
Theory of Computer Games:
Concluding Remarks

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Abstract

Introducing practical issues.
• The open book.
• The graph history interaction (GHI) problem.
• Smart usage of resources.

. time during searching

. memory

. coding efforts

. debugging efforts

• Opponent models

How to combine what we have learned in class together to get
a working game program.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 2

The open book (1/2)

During the open game, it is frequently the case
• branching factor is huge;
• it is difficult to write a good evaluating function;
• the number of possible distinct positions up to a limited length is small

as compared to the number of possible positions encountered during
middle game search.

Acquire game logs from
• books;
• games between masters;
• games between computers;

. Use off-line computation to find out the value of a position for a given
depth that cannot be computed online during a game due to resource
constraints.

• · · ·

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 3

The open book (2/2)

Assume you have collected r games.
• For each position in the r games, compute the following 3 values:

. win: the number of games reaching this position and then wins.

. loss: the number of games reaching this position and then loss.

. draw: the number of games reaching this position and then draw.

When r is large and the games are trustful, then use the 3
values to compute a value and use this value as the value of
this position.
Comments:
• Pure statistically
• You program may not be able to take over when the open book is over.
• It is difficult to acquire large amount of “trustful” game logs.
• Automatically analysis of game logs written by human experts. [Chen

et. al. 2006]
• Using high-level meta-knowledge to guide the way in searching:

. Dark chess: adjacent attack of the opponent’s Cannon. [Chen and Hsu
2013]

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 4

Graph history interaction problem

The graph history interaction (GHI) problem [Campbell 1985]:
• In a game graph, a position can be visited by more than one paths.
• The value of the position depends on the path visiting it.

In the transposition table, you record the value of a position,
but not the path leading to it.
• Values computed from rules on repetition cannot be used later on.
• It takes a huge amount of storage to store the path visiting it.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 5

GHI problem – example

A

B C

D E F

G

H

loss

win
I

J

• A→ B → E → I → J → H → E is loss because of rules of repetition.
. Memorized H is loss.

• A→ B → D is a loss.

• A→ C → F → H is loss because H is recorded as loss.

• A is loss because both branches lead to loss.

• However, A→ C → F → H → E → G is win.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 6

Using resources

Time [Hyatt 1984] [Šolak and Vučković 2009]
• For human:

. More time is spent in the beginning when the game just starts.

. Stop searching a path further when you think the position is stable.

• Pondering:
. Use the time when your opponent is thinking.
. Guessing and then pondering.

Memory
• Using a large transposition table occupies a large space and thus slows

down the program.
. A large number of positions are not visited too often.

• Using no transposition table makes you to search a position more than
once.

Other resources.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 7

Opponent models

In a normal alpha-beta search, it is assumed that you and the
opponent use the same strategy.
• What is good to you is bad to the opponent and vice versa!
• Hence we can reduce a minimax search to a NegaMax search.
• This is normally true when the game ends, but may not be true in the

middle of the game.

What will happen when there are two strategies or evaluating
functions f1 and f2 so that
• for some positions p, f1(p) is better than f2(p)

. “better” means closer to the real value f(p)

• for some positions q, f2(q) is better than f1(q)

If you are using f1 and you know your opponent is using f2,
what can be done to take advantage of this information?
• This is called OM (opponent model) search [Carmel and Markovitch

1996].
. In a MAX node, use f1.
. In a MIN node, use f2

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 8

Opponent models – comments

Comments:
• Need to know your opponent model precisely.
• How to learn the opponent on-line or off-line?
• When there are more than 2 possible opponent strategies, use a

probability model (PrOM search) to form a strategy.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 9

Putting everything together

Game playing system
• Use some sorts of open book.
• Middle-game searching: usage of a search engine.

. Main search algorithm

. Enhancements

. Evaluating function: knowledge

• Use some sorts of endgame databases.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 10

How to know you are successful

Assume during a selfplay experiment, two copies of the same
program are playing against each other.
• Since two copies of the same program are playing against each other,

the outcome of each game is an independent random trial and can be
modeled as a trinomial random variable.

• Assume for a copy playing first,

Pr(gamefirst) =

{
p if won the game
q if draw the game
1− p− q if lose the game

• Hence for a copy playing second,

Pr(gamelast) =

{
1− p− q if won the game
q if draw the game
p if lose the game

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 11

Outcome of selfplay games

Assume 2n games, g1, g2, . . . , g2n are played.
• In order to offset the initiative, namely first player’s advantage, each

copy plays first for n games.
• We also assume each copy alternatives in playing first.
• Let g2i−1 and g2i be the ith pair of games.

Let the outcome of the ith pair of games be a random variable
Xi from the prospective of the copy who plays g2i−1.
• Assume we assign a score of x for a game won, a score of 0 for a game

drawn and a score of −x for a game lost.

The outcome of Xi and its occurrence probability is thus

Pr(Xi) =

p(1− p− q) if Xi = 2x
pq + (1− p− q)q if Xi = x
p2 + (1− p− q)2 + q2 if Xi = 0
pq + (1− p− q)q if Xi = −x
(1− p− q)p if Xi = −2x

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 12

How good we are against the baseline?

Properties of Xi.
• The mean E(Xi) = 0.
• The standard deviation of Xi is√

E(X2
i) = x

√
2pq + (2q + 8p)(1− p− q),

and it is a multi-nominally distributed random variable.

When you have played n pairs of games, what is the probability
of getting a score of s, s > 0?
• Let X[n] =

∑n
i=1Xi.

. The mean of X[n], E(X[n]), is 0.

. The standard deviation ofX[n], σn, is x
√
n
√

2pq + (2q + 8p)(1− p− q),

• If s > 0, we can calculate the probability of Pr(|X[n]| ≤ s) using well
known techniques from calculating multi-nominal distributions.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 13

Practical setup

Parameters that are usually used.
• x = 1.
• For Chinese chess, q is about 0.3161, p = 0.3918 and 1− p− q is 0.2920.

. Data source: 63,548 games played among masters recorded at
www.dpxq.com.

. This means the first player has a better chance of winning.

• The mean of X[n], E(X[n]), is 0.
• The standard deviation of X[n], σn, is

x
√
n
√
2pq + (2q + 8p)(1− p− q) =

√
1.16n.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 14

Results (1/3)

Pr(|X[n]| ≤ s) s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

n = 10, σ10 = 3.67 0.108 0.315 0.502 0.658 0.779 0.866 0.924
n = 20, σ20 = 5.19 0.076 0.227 0.369 0.499 0.613 0.710 0.789
n = 30, σ30 = 6.36 0.063 0.186 0.305 0.417 0.520 0.612 0.693
n = 40, σ40 = 7.34 0.054 0.162 0.266 0.366 0.460 0.546 0.624
n = 50, σ50 = 8.21 0.049 0.145 0.239 0.330 0.416 0.497 0.571

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 15

Results (2/3)

Pr(|X[n]| ≤ s) s = 7 s = 8 s = 9 s = 10 s = 11 s = 12 s = 13

n = 10, σ10 = 3.67 0.960 0.981 0.991 0.997 0.999 1.000 1.000
n = 20, σ20 = 5.19 0.851 0.899 0.933 0.958 0.974 0.985 0.991
n = 30, σ30 = 6.36 0.761 0.819 0.865 0.902 0.930 0.951 0.967
n = 40, σ40 = 7.34 0.693 0.753 0.804 0.847 0.883 0.912 0.934
n = 50, σ50 = 8.21 0.639 0.699 0.753 0.799 0.839 0.872 0.900

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 16

Results (3/3)

Pr(|X[n]| ≤ s) s = 14 s = 15 s = 16 s = 17 s = 18 s = 19 s = 20

n = 10, σ10 = 3.67 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n = 20, σ20 = 5.19 0.995 0.997 0.999 0.999 1.000 1.000 1.000
n = 30, σ30 = 6.36 0.978 0.986 0.991 0.994 0.997 0.998 0.999
n = 40, σ40 = 7.34 0.952 0.966 0.976 0.983 0.989 0.992 0.995
n = 50, σ50 = 8.21 0.923 0.941 0.956 0.967 0.976 0.983 0.988

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 17

Statistical behaviors

Hence assume you have two programs that are playing against
each other and have obtained a score of s + 1, s > 0, after
trying n pairs of games.
• Assume Pr(|X[n]| ≤ s) is say 0.95.

. Then this result is meaningful, that is a program is better than the
other, because it only happens with a low probability of 0.05.

• Assume Pr(|X[n]| ≤ s) is say 0.05.
. Then this result is not very meaningful, because it happens with a high

probability of 0.95.

In general, it is a very rare case, e.g., less than 5% of chance
that it will happen, that your score is more than 2σn.
• For our setting, if you perform n pairs of games, and your net score

is more than 2 ∗
√
1.16 ∗

√
n ' 2.154

√
n, then it means something

statistically.

You can also decide your “definition” of “a rare case”.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 18

Concluding remarks

Consider your purpose of studying a game:
• It is good to solve a game completely.

. You can only solve a game once!

• It is better to acquire the knowledge about why the game wins, draws
or loses.

. You can learn lots of knowledge.

• It is even better to discover knowledge in the game and then use it to
make the world a better place.

. Fun!

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 19

References and further readings (1/2)

M. Buro. Toward opening book learning. International
Computer Game Association (ICGA) Journal, 22(2):98–
102, 1999.
David Carmel and Shaul Markovitch. Learning and using
opponent models in adversary search. Technical Report
CIS9609, Technion, 1996.
R. M. Hyatt. Using time wisely. International Computer
Game Association (ICGA) Journal, pages 4–9, 1984.

R. Šolak and R. Vučković Time management during a chess
game, ICGA Journal, no. 4, vol. 32, pp. 206–220, 2009.
M. Campbell. The graph-history interaction: on ignoring
position history. In Proceedings of the 1985 ACM annual
conference on the range of computing : mid-80’s perspec-
tive, pages 278–280. ACM Press, 1985.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 20

References and further readings (2/2)

B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Abstract-
ing knowledge from annotated Chinese-chess game records.
In H. Jaap van den Herik, P. Ciancarini, and H.H.L.M.
Donkers, editors, Lecture Notes in Computer Science 4630:
Proceedings of the 5th International Conference on Com-
puters and Games, pages 100–111. Springer-Verlag, New
York, NY, 2006.
Bo-Nian Chen and Tsan-sheng Hsu. Automatic Generation
of Chinese Dark Chess Opening Books Proceedings of the
8th International Conference on Computers and Games (CG),
August 2013, to appear.

TCG: Putting everything together, 20131224, Tsan-sheng Hsu c© 21

