
Transposition Table, History Heuristic, and
other Search Enhancements

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Abstract

Introduce heuristics for improving the efficiency of alpha-beta
based searching algorithms.
• Re-using information: Transposition table.
• Adaptive searching window size.
• Better move ordering.
• Dynamically adjust searching depth.

Study the effect of combining multiple heuristics.
• Each enhancement should not be taken in isolation.
• Try to find a combination that provides the greatest reduction in tree

size.

Be careful on the type of game trees that you do experiments
on.
• Artificial game trees.
• Depth, width and leaf-node evaluation time.
• A heuristic that is good on the current experiment setup may not be

good some years in the future because of the the game tree can be
evaluated much deeper in the the same time using faster CPU’s.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 2



Enhancements and heuristics

Always used enhancements
• Alpha-beta, NegaScout or Monte-Carlo search based algorithms
• Iterative deepening
• Transposition table

Frequently used heuristics
• Knowledge heuristic: using domain knowledge to enhance evaluating

functions or move ordering.
• Aspiration search
• Refutation tables
• Killer heuristic
• History heuristic

Some techniques about aggressive forward pruning
• Null move pruning
• Late move reduction

Search depth extension
• Conditional depth extension: to check doubtful positions.
• Quiescent search: to check forceful variations.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 3



Transposition tables

We are searching a game graph, not a game tree.
• Interior nodes of game trees are not necessarily distinct.
• It may be possible to reach the same position by more than one path.

How to use information in the transposition table?
• Suppose p is searched again with the depth limit d′.
• If d ≥ d′, then no need to search anymore.

. Just retrieve the result from the table.

• If d < d′, then use the best move stored as the starting point for
searching.

Need to be able to locate p in a large table efficiently.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 4



Transposition tables: contents

What are recorded in an entry of a transposition table?
• The position p.

. Note: the position describes who the next player is.

• Searching depth d.
• Best value in this subtree.

. Can be an exact value when the best value is found.

. Maybe a value that causes a cutoff.
→ In a MAX node, it says at least v when a beta cut off occurred.
→ In a MIN node, it says at most v when an alpha cut off occurred.

• Best move, or the move caused a cut off, for this position.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 5



Transposition tables: updating rules

It is usually the case that at most one entry of information for
a position is kept in the transposition table.
When it is decided that we need to record information about a
position p into the transposition table, we may need to consider
the followings.
• If p is not currently recorded, then just store it into the transposition

table.
. Be aware of the fact that p’s information may be stored in a place that

previously occupied by another position q such that p 6= q.
. In most cases, we simply overwrite.

• If p is currently recorded in the transposition table, then we need a
good updating rule.

. Some programs simply overwrite with the latest information.

. Some programs compares the depth, and use the one a deeper searching
depth.

. When the searching depths are the same, we normally favor one with
the latest information.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 6



NegaScout with memory

Algorithm F4.1′(position p, value alpha, value beta, integer
depth)
• check whether a value of p has been recorded in the transposition table

• if yes, then HASH HITS!!

• determine the successor positions p1, . . . , pd
• · · ·

begin
. m := −∞ or m′ if HASH HITS// m is the current best lower bound;

fail soft
. · · ·

if m ≥ beta then {update this value as a lower bound into the transpo-
sition table; return m} // beta cut off

. for i := 2 to d do

. · · ·

. 14: if m ≥ beta then { update this value as a lower bound into the
transposition table; return m } // beta cut off

end
• update this value as an exact value into the transposition table;
• return m

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 7



Hash hit: a sample

Be careful to check whether the position is exactly the same.
• The turn or who the current player is is crucial in deciding whether the

position is exactly the same.

The recorded entry consists of 4 parts:
• the value m′;
• the depth depth′ where is was recorded;
• a flag exact that is true when it is an exact value; and is a lower bound

causing a beta cut when it is false;
• the child where m′ comes from.

The value in the hash is an exact value, namely, exact is true
• If depth ≤ depth′, namely, we have searched the tree not shallower

before, then
. immediately return m′ as the search result

• If depth > depth′, namely, we have searched the tree shallower before,
then

. use m′ as the initial value for searching

The value in the hash is a lower bound, namely, exact is false
• use m′ as the initial value for searching

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 8



Hash update: a sample

Note: this is an example. There exists many other updating
rules.
Assume we want to write to a hash table the following
information
• position p
• the value m;
• the depth depth where is was recorded;
• a flag exact that is true when it is an exact value, and is a lower bound

causing a beta cut when it is false;
• the child where m comes from.

There is no hash entry existed for the position p.
• Simply add it into the hash.

There is an old entry (m′, depth′, exact′, p′i) existed.
• if depth > depth′, then replace the old entry
• if depth = depth′, then

. if (not exact) and exact′, then do not replace

. otherwise, replace

• if depth < depth′, then do not replace

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 9



Zobrist’s hash function

Find a hash function hash(p) so that with a very high probability
that two distinct positions will be mapped into distinct locations
in the table.
Using XOR to achieve fast computation:
• associativity: x XOR (y XOR z) = (x XOR y) XOR z
• commutativity: x XOR y = y XOR x
• x XOR x = 0

. x XOR 0 = x

. (x XOR y) XOR y = x XOR (y XOR y) = x XOR 0 = x

• x XOR y is random if x and y are also random

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 10



Hash function

Assume there are k different pieces and each piece can be
placed into r different locations.
• Obtain k · r random numbers in the form of s[piece][location]
• hash(p) = s[p1][l1] XOR · · · XOR x[px][lx] where pi is the ith piece and
li is the location of pi.

This value can be computed incrementally.
• Assume the original hash value is h.
• A piece px+1 is placed at location lx+1, then

. new hash value = h XOR s[px+1][lx+1].

• A piece py is removed from location ly, then
. new hash value = h XOR s[py][ly].

• A piece py is moved from location ly to location l′y then

. new hash value = h XOR s[py][ly] XOR s[py][l
′
y].

• A piece py is moved from location ly to location l′y and capture the
piece p′y at l′y then

. new hash value = h XOR s[py][ly] XOR s[py][l
′
y] XOR s[p′y][l

′
y].

It is also easy to undo a move.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 11



Clustering of errors

Though the hash codes are uniformly distributed, the idiosyn-
crasies of a particular problem may produce an unusual number
of clashes.
• if hash(p∗) = hash(p+), then

. adding the same pieces at the same locations to positions p∗ and p+

produce the same clashes;
. removing the same pieces at the same locations from positions p∗ and

p+ produce the same clashes.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 12



Practical issues (1/2)

Normally, design a hash table of 2n entries, but with key length
n+m bits.
• That is, each s[piece][location] is a random value of n+m bits.
• Hash index = hash(p) mod 2n.
• Store the hash key to compare when there is a hash hit.

How to store a hash entry:
• Store it when the entry is empty.
• Replace the old entry if the current result comes from a deeper subtree.

How to match an entry:
• First compute i = hash(p) mod 2n

• Compare hash(p) with the stored key in the ith entry.
• Since the error rate is very small, there is no need to store the exact

position and then make a comparison.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 13



Practical issues (2/2)

Errors:
• Assume this hash function is uniformly distributed.
• The chance of error for hash clash is 1

2n+m.
• Assume during searching, 2w nodes are visited.
• The chance of no clash in these 2w visits is

P = (1− 1

2n+m
)2

w
' (

1

e
)2
−(n+m−w)

.

. When n + m− w is 5, P ' 0.96924.

. When n + m− w is 10, P ' 0.99901.

. When n + m− w is 20, P ' 0.99999904632613834096.

. When n + m− w is 32, P ' 0.99999999976716935638.

• Currently (2013):
. n + m = 64
. n ≤ 32
. w ≤ 32

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 14



Intuitions for possible enhancements

The size of the search tree built by a depth-first alpha-beta
search largely depends on the order in which branches are
considered at interior nodes.
• It looks good if one can search the best possible subtree first in each

interior node.
• A better move ordering normally means a better way to prune a tree

using alpha-beta search.

Enhancements to the alpha-beta search have been proposed
based on one or more of the following principles:
• knowledge;
• window size;
• better move ordering;
• forward pruning;
• dynamic search extension;
• · · ·

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 15



Knowledge heuristic

Use game domain specified knowledge to obtain a good
• move ordering;
• evaluating function.

Moves that are normally considered good for chess like games:
• Moves to avoid being checking or captured
• Checking moves
• Capturing moves

. Favor capturing pieces of important.

. Favor capturing pieces using pieces as little as possible.

• Moving of pieces with large material values

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 16



Aspiration search

The normal alpha-beta search usually starts with a (−∞,∞)
search window.
If some idea of the range of the search will fall is available, then
tighter bounds can be placed on the initial window.
• The tighter the bound, the faster the search.
• Some possible guesses:

. During iterative deepening, assume the previous best value is x, then
use (x − threshold, x + threshold) as the initial window size where
threshold is a small value.

If the value falls within the window then the original window is
adequate.
Otherwise, one must re-search with a wider window depending
on whether it fails high or fails low.
Reported to be at least 15% faster than the original alpha-beta
search.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 17



Aspiration search — Algorithm

Iterative deepening with aspiration search.
• p is the current board
• limit is the limit of searching depth, assume limit > 3
• threshold is the initial window size

Algorithm IDAS(p,limit,threshold)
• best := F4(p,−∞,+∞,3) // initial value
• current depth limit := 4
• while current depth limit <= limit do

. m := F4(p,best− threshold,best + threshold,current depth limit)

. if m ≤ best− threshold then // failed-low
m := F4(p,−∞,m,current depth limit)

. else if m ≥ best + threshold then // failed-high
m := F4(p,m,∞,current depth limit)

. endif

. endif

. best := m // found

. if time is used up then return best

. current depth limit := current depth limit + 1

• return best

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 18



IDAS: comments

May want to try multiple window sizes.
• For example: try [best− t1, best+ t1] first.
• If failed low, try [best− t1 − t2, best− t1].
• If failed high, try [best+ t1, best+ t1 + t2].
• · · ·
• Need to decide various ti via experiments.

Aspiration search is better to be used together with a
transposition table so that information from the previous search
can be reused later.
Ideas here may also be helpful in designing better progressive
pruning policy for Monte-Carlo based search.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 19



Better move ordering

Intuition: the game evolves continuously.
• What are considered good or bad in previous plys cannot be off too

much in this ply.
• If iterative deepening or aspiration search is used, then what are

considered good or bad in the previous iteration cannot be off too
much now.

Techniques:
• Refutation table.
• Killer heuristic.
• History heuristic.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 20



What moves are good?

In alpha-beta search, a sufficient, or good, move at an interior
node is defined as
• one causes a cutoff, or

. Remark: this move is potentially good for its parent, though a cutoff
happens may depend on the values of its older siblings.

• if no cutoff occurs, the one yielding the best minimax score, or
• the one that is a sibling of the chosen yielding the best minimax score

and has the same best score.

1 2

V=15

V=10 cut

V >= 151.1 1.2

1.2.1 1.2.2

V<=10

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 21



PV path

For each iteration, the search yields a path for each move
from the root to a leaf node that results in either the correct
minimax value or an upper bound on its value.
• This path is often called principle variation (PV) or principle continua-

tion.

Q: What moves are considered good in the context of
Monte-Carlo simulation?
• There is currently no equivalent ideas for iterative deepening.

. Need other techniques for better timing control.

• Can information in the previous-ply Monte-Carlo search be used in
searching this ply?

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 22



Refutation tables

Assume using iterative deepening with an increasing
current depth limit being bounded by limit.
• Store the current best principle variation at Pcurrent depth limit,i for

each depth i at the current depth limit current depth limit.

The PV path from the current depth limit = d−1 ply search can
be used as the basis for the search to current depth limit = d
ply at the same depth.
Searching the previous iteration’s path or refutation for a move
as the initial path examined for the current iteration will prove
sufficient to refute the move one ply deeper.
• When searching a new node at depth i for the current depth limit
current depth limit,

. try the move made by this player at Pcurrent depth limit−1,i first;

. then try moves made by this player at Pcurrent depth limit−2,i;

. · · ·

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 23



How to store the PV path

Algorithm F4.2′(position p, value alpha, value beta, integer
depth)
• determine the successor positions p1, . . . , pd
• if d = 0 // a terminal node
· · ·

• then return f(p) else
begin

. m := −∞ // m is the current best lower bound; fail soft
m := max{m,G4.2′(p1, alpha, beta, depth− 1)} // the first branch
if m ≥ beta then PV [current depth limit, depth] := p1; return(m) //
beta cut off

. for i := 2 to d do

. 9: t := G4.2′(pi,m,m + 1, depth− 1) // null window search

. 10: if t > m then // failed-high
11: if (depth < 3 or t ≥ beta)
12: then {PV [current depth limit, depth] := pi; m := t}
13: else m := G4.2′(pi, t, beta, depth− 1) // re-search

. 14: if m ≥ beta then // beta cut off
{PV [current depth limit, depth] := pi; return(m)}

end
• return m //PV entry is recorded in line 12

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 24



How to use the PV

Use the PV information to do a better move ordering
• Assume the current depth limit from iteration deepening is
current depth limit.

Algorithm F4.2.1′(position p, value alpha, value beta, integer
depth)
• determine the successor positions p1, . . . , pd
• // get a better move ordering by using information stored in PV
• k = 0;
• for i = current depth limit− 1 downto 1 do

if PV [i, depth] = px and d ≥ x > k, then
. swap px and pk; // make this move as the kth move t be considered
. k := k + 1

• · · ·

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 25



Killer heuristic

A compact refutation table.
Storing at each depth of search the moves which seem to be
causing the most cutoffs, i.e., so called killers.
• Currently, store two most recent cutoffs at this depth.

The next time the same depth in the tree is reached, the killer
move is retrieved and used, if valid in the current position.
Comment:
• It is plausible to record more than one killers. However, the time to

maintain them may be too much.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 26



History heuristic

Intuition:
• A move M may be shown to be best in one position.
• Later on in the search tree a similar position may occur, perhaps only

differing in the location of one piece.
. A position p and a position p′ obtained from p by making one or two

moves are likely to share important features.

• Minor difference between p and p′ may not change the position enough
to alter move M from still being best.

Recall: In alpha-beta search, a sufficient, or good, move at an
interior node is defined as
• one causes a cutoff, or
• if no cutoff occurs, the one yielding the best minimax score, or
• a move that is “equivalent” to the best move.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 27



Implementation (1/2)

Keep track of the history on what move are good.
• Assume the board has q different locations.
• Assume each time only a piece can be moved.
• There are only q2 possible moves.
• Including more context information, e.g., the piece moving, did not

significantly increase performance.
. If you carry the idea of including context to the extreme, the result is

a transposition table.

The history table.
• In each entry, use a counter to record the weight or chance that this

entry becomes a good move during searching.
• Be careful for a possible counter overflow.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 28



Implementation (2/2)

Each time when a move is good, increases its counter by a
certain weight.
• During move generation, pick one with the largest counter value.

. Need to access the history table and then sort the weights in the move
queue.

• The deeper the subtree searched, the more reliable the minimax value
except in pathological trees, rarely seen in practice.

• The deeper the search tree, and hence larger, the greater the differences
between two arbitrary positions in the tree and less they may have in
common.

• By experiment: let weight = 2depth, where depth is the depth of the
subtree searched.

. Several other weights, such as 1 and depth, were tried and found to be
experimentally inferior to 2depth.

Killer heuristic is a special case of the history heuristic.
• Killer heuristic only keeps track of one or two successful moves per

depth of search.
• History heuristic maintains good moves for all depths.

History heuristic is very dynamic.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 29



History heuristic: counter updating

Algorithm F4.3′(position p, value alpha, value beta, integer
depth)
• determine the successor positions p1, . . . , pd
• if d = 0 // a terminal node
· · ·

• then return f(p) else
begin

. m := −∞ // m is the current best lower bound; fail soft
m := max{m,G4.3′(p1, alpha, beta, depth− 1)} // the first branch
if m ≥ beta then { HT [p1] = HT [p1] +weight; return(m)} // beta cut
off

. for i := 2 to d do

. 9: t := G4.3′(pi,m,m + 1, depth− 1) // null window search

. 10: if t > m then // failed-high
11: if (depth < 3 or t ≥ beta)
12: then { HT [pi] = HT [pi] + weight; m := t }
13: else m := G4.3′(pi, t, beta, depth− 1) // re-search

. 14: if m ≥ beta then {HT [pi] = HT [pi]+weight; return(m)} // beta
cut off

end
• return m

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 30



History heuristic: usage of the counter

Algorithm F4.3.1′(position p, value alpha, value beta, integer
depth)
• determine the successor positions p1, . . . , pd
• order the moves in p1, . . . , pd according to the weights in HT[]
• · · ·

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 31



Comments: better move ordering

Need to take care of the case for the chance of a counter
overflow.
• Need to perform counter aging periodically.

. That is, discount the value of the current counter as the game goes.

. This also makes sure that the counter value reflects the “current” sit-
uation better, and to make sure it won’t be overflowed.

Ideas here may also be helpful in designing a better node
expansion policy for Monte-Carlo based search.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 32



Experiments: Setup

Try out all possible combinations of heuristics.
• 6 parameters with 64 different combinations.

. Transposition table

. Knowledge heuristic

. Aspiration search

. Refutation tables

. Killer heuristic

. History heuristic

Searching depth from 2 to 5 for all combinations.
• Applying searching upto the depth of 6 to 8 when a combination

showed significant reductions in search depth of 5.

A total of 2000 VAX11/780 equivalent hours are spent to
perform the experiments.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 33



Experiments: Results

Using a single parameter:
. History heuristic performs well, but its efficiency appears to drop after depth

7.
. Knowledge heuristic adds an additional 5% time, but performs about the same

with the history heuristic.
. The effectiveness of transposition tables increases with search depth.
. Refutation tables provide constant performance, regardless of depth, and ap-

pear to be worse than transposition tables.
. Aspiration and minimal window search provide small benefits.

Using two parameters
. Transposition tables plus history heuristic provide the best combination.

Combining three or more heuristics do not provide extra
benefits.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 34



Comments

Combining two best heuristics may not give you the best.
Need to weight the amount of time spent in realizing a heuristic
and the benefits it can bring.
Need to be very careful in setting up the experiments.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 35



Dynamically adjusting searching depth

Aggressive forward pruning: do not search branches that seem
to have little chance of being the best too deep.
• Null move pruning
• Late move reduction

Search depth extension: search a branch deeper if a side is in
“danger”.
• Conditional depth extension: to check doubtful positions.
• Quiescent search: to check forceful variations.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 36



Null move pruning

In general, if you forfeit the right to move and can still maintain
the current advantage in a small number of plys, then it is
usually true you can maintain the advantage in a larger number
of plys.
Algorithm:
• It’s your turn to move; the searching depth for this node is d.
• During searching, an upper bound of beta is obtained.
• Make a null move, i.e., assume you do not move and let the opponent

move again.
. Perform an alpha-beta search with a reduced depth d− R, where R is

a constant decided by experiments.
. If the returned value v is at least beta, then apply a beta cutoff and

return v as the value.
. If the returned value v does not produce a cutoff, then do the normal

alpha-beta search.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 37



Null move pruning: analysis

Assumptions:
• The depth reduced, R, is usually 2 or 3.
• The disadvantage of doing a null move can offset the errors produced

from doing a shallow search.
• Usually do not apply null move when

. your king is in danger, e.g., in check;

. when the number of remaining pieces is small;

. when there is chance of Zugzwang;

. when you are already in null move search;

. when the number of remaining depth is small.

Performance is usually good with about 10 to 30 % improve-
ment, but needs to set the parameters right in order not to
prune moves that need deeper search to find out their true
values.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 38



Null move pruning — Algorithm

Algorithm F4.4′(position p, value alpha, value beta, integer
depth, Boolean Do NULL)
• determine the successor positions p1, . . . , pd
• if d = 0 // a terminal node
· · ·

• then return f(p) else
begin

. If Do Null is false, then goto Skip;

. // null move pruning

. null score := F4.4′(p′, beta, beta+1, depth−R−1, FALSE), where p′

is the position obtained by switching the player in p, and R is usually 2
. if null score ≥ beta return null score // null move pruning
. Skip: // normal NegaScout search
. m := −∞ // m is the current best lower bound; fail soft

. m := max{m,G4.4′(p1, alpha, beta, depth− 1, Do NULL)}

. if m ≥ beta then return(m) // beta cut off

. for i := 2 to d do

. · · ·
end

• return m

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 39



Null move pruning — Example

1 2

V=10

1.1 1.2

1.2.1

[−−,10]

V >= 15

V=15

cut

1.2.2

1 2

V=10

1.1 1.2

[−−,10]

cut

V’

1.2.1
1.2.1’

1.2’

1.2.2

null move prunealpha−beta prune

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 40



Late move reduction (LMR)

Assumption:
• The move ordering is relatively good.

Observation:
• During search, the best move rarely comes from moves that are ordered

very late in the move queue.

How to make use of the observation:
• If the first few, say 3 or 4, moves considered do not produce a value

that is better the current best value, then
. consider the rest of the moves with a reduced depth.

• If some moves considered with a reduced depth returns a value that is
better than the current best, then

. re-search the game tree at a full depth.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 41



LMR: analysis

Performance:
• Reduce the effective branching factor to about 2.

Usually do not apply this scheme when
• your king is in danger, e.g., in check;
• you or the opponent is making an attack;
• the remaining searching depth is too small, say less than 3;
• it is a node in the PV path.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 42



LMR — Algorithm

Algorithm F4.5′(position p, value alpha, value beta, integer
depth)
• determine the successor positions p1, . . . , pd
• if d = 0 // a terminal node
· · ·

• then return f(p) else
begin

. m := −∞ // m is the current best lower bound; fail soft
· · ·

. for i := 2 to d do

. if i ≥ 4 and depth > 3 and pi is not dangerous,
then depth′ := depth− 3 // searched with reduced depth
else depth′ := depth

. 9: t := G4.5′(pi,m,m + 1, depth′ − 1) // null window search

. 10: if t > m then // failed-high
11: if (depth′ < 3 or t ≥ beta)
12: then m := t
13: else m := G4.5′(pi, t, beta, depth− 1) // re-search

. 14: if m ≥ beta then return(m) // beta cut off

end
• return m

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 43



LMR — Example

1 2

V=10

1.1
1.2

1.2.1

[−−,10]

V >= 15

V=15

cut

alpha−beta prune

1 2

V=10

1.1
1.2

1.2.1

[−−,10]

LMR prune

cut

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 44



Dynamic search extension

Search extensions
• Some nodes need to be explored deeper than the others to avoid the

horizontal effect.
. Horizontal effect is the situation that a stable value cannot be found

because a fixed searching depth is set.

• Needs to be very careful to avoid non-terminating search.
• Examples of conditions that need to extend the search depth.

. Extremely low mobility.

. In-check.

. Last move is capturing.

. The current best score is much lower than the value of your last ply.

Quiescent search: to check only forceful variations.
• Invoke your search engine, e.g., alpha-beta search, to only consider

moves that are in-check or capturing.
. May also consider checking moves.
. May also consider allowing upto a fixed number, say 1, of non-capturing

moves in a search path.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 45



Dynamic depth extension — Algorithm

Algorithm F4.6′(position p, value alpha, value beta, integer
depth)
• determine the successor positions p1, . . . , pd
• if d = 0 // a terminal node
· · ·

• then return f(p) else
begin

. if p1 is capturing, ..., then depth′ := depth + 1 else depth′ := depth

. m := −∞ // m is the current best lower bound; fail soft
m := max{m,G4.6′(p1, alpha, beta, depth

′ − 1)} // the first branch
if m ≥ beta then return(m) // beta cut off

. for i := 2 to d do

. if pi is capturing, ..., then depth′ := depth+1 else depth′ := depth

. 9: t := G4.6′(pi,m,m + 1, depth′ − 1) // null window search

. 10: if t > m then // failed-high
11: if (depth < 3 or t ≥ beta)
12: then m := t
13: else m := G4.6′(pi, t, beta, depth

′ − 1) // re-search
. 14: if m ≥ beta then return(m) // beta cut off

end
• return m

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 46



DSE — Illustration

1 2

1.1 1.2

1.2.1 1.2.2

1 2

1.1 1.2

1.2.1 1.2.2

normal search dynamic search extension

search extension

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 47



Comments

There are many more such search enhancements.
• Mainly designed for alpha-beta based searching.
• It is worthy while to think whether techniques designed for one search

method can be adopted to be used in the other search method.

Finding the right coefficients, or parameters, for these tech-
niques can only now be done by experiments.
• Is there any general theory for finding these coefficients faster?
• The coefficients need to be re-tuned once the searching behaviors

change.
. Changing evaluating functions.
. Faster hardware so that the searching depth is increased.
. · · ·

Need to tradeoff between the time spent and the amount of
improvements obtained.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 48



References and further readings

* J. Schaeffer. The history heuristic and alpha-beta search
enhancements in practice. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(11):1203–1212, 1989.

* A. L. Zobrist. A new hashing method with applications for
game playing. Technical Report 88, Department of Computer
Science, University of Wisconsin, Madison, USA, 1970. Also in
ICCA journal, vol. 13, No. 2, pp. 69–73, 1990.

* Selim G. Akl and Monroe M. Newborn. The principal
continuation and the killer heuristic. In ACM ’77: Proceedings
of the 1977 annual conference, pages 466–473, New York,
NY, USA, 1977. ACM Press.
S.C. Hsu. Searching Techniques of Computer Game Playing.
Bulletin of the College of Engineering, National Taiwan
University, 51:17–31, 1991.

TCG: Enhancements, 20131220, Tsan-sheng Hsu c© 49


