one to save disk I/O time.
 - Order disk accessing patterns.

Main ideas:

- When two files are sorted, it is cost effective to compare the difference of them.
- It is not too slow to read all records of a large file in sequence.
- It is very slow and cost a lot to read every record in a large file in a random order.
Disk based algorithms (2/3)

- Implementation of the QUEUE.
 - QUEUE can be stored in one disk file.
 - Newly explored ones are appended at the end of the file.
 - Retrieve the one at the head of the file.

- A newly explored node will be explored after the current QUEUE is empty.
How to find out a list of newly explored nodes have been visited or not?

- Maintain the list of visited nodes on DISK sorted.
 - When the member buffer is full, sort it.
 - Merge the sorted list of newly visited nodes in buffer into the one stored on DISK.

- We can easily compare two sorted lists and find out the intersection or difference of the two.
 - We can easily remove the ones that are already visited before once Q_m is sorted.
 - To revert items in Q_m back to its the original BFS order, which is needed for persevering the BFS search order, we need to sort again using the original BFS ordering.

Why we can delay the decision of whether a newly explored node has been visited or not?

- We only need to know when a newly explored node has been visited or not when it is about to be removed from the QUEUE.
- The decision of whether it has been visited or not can be delayed.
Depth-first search (DFS)

- $\text{next}(\text{current}, N)$: returns the state next to the state “current” in $\text{deeper}(N)$.
 - Assume states in $\text{deeper}(N)$ are given a linear order with dummy first and last elements both being null, and assume $\text{current} \in \text{deeper}(N)$.
 - Assume we can efficiently generate $\text{next}(\text{current}, N)$ based on “current” and N.

- Algorithm $\text{DFS}(N_0)$ { * do DFS from the starting state N_0 * }
 - Initialize a Stack S
 - Push (null, N_0) to S
 - While S is not empty do
 - Pop (current, N) from S
 - $R \leftarrow \text{next}(\text{current}, N)$
 - If R is a goal, then return success
 - If R is null, then continue { * searched all children of N * }
 - Push (R, N) to S
 - If R is already in S, then continue { * to avoid loops * }
 - Push (null, R) to S { * search deeper * }
 - Can introduce some cut-off depth here in order not to go too deep
 - Return fail
DFS: analysis

- **Time complexity:**
 - $O(e^d)$
 - The number of possible branches at depth d is e^d.

- **Space complexity:**
 - $O(d)$
 - Only need to store the current path in the Stack.

- **Comments:**
 - Without a good cut-off depth, it may not be able to find a solution in time.
 - May not find an optimal solution at all.
 - Heavily depends on the move ordering.
 - Which one to search first when you have multiple choices for your next move?
 - A node can be searched many times.
 - Need to do something, e.g., hashing, to avoid researching too much.
 - Need to balance the effort to memorize and the effort to research.
 - Most critical drawback: huge and unpredictable time complexity.
DFS: when there is little memory

- Need to have a hash table to store the set of visited nodes in order not to visit a node too many times.
 - We need to decide instantly whether a node is visited or not.
 - The decision of whether a node is visited or not cannot be delayed.
 - Batch processing is not working here.
 - It takes too much time to handle a disk based hash table.

- Use data compression and/or bit-operation techniques to store as many visited nodes as possible.
 - Some nodes maybe visit again and again.
 - Need a good heuristic to store the most frequently visited nodes.
 - Avoid swapping too often.
DFS with a depth limit

- Do DFS from the starting state N_0 without exceeding a given depth limit.
 - $\text{length}(x, y)$: the number of edges between a shortest path from the node x and the node y.
 - Depth of a node x in a tree $= \text{length}(\text{root}, x)$.

Algorithm $\text{DFS}_{\text{depth}}(N_0, \text{limit})$

- Initialize a Stack S
- Push (null, N_0) to S where N_0 is the initial state
- While S is not empty do
 - $\text{Pop (current, N) from S}$
 - $R \leftarrow \text{next(current, N)}$
 - If R is a goal, then return success
 - If R is null, then continue \{ * searched all children of N * \}
 - If $\text{length}(N_0, R) > \text{limit}$, then continue \{ * cut off * \}
 - Push (R, N) to S
 - If R is already in S, then continue \{ * to avoid loops * \}
 - Push (null, R) to S \{ * search deeper * \}

- Return fail
Depth-first iterative-deepening (DFID)

- $\text{DFS}_{depth}(N, limit)$: DFS from the starting state N and with a depth cut off at the depth $limit$

- Algorithm $\text{DFID}(N_0, \text{cut_off_depth})$ { * do DFID from the starting state N_0 with a depth limit cut_off_depth * }
 - $limit \leftarrow 0$
 - While $limit < \text{cut_off_depth}$ do
 - If $\text{DFS}_{depth}(N_0, limit)$ finds a goal state g, then return g as the found goal state
 - $limit \leftarrow limit + 1$
 - Return fail

- Space complexity:
 - $O(d)$
The branches at depth i are generated $d - i + 1$ times.
- There are e^i branches at depth i.

Total number of branches visited $M(e, d)$ is

$$
(d + 1)e^0 + de^1 + (d - 1)e^2 + \cdots + 2e^{d-1} + e^d = e^d(1 + 2e^{-1} + 3e^{-2} + \cdots + (d + 1)e^{-d}) \\
\leq e^d(1 - 1/e)^{-2} \text{ if } e > 1
$$

Analysis:

- $(1 - x)^{-2} = 1/(1 - 2x + x^2) = 1 + 2x + 3x^2 + \cdots + kx^{k-1} + (k + 1)x^k - kx^{k+1}$.
- **Hence** $1 + 2x + 3x^2 + \cdots + kx^{k-1} \leq (1 - x)^{-2}$, if $|x| < 1$.
- **Since** $|x| < 1$,

$$
\lim_{k \to \infty} ((k + 1)x^k - kx^{k+1}) = 0.
$$

- **If** k is large enough and $|x| < 1$, then $(1 - x)^{-2} \approx 1 + 2x + 3x^2 + \cdots + kx^{k-1}$.

Let $M(e, d)$ be the total number of branches visited by DFID with an edge branching factor of e and depth d.

Examples:
- When $e = 2$, $M(e, d) \leq 4e^d$.
- When $e = 3$, $M(e, d) \leq 9/4e^d$.
- When $e = 4$, $M(e, d) \leq 16/9e^d$.
- When $e = 5$, $M(e, d) \leq 25/16e^d$.
- $M(e, d) = O(e^d)$ with a small constant factor.
DFID: comments

- No need to worry about a good cut-off depth as in DFS.
- Still need a mechanism to decide instantly whether a node has been visited before or not.
- Good for a tournament situation where each move needs to be made in a limited amount of time.

Q:

- Does DFID always find an optimal solution?
- How about BFID?
DFS with depth limit and direction (1/2)

- Two refined service routines when direction of the search is considered:
 - $\text{DFS}_{\text{dir}}(B, G, \text{successor}, i)$: DFS with the set of starting states B, goal states G, successor function and depth limit i.
 - $\text{next}_{\text{dir}}(\text{current}, \text{successor}, N)$: returns the state next to the state “current” in $\text{successor}(N)$.

- In the above two routines:
 - successor is deeper for forward searching
 - successor is prev for backward searching

- Note:
 - Given a state N, $\text{prev}(N)$ gives all states that can reach N in one step.
 - Given a state N, $\text{deeper}(N)$ gives the set of all possible states that can be reached from the state N in one step.
DFS with depth limit and direction (2/2)

- **DFS_{dir}(B, G, successor, i):** DFS with the set of starting states \(B \), goal states \(G \), successor function and depth limit \(i \).

- **Algorithm DFS_{dir}(B, G, successor, limit)**
 - Initialize a Stack \(S \)
 - For each possible starting state \(t \) in \(B \) do
 - Push \((null, t)\) to \(S \)
 - While \(S \) is not empty do
 - Pop \((current, N)\) from \(S \)
 - \(R \leftarrow \text{next}_{dir}(current, \text{successor}, N) \)
 - If \(R \) is a goal in \(G \), then return success
 - If \(R \) is null, then continue \{ * searched all children of \(N \) * \}
 - If length\((B, R)\) > limit, then continue \{ * cut off * \}
 - Push \((R, N)\) to \(S \)
 - If \(R \) is already in \(S \), then continue \{ * to avoid loops * \}
 - Push \((null, R)\) to \(S \) \{ * search deeper * \}
 - Return fail

- Note length\((B, x)\) is the length of a shortest path between the state \(x \) and a state in \(B \).
Bi-directional search

- Combined with iterative-deepening.
- \(\text{DFS}_{\text{dir}}(B, G, \text{successor}, i)\): DFS with the set of starting states \(B\), goal states \(G\), successor function and depth limit \(i\).
 - \text{successor} is deeper for forward searching
 - \text{successor} is prev for backward searching
 \(\triangleright\) Given a state \(S_i\), \(\text{prev}(S_i)\) gives all states that can reach \(S_i\) in one step.

- Algorithm BDS\((N_0,\text{cut}_\text{off}_\text{f}_\text{depth})\)
 - \(\text{limit} \leftarrow 0\)
 - \textbf{while} \(\text{limit} < \text{cut}_\text{off}_\text{f}_\text{depth}\) \textbf{do}
 - \(\triangleright\) if \(\text{DFS}_{\text{dir}}(\{N_0\}, G, \text{deeper}, \text{limit})\) returns success, then return success \{* forward searching *\}
 else store all states at depth = \(\text{limit}\) in an area \(H\)
 - \(\triangleright\) if \(\text{DFS}_{\text{dir}}(G, H, \text{prev}, \text{limit})\) returns success, then return success \{* backward searching *\}
 - \(\triangleright\) if \(\text{DFS}_{\text{dir}}(G, H, \text{prev}, \text{limit} + 1)\) returns success, then return success \{* in case the optimal solution is odd-lengthed *\}
 \(\triangleright\) \(\text{limit} \leftarrow \text{limit} + 1\)
 - \(\triangleright\) return fail

- Backward searching at depth = \(\text{limit} + 1\) is needed to find odd-lengthed optimal solutions.
Bi-directional search: analysis

- **Time complexity:**
 - $O\left(\frac{e^d}{2}\right)$

- **Space complexity:**
 - $O\left(\frac{e^d}{2}\right)$: needed to store the half-way meeting points H.

- **Comments:**
 - Run well in practice.
 - Depth of the solution is expected to be the same for a normal uni-directional search, however the number of nodes visited is greatly reduced.
 - Pay the price of storing solutions at half depth.
 - **Need to know how to enumerate the set of goals.**
 - **Trade off between time and space.**
 - What can be stored on DISK?
 - What operations can be batched?

- **Q:**
 - How about using BFS in forward searching?
 - How about using BFS in backward searching?
 - How about using BFS in both directions?
Heuristic search

- **Heuristics**: criteria, methods, or principles for deciding which among several alternative courses of actions promises to be the most effective in order to achieve some goal [Judea Pearl 1984].
 - Need to be simple and effective in discriminate correctly between good and bad choices.

- A **heuristic search** is a search algorithm that uses information about
 - the initial state,
 - operators on finding the states adjacent to a state,
 - a test function whether a goal is reached, and
 - heuristics to pick the next state to explore.

- A “good” heuristic search algorithm:
 - States that are not likely leading to the goals will not be explored further.
 - *A state is cut or pruned.*
 - States are explored in an order that are according to their likelihood of leading to the goals → **good move ordering**.
Heuristic search: A^*

- Combining DFID with best-first heuristic search such as A^*.
- A^* search: branch and bound with a lower-bound estimation.
- Algorithm $A^*(N_0)$
 - Initialize a Priority Queue PQ to store partial paths with the key the cost of this path.
 - Initially, store only a path with the starting node N_0 only.
 - Paths in PQ are sorted according to their current cost plus a lower bound on the remaining distances.
 - While PQ is not empty do
 - Remove a path P with the least cost from PQ
 - 11: If the goal is found, then return success
 - 12: Find extended paths from P by extending one step
 - Insert all generated paths to PQ
 - Update PQ
 - If two paths reach a common node then keep only one with the least cost
 - Return fail
A* algorithm

Cost function:
- Given a path \(P \),
 - let \(g(P) \) be the current cost of \(P \);
 - let \(h(P) \) be the estimation of remaining, or heuristic cost of \(P \);
 - \(f(P) = g(P) + h(P) \) is the cost function.

- How to find a good \(h() \) is the key of an A* algorithm?
- It is known that if \(h() \) never overestimates the actual cost to the goal (this is called admissible), then A* always finds an optimal solution.
 - \(Q: \) How to prove this?

Checking of the termination condition:
- We need check for a goal only when a path is popped from the \(PQ \), i.e., at Line 11.
- We cannot check for a goal when a path is generated and inserted into the \(PQ \), i.e., at Line 12.
 - We will not be able find the optimal solution if we do the checking at Line 12.
A* algorithm: Comments

- When a path is inserted, check for whether it has reached some nodes that have been visited before.
 - *It may take a huge space and a clever algorithm to implement an efficient Priority Queue.*
 - *It may need a clever data structure to efficiently check for possible duplications.*

- Cost function:
 - Need an lower bound estimation that is as large as possible.
 - Can design the cost function so that A* emulates the behavior of other search routines.

- It consumes a lot of memory to record the set of visited nodes.
- It also consume a lot of memory to store PQ.

- Q:
 - *What disk based techniques can be used?*
 - *Why do we need a non-trivial h(P) that is admissible?*
 - *How to design an admissible cost function?*
DFS with a threshold

- **DFS\textsubscript{cost}(N, f, threshold)** is a version of DFS with a starting state \(N\) and a cost function \(f\) that cuts off a path when its cost is more than a given threshold.
 - **DFS\textsubscript{depth}(N, cut_off, f_depth)** is a special version of **DFS\textsubscript{cost}(N, f, threshold)**.

- **Algorithm DFS\textsubscript{cost}(N_0, f, threshold)**
 - Initialize a Stack \(S\)
 - Push \((null, N_0)\) to \(S\) where \(N_0\) is the initial state
 - While \(S\) is not empty do
 - Pop \((current, N)\) from \(S\)
 - If \(current\) is a goal, then return success \{* Goal is found! *\}
 - \(R \leftarrow \text{next}(current, N)\) \{* pick a good move ordering here *\}
 - If \(R = null\), then continue; \{* searched all children of \(N\) *\}
 - If \(f(P) >\) threshold, then continue where \(P\) is the current path \{* cut off *\}
 - Push \((R, N)\) to \(S\)
 - If \(R\) is already in \(S\), then continue \{* to avoid loops *\}
 - Push \((null, R)\) to \(S\) \{* search deeper *\}
 - Return fail
How to pick a good move ordering (1/2)

- Instead of just using \(\text{next}(\text{current}, N) \) to find the next unvisited neighbors of \(N \) with the information of the last visited node being \textit{current}, we do the followings.
 - Use a routine to order the neighbors of \(N \) so that it is always the case the neighbors are visited from low cost to high cost.
 - Let this routine be \(\text{next1}(\text{current}, N) \).
 - Note we still need dummy first and last elements being \textit{null}.
How to pick a good move ordering (2/2)

- **Algorithm DFS1_{cost}(N₀, f, threshold)**
 - Initialize a Stack S
 - Push $(null, N_0)$ to S where N_0 is the initial state
 - While S is not empty do
 - Pop $(current, N)$ from S
 - If current is a goal, then return success
 - $R \leftarrow$ next1$(current, N)$
 - If $R = null$, then continue; { * searched all children of N * }
 - Let P be the path from N_0 to R
 - If $f(P) > threshold$, then continue { * cut off * }
 - Push (R, N) to S
 - If R is already in S, then continue { * to avoid loops * }
 - Push $(null, R)$ to S { * search deeper * }
 - Return fail
How to incooperate ideas from A^*

Instead of using a stack in DFS_{cost}, use a priority queue.

Algorithm $\text{DFS2}_{\text{cost}}(N_0,f,\text{threshold})$
- Initialize a priority queue PQ
- Insert $(null,N_0)$ to PQ where N_0 is the initial state
- While PQ is not empty do
 - Remove $(current,N)$ with the least cost $f(P)$ for the path P from N_0 to N from PQ
 - If current is a goal, then return success
 - $R \leftarrow \text{next1}(current,N)$
 - If $R = null$, then continue; {* searched all children of N *}
 - Let P be the path from N_0 to R
 - If $f(P) > \text{threshold}$, then continue {* cut off *}
 - Insert (R,N) to PQ
 - If R is already in PQ, then continue {* to avoid loops *}
 - Insert $(null,R)$ to PQ {* search deeper *}
- Return fail

It may be costly to maintain a priority queue as in the case of A^*.
\textbf{IDA* = DFID + A*}

- \textbf{DFS}_{cost}(N, f, threshold) is a version of DFS with a starting state \(N \) and a cost function \(f \) that cuts off a path when its cost is more than a given \(\text{threshold} \).

- **IDA* : iterative-deepening A**

- **Algorithm \text{IDA}^*(N_0, \text{threshold})**
 - \(\text{threshold} \leftarrow h(\text{null}) \)
 - \textbf{While} \(\text{threshold} \) is reasonable \do
 - \textbf{DFS}_{cost}(N_0, g + h(), \text{threshold})
 \{ \text{* Can use DFS\textsubscript{1cost} or DFS\textsubscript{2cost} here *} \}
 \textbf{If the goal is found,}
 \textbf{then return success}
 \textbf{threshold} \leftarrow \text{the least } g(P) + h(P) \text{ cost among all paths } P \text{ being cut}
 - \textbf{Return fail}
**IDA*: comments

- **IDA*** does not need to use a priority queue as in the case of A***.
 - IDA*** is optimal in terms of solution cost, time, and space over the class of admissible best-first searches on a tree.

- **Issues in updating threshold.**
 - Increase too little: re-search too often.
 - Increase too large: cut off too little.
 - Q: How to guarantee optimal solutions are not cut?
 ▶ *It can be proved, as in the case of A***, that given an admissible cost function, IDA*** will find an optimal solution, i.e., one with the least cost, if one exists.*

- **Cost function is the knowledge used in searching.**
- **Combine knowledge and search!**
- **Need to balance the amount of time spent in realizing knowledge and the time used in searching.**
15 puzzle (1/2)

- **Introduction of the game:**
 - 15 tiles in a 4*4 square with numbers from 1 to 15.
 - One empty cell.
 - A tile can be slided horizontally or vertically into an empty cell.
 - From an initial position, slide the tiles into a goal position.

- **Examples:**

 - **Initial position:**

 | 10 | 8 | 12 | |
|---|---|---|---|
 | 3 | 7 | 6 | 2 |
 | 1 | 14| 4 | 11|
 | 15 | 13| 9 | 5 |

 - **Goal position:**

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	
Total number of positions: \(16! = 20,922,789,888,000 \leq 2.1 \times 10^{13}\).

- It is feasible, in terms of computation time, to enumerate all possible positions, since 2007.
 - Can use DFS or DFID now.
 - Need to avoid falling into loops or re-visit a node too many times.

- It is still too large to store all possible positions in main memory now (2012).
 - Cannot use BFS efficiently even now.
 - Maybe difficult to find an optimal solution.
 - Maybe able to use disk based BFS.
Solving 15 puzzles

- Using DEC 2060 a 1-MIPS machine: solved the 15 puzzle problem within 30 CPU minutes for all testing positions, generating over 1.5 million nodes per minute.
 - The average solution length was 53 moves.
 - The maximum was 66 moves.
 - IDA* generated more nodes than A*, but ran faster due to less overhead per node.

- Heuristics used:
 - \(g(P) \): the number of moves made so far.
 - \(h(P) \): the Manhattan distance between the current board and the goal position.
 - Suppose a tile is currently at \((i, j)\) and its goal is at \((i', j')\), then the Manhattan distance for this tile is \(|i - i'| + |j - j'|\).
 - The Manhattan distance between a position and a goal position is the sum of the Manhattan distance of every tile.
 - \(h(P) \) is admissible.
What else can be done?

- Bi-directional search and IDA*?
 - How to design a good and non-trivial heuristic function?
- How to get a better move ordering in DFS?
- Balancing in resource allocation:
 - The efforts to memorize past results versus the amount of efforts to search again.
 - The efforts to compute a better heuristic, i.e., the cost function.
 - The amount of resources spent in implementing a better heuristic and the amount of resources spent in searching.
- Can these techniques be applied to two-person games?
References and further readings