
Basic Search Algorithms

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Abstract

The complexities of various search algorithms are considered in
terms of time, space, and cost of the solution paths.
• Systematic brute-force search

. Breadth-first search (BFS)

. Depth-first search (DFS)

. Depth-first Iterative-deepening (DFID)

. Bi-directional search

• Heuristic search: best-first search
. A∗

. IDA∗

The issue of storing information in DISK instead of main
memory.
Solving 15-puzzle.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 2

Definitions

Node branching factor b: the number of different new states
generated from a state.
• Average node branching factor.
• Assumed to be a constant here.

Edge branching factor e: the number of possible new, maybe
duplicated, states generated from a state.
• Average node branching factor.
• Assumed to be a constant here.

Depth of a solution d: the shortest length from the initial state
to one of the goal states
• The depth of the root is 0.

A search program finds a goal state starting from the initial
state by exploring states in the state space.
• Brute-force search
• Heuristic search

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 3

Brute-force search

A brute-force search is a search algorithm that uses information
about
• the initial state,
• operators on finding the states adjacent to a state,
• and a test function whether a goal is reached.

A “pure” brute-force search program.
• A state maybe re-visited many times.

An “intelligent” brute-force search algorithm.
• Make sure a state will be visited a limited number of times.

. Make sure a state will be eventually visited.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 4

A “pure” brute-force search

A “pure” brute-force search is a brute-force search algorithm
that does not care whether a state has been visited before or
not.
Algorithm Brute-force(N0)
{∗ do brute-force search from the starting state N0 ∗}
• current ← N0

• While true do
. If current is a goal,

then return success
. current ← a state that can reach current in one step

Comments
• Very easy to code and use very little memory.
• May take infinite time because there is no guarantee that a state will

be eventually visited.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 5

Intelligent brute-force search

An “intelligent” brute-force search algorithm.
• Assume S is the set of all possible states
• Use a systematic way to examine each state in S one by one so that

. A state is not examined too many times — does not have too many
duplications.

. It is efficient to find an unvisited state in S.

Need to know whether a state has been visited before efficiently.
Some notable algorithms.
• Breadth-first search (BFS).
• Depth-first search (DFS) and its variations.
• Depth-first Iterative deepening (DFID).
• Bi-directional search.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 6

Breadth-first search (BFS)

deeper(N): gives the set of all possible states that can be
reached from the state N .
• It takes at least O(e) time to compute deeper(N).
• The number of distinct elements in deeper(N) is b.

Algorithm BFS(N0) {∗ do BFS from the starting state N0 ∗}
• If the starting state N0 is a goal,

then return success
• Initialize a Queue Q
• Add N0 to Q;
• While Q is not empty do

. Remove a state N from Q

. If one of the states in deeper(N) is goal,
then return success

. Add states in deeper(N) to Q

• Return fail

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 7

BFS: analysis (1/2)

Space complexity:
• O(bd)

. The average number of distinct elements at depth d is bd.

. We may need to store all distinct elements at depth d in the Queue.

Time complexity:
• 1∗e+ b∗e+ b2 ∗e+ b3 ∗e+ · · ·+ bd−1 ∗e = (bd−1)∗e/(b−1) = O(bd−1 ∗e),

if b is a constant.
. For each element N in the Queue, it takes at least O(e) time to find

deeper(N).
. It is always true that e ≥ b.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 8

BFS: analysis (2/2)

A smart mechanism is needed if you want to make sure each
node is visited at most once.
• It needs to keep track of all nodes visited so far.

. 1 + b + b2 + b3 + · · ·+ bd = (bd+1 − 1)/(b− 1) = O(bd).

• Need a good algorithm to check for states in deeper(N) are visited or
not.

. Hash

. Binary search

. · · ·
• This is not really needed since it won’t guarantee to improve the

performance because of the extra cost to maintain and compare states
in the pool of visited states!

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 9

BFS: comments

Always finds an optimal solution, i.e., one with the smallest
possible depth d.
• Do not need to worry about falling into loops if there is always a goal.

. Need to store nodes that are visited before if it is possible to have no
solution.

Most critical drawback: huge space requirement.
• It is tolerable for an algorithm to be 100 times slower, but not so for

one that is 100 times larger.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 10

BFS: ideas when there is little memory

What can be done when you do not have enough main memory?

• DISK
. Store states that has been visited before into DISK and maintain them

as sorted.
. Store the QUEUE into DISK.

• Memory: buffers
. Most recently visited nodes.
. Candidates of possible newly explored nodes.

• Merge the buffer of visited nodes with the one in DISK when memory
is full.

. We only need to know when a newly explored node has been visited or
not when it is about to be removed from the QUEUE.

. The decision of whether it has been visited or not can be delayed.

• Append the buffer of newly explored nodes to the QUEUE in DISK
when memory is full or it is empty.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 11

BFS: disk based (1/2)

Algorithm BFSdisk(N0)
{∗ do disk based BFS from the starting state N0 ∗}
• If the starting state N0 is a goal, then return success
• Initialize a Queue Qd of nodes to visited using DISK
• Initialize a buffer Qm of nodes to visit using main memory
• Add N0 to Qd;
• While Qd and Qm are not both empty do

. If Qd is empty, then {
Sort Qm;
Write Qm to Qd;
Empty Qm

}
. Remove a state N from Qd

. If one of the states in deeper(N) is goal, then return success

. Add states in deeper(N) to Qm;

. If Qm is full, then {
Sort Qm;
Append states in Qm to Qd;
Empty Qm

}
• Return fail

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 12

BFS: disk based (2/2)

States to be visited are already sorted using their depths in
ascending order.
• No extra work is needed.
• The states are appended according to their depths.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 13

Disk based algorithms

When data cannot be loaded into the memory, you need to
re-invent algorithms even for tasks that may look simple.
• Batched processing.

. Accumulate tasks and then try to perform these tasks when they need
to.

. Combine tasks into one to save disk I/O time.

. Order disk accessing patterns.

Main ideas:
• It is not too slow to read all records of a large file in sequence.
• It is very slow to read every record in a large file in a random order.
• Sorting of data stored on the DISK can be done relatively efficient.
• When two files are sorted, it is cost effective to

. compare the difference of them;

. merge them.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 14

Disk based BFS (1/2)

Implementation of the QUEUE.
• QUEUE can be stored in one disk file.
• Newly explored ones are appended at the end of the file.
• Always retrieve the one at the head of the file.

A newly explored node will be explored after the current
QUEUE is empty.
• property of BFS.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 15

Disk based BFS (2/2)

How to find out a newly explored node has been visited before
or not if this is desired?
• Maintain the list of visited nodes on DISK sorted according to some

index function on ID’s of the nodes.
. When the member buffer is full, sort it according to their indexes.
. Merge the sorted list of newly visited nodes in buffer into the one stored

on DISK.

• We can easily compare two sorted lists and find out the intersection or
difference of the two.

. We can easily remove the ones that are already visited before once Qm

is sorted.
. To revert items in Qm back to its the original BFS order, which is

needed for persevering the BFS search order, we need to sort again
using the original BFS ordering.

Why we can delay the decision of whether a newly explored
node has been visited or not?
• We only need to know when a newly explored node has been visited or

not when it is about to be removed from the QUEUE.
• The decision of whether it has been visited or not can be delayed.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 16

Depth-first search (DFS)

next(current,N): returns the state next to the state “current”
in deeper(N).
• Assume states in deeper(N) are given a linear order with dummy first

and last elements both being null, and assume current ∈ deeper(N).
• Assume we can efficiently generate next(current,N) based on

“current” and N .

Algorithm DFS(N0) {∗ do DFS from the starting state N0 ∗}
• Initialize a Stack S
• Push (null,N0) to S
• While S is not empty do

. Pop (current,N) from S

. R← next(current,N)

. If R is null, then continue {∗ all children of N are searched ∗}

. If R is a goal, then return success

. Push (R,N) to S

. If R is already in S, then continue {∗ to avoid loops ∗}

. Can introduce some cut-off depth here in order not to go too deep

. Push (null, R) to S {∗ search deeper ∗}
• Return fail

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 17

DFS: analysis (1/2)

Time complexity:
• O(ed)

. The number of possible
branches at depth d is ed.

• This is only true when the game
tree searched is not skewed.

. The leaves of the game tree
are all of O(d).

• It can be as bad of O(eD) where
D is the maximum depth of the
tree.

GOAL

D

d

m

Space complexity:
• O(d)

. Only need to store the current path in the Stack.

• This is also only true when the tree is not skewed.
• It can be as bad of O(D) where D is the maximum depth of the tree.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 18

DFS: analysis (2/2)

May need to store the set of visited nodes in order not to visit
a node too many times.
• Methods:

. Hash table

. Sorted list and then use binary search

. Balanced search tree

• This is a real issue in order to get out of a long and wrong branch as
fast as you can.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 19

DFS: comments

Without a good cut-off depth, it may not be able to find a
solution in time.
May not find an optimal solution at all.
Heavily depends on the move ordering.
• Which one to search first when you have multiple choices for your next

move?

A node can be searched many times.
• Need to do something, e.g., hashing, to avoid researching too much.
• Need to balance the effort to memorize and the effort to research.

Most critical drawback: huge and unpredictable time complexity.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 20

DFS: when there is little memory

Difficult to implement a STACK on a DISK so far if the STACK
is too large to be fit into the main memory.
We need to decide instantly whether a node is visited or not.
• The decision of whether a node is visited or not cannot be delayed.

. Batch processing is not working here.

. It may take too much time to handle a disk based hash table.

Use data compression and/or bit-operation techniques to store
as many visited nodes as possible.
• Some nodes maybe visit again and again.
• Need a good heuristic to store the most frequently visited nodes.

. Avoid swapping too often.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 21

DFS with a depth limit

Do DFS from the starting state N0 without exceeding a given
depth limit.
• length(root, y): the number of edges visited from the root node root

to the node y during DFS searching.

Algorithm DFSdepth(N0, limit)
• Initialize a Stack S
• Push (null,N0) to S where N0 is the initial state
• While S is not empty do

. Pop (current,N) from S

. R← next(current,N)

. If R is a goal, then return success

. If R is null, then continue {∗ all children of N are searched ∗}

. Push (R,N) to S

. If length(N0, R) > limit, then continue {∗ cut off ∗}

. If R is already in S, then continue {∗ to avoid loops ∗}

. Push (null, R) to S {∗ search deeper ∗}
• Return fail

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 22

Depth-first iterative-deepening (DFID)

DFSdepth(N, current limit): DFS from the starting state N and
with a depth cut off at the depth current limit.
Algorithm DFID(N0,cut off depth) {∗ do DFID from the
starting state N0 with a depth limit cut off depth ∗}
• current limit← 0
• While current limit < cut off depth do

. If DFSdepth(N0, current limit) finds a goal state g,
then return g as the found goal state

. current limit← current limit + 1

• Return fail

Space complexity:
• O(d)

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 23

Time complexity of DFID (1/2)

The branches at depth i are generated d− i+ 1 times.
• There are ei branches at depth i.

Total number of branches visited M(e, d) is
(d+ 1)e0 + de1 + (d− 1)e2 + · · ·+ 2ed−1 + ed

= ed(1 + 2e−1 + 3e−2 + · · ·+ (d+ 1)e−d)
≤ ed(1− 1/e)−2 if e > 1

Analysis:
. (1− x)−2 = 1/(1− 2x+ x2) = 1 + 2x+ 3x2 + · · ·+ kxk−1 + (k + 1)xk − kxk+1.

. Hence 1 + 2x + 3x2 + · · ·+ kxk−1 ≤ (1− x)−2, if |x| < 1.

. Since |x| < 1,

lim
k→∞

((k + 1)x
k − kx

k+1
) = 0.

. If k is large enough and |x| < 1, then (1− x)−2 ≈ 1 + 2x+ 3x2 + · · ·+ kxk−1.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 24

Time complexity of DFID (2/2)

Let M(e, d) be the total number of branches visited by DFID
with an edge branching factor of e and depth d.
Examples:
• When e = 2, M(e, d) ≤ 4ed.
• When e = 3, M(e, d) ≤ 9/4ed.
• When e = 4, M(e, d) ≤ 16/9ed.
• When e = 5, M(e, d) ≤ 25/16ed < 1.57ed.
• · · ·
• When e = 30, M(e, d) ≤ 900/841ed < 1.071ed.

M(e, d) = O(ed) with a small constant factor when e is
sufficiently large.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 25

DFID: comments

No need to worry about a good cut-off depth as in DFS.
Still need a mechanism to decide instantly whether a node has
been visited before or not.
Good for a tournament situation where each move needs to be
made in a limited amount of time.
Q:

. Does DFID always find an optimal solution?

. How about BFID?

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 26

DFS with depth limit and direction (1/2)

Two refined service routines when direction of the search is
considered:
• DFSdir(B,G, successor, i): DFS with the set of starting states B, goal

states G, successor function and depth limit i.
• nextdir(current, successor,N): returns the state next to the state

“current” in successor(N).

In the above two routines:
• successor is deeper for forward searching
• successor is prev for backward searching

Note:
• Given a state N , prev(N) gives all states that can reach N in one step.
• Given a state N , deeper(N) gives the set of all possible states that can

be reached from the state N in one step.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 27

DFS with depth limit and direction (2/2)

DFSdir(B,G, successor, i): DFS with the set of starting states
B, goal states G, successor function and depth limit i.
Algorithm DFSdir(B,G, successor, limit)
• Initialize a Stack S
• For each possible starting state t in B do

. Push (null, t) to S

• While S is not empty do
. Pop (current,N) from S
. R← nextdir(current, successor,N)
. If R is a goal in G, then return success
. If R is null, then continue {∗ all children of N are searched ∗}
. Push (R,N) to S
. If length(B,R) > limit, then continue {∗ cut off ∗}
. If R is already in S, then continue {∗ to avoid loops ∗}
. Push (null, R) to S {∗ search deeper ∗}

• Return fail

Note length(B, x) is the length of a shortest path between the
state x and a state in B.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 28

Bi-directional search

Combined with iterative-deepening.
DFSdir(B,G, successor, i): DFS with the set of starting states
B, goal states G, successor function and depth limit i.
• successor is deeper for forward searching
• successor is prev for backward searching

. Given a state Si, prev(Si) gives all states that can reach Si in one step.

Algorithm BDS(N0,cut off depth)
• current limit← 0
• while current limit < cut off depth do

. if DFSdir({N0}, G, deeper, current limit) returns success,
then return success {∗ forward searching ∗}
else store all states at depth = current limit in an area H

. if DFSdir(G,H, prev, current limit) returns success,
then return success {∗ backward searching ∗}

. if DFSdir(G,H, prev, current limit + 1) returns success,
then return success {∗ in case the optimal solution is odd-lengthed ∗}

. current limit← current limit + 1

• return fail
Backward searching at depth = current limit + 1 is needed to
find odd-lengthed optimal solutions.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 29

Bi-directional search: Example

H

G

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 30

Bi-directional search: analysis

Time complexity:
• O(ed/2)

Space complexity:
• O(ed/2): needed to store the half-way meeting points H.

Comments:
• Run well in practice.
• Depth of the solution is expected to be the same for a normal uni-

directional search, however the number of nodes visited is greatly
reduced.

• Pay the price of storing solutions at half depth.
• Need to know how to enumerate the set of goals.
• Trade off between time and space.

. What can be stored on DISK?

. What operations can be batched?

• Q:
. How about using BFS in forward searching?
. How about using BFS in backward searching?
. How about using BFS in both directions?

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 31

Heuristic search

Heuristics: criteria, methods, or principles for deciding which
among several alternative courses of actions promises to be
the most effective in order to achieve some goal [Judea Pearl
1984].
• Need to be simple and effective in discriminate correctly between good

and bad choices.

A heuristic search is a search algorithm that uses information
about
• the initial state,
• operators on finding the states adjacent to a state,
• a test function whether a goal is reached, and
• heuristics to pick the next state to explore.

A “good” heuristic search algorithm:
• States that are not likely leading to the goals will not be explored

further.
. A state is cut or pruned.

• States are explored in an order that are according to their likelihood of
leading to the goals → good move ordering.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 32

Heuristic search: A∗

Combining DFID with best-first heuristic search such as A∗.
A∗ search: branch and bound with a lower-bound estimation.
Algorithm A∗(N0)
• Initialize a Priority Queue PQ to store partial paths with keys being

the costs of paths.
. Initially, store only a path with the starting node N0 only.
. Paths in PQ are sorted according to their current costs plus a lower

bound on the remaining distances.

• While PQ is not empty do
. Remove a path P with the least cost from PQ
. 11: If the goal is found, then return success
. 12: Find extended paths from P by extending one step
. Insert all generated paths to PQ
. Update PQ
. 15: If two paths reach a common node

then keep only one with the least cost

• Return fail

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 33

A∗ algorithm

Cost function:
• Given a path P ,

. let g(P) be the current cost of P ;

. let h(P) be the estimation of remaining, or heuristic cost of P ;

. f(P) = g(P) + h(P) is the cost function.

• How to find a good h() is the key of an A∗ algorithm?
• It is known that if h() never overestimates the actual cost to the goal

(this is called admissible), then A∗ always finds an optimal solution.
. Q: How to prove this?

• Note: If h() is admissible and P reaches the goal, then h(P) = 0 and
f(P) = g(P).

Checking of the termination condition:
• We need to check for whether a goal is found only when a path is

popped from the PQ, i.e., at Line 11.
• We cannot check for whether a goal is found when a path is generated

and inserted into the PQ, i.e., at Line 12.
. We will not be able find the optimal solution if we do the checking at

Line 12.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 34

A∗ algorithm: Comments

When a path is inserted, namely at Line 15, check for whether
it has reached some nodes that have been visited before.
• It may take a huge space and a clever algorithm to implement an

efficient Priority Queue.
• It may need a clever data structure to efficiently check for possible

duplications.

Cost function:
• Need an lower bound estimation that is as large as possible.
• Can design the cost function so that A∗ emulates the behavior of other

search routines.

Q:
. What disk based techniques can be used?
. Why do we need a non-trivial h(P) that is admissible?
. How to design an admissible cost function?

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 35

DFS with a threshold

DFScost(N, f, threshold) is a version of DFS with a starting
state N and a cost function f that cuts off a path when its cost
is more than a given threshold.
• DFSdepth(N, cut off depth) is a special version of DFScost(N, f, threshold).

Algorithm DFScost(N0,f ,threshold)
• Initialize a Stack S
• Push (null,N0) to S where N0 is the initial state
• While S is not empty do

. Pop (current,N) from S

. R← next(current,N) {∗ pick a good move ordering here ∗}

. If R = null, then continue {∗ all children of N are searched ∗}

. Push (R,N) to S

. Let P be the path from N0 to R

. If f(P) > threshold, then continue {∗ cut off ∗}

. If R is a goal, then return success {∗ Goal is found! ∗}

. If R is already in S, then continue {∗ to avoid loops ∗}

. Push (null, R) to S {∗ search deeper ∗}
• Return fail

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 36

How to pick a good move ordering (1/2)

Instead of just using next(current,N) to find the next unvisited
neighbors of N with the information of the last visited node
being current, we do the followings.
• Use a routine to order the neighbors of N so that it is always the case

the neighbors are visited from low cost to high cost.
• Let this routine be next1(current,N).
• Note we still need dummy first and last elements being null.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 37

How to pick a good move ordering (2/2)

Algorithm DFS1cost(N0,f ,threshold)
• Initialize a Stack S
• Push (null,N0) to S where N0 is the initial state
• While S is not empty do

. Pop (current,N) from S

. R← next1(current,N)

. If R = null, then continue {∗ all children of N are searched ∗}

. Push (R,N) to S

. Let P be the path from N0 to R

. If f(P) > threshold, then continue {∗ cut off ∗}

. If R is a goal, then return success

. If R is already in S, then continue {∗ to avoid loops ∗}

. Push (null, R) to S {∗ search deeper ∗}
• Return fail

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 38

How to incooperate ideas from A∗

Instead of using a stack in DFScost, use a priority queue.
Algorithm DFS2cost(N0,f ,threshold)
• Initialize a priority queue PQ
• Insert (null,N0) to PQ where N0 is the initial state
• While PQ is not empty do

. Remove (current,N) with the least cost f(P) for the path P from N0

to N from PQ
. If current is a goal, then return success
. R← next1(current,N)
. If R = null, then continue {∗ all children of N are searched ∗}
. Insert (R,N) to PQ
. Let P be the path from N0 to R
. If f(P) > threshold, then continue {∗ cut off ∗}
. If R is already in PQ, then continue {∗ to avoid loops ∗}
. Insert (null, R) to PQ {∗ search deeper ∗}

• Return fail

It may be costly to maintain a priority queue as in the case of
A∗.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 39

IDA∗ = DFID + A∗

DFScost(N, f, threshold) is a version of DFS with a starting
state N and a cost function f that cuts off a path when its cost
is more than a given threshold.
IDA∗: iterative-deepening A∗

Algorithm IDA∗(N0, threshold)
• threshold← h(null)
• While threshold is reasonable do

. DFScost(N0, g + h(), threshold)
{∗ Can also use DFS1cost or DFS2cost here ∗}

. If the goal is found,
then return success

. threshold← the least g(P) + h(P) cost among all paths P being cut

• Return fail

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 40

IDA∗: comments

IDA∗ does not need to use a priority queue as in the case of
A∗.
• IDA∗ is optimal in terms of solution cost, time, and space over the

class of admissible best-first searches on a tree.

Issues in updating threshold.
• Increase too little: re-search too often.
• Increase too large: cut off too little.
• Q: How to guarantee optimal solutions are not cut?

. It can be proved, as in the case of A∗, that given an admissible cost
function, IDA∗ will find an optimal solution, i.e., one with the least
cost, if one exists.

Cost function is the knowledge used in searching.
Combine knowledge and search!
Need to balance the amount of time spent in realizing
knowledge and the time used in searching.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 41

15 puzzle (1/2)

Introduction of the game:
• 15 tiles in a 4*4 square with numbers from 1 to 15.
• One empty cell.
• A tile can be slided horizontally or vertically into an empty cell.
• From an initial position, slide the tiles into a goal position.

Examples:

• Initial position:

10 8 12
3 7 6 2
1 14 4 11

15 13 9 5

• Goal position:

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 42

15 puzzle (2/2)

Total number of positions: 16! = 20, 922, 789, 888, 000 ≤ 2.1∗1013.

• It is feasible, in terms of computation time, to enumerate all possible
positions, since 2007.

. Can use DFS or DFID now.

. Need to avoid falling into loops or re-visit a node too many times.

• It is still too large to store all possible positions in main memory now
(2013).

. Cannot use BFS efficiently even now.

. Maybe difficult to find an optimal solution.

. Maybe able to use disk based BFS.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 43

Solving 15 puzzles

Using DEC 2060 a 1-MIPS machine: solved the 15 puzzle
problem within 30 CPU minutes for all testing positions,
generating over 1.5 million nodes per minute.
• The average solution length was 53 moves.
• The maximum was 66 moves.
• IDA∗ generated more nodes than A∗, but ran faster due to less overhead

per node.

Note: Intel Core i7 3960X (6 cores) is rated at 177,730 MIPS
and ARM Cortex A7 is rated at 2,850 MIPS.
Heuristics used:
• g(P): the number of moves made so far.
• h(P): the Manhattan distance between the current board and the goal

position.
. Suppose a tile is currently at (i, j) and its goal is at (i′, j′), then the

Manhattan distance for this tile is |i− i′|+ |j − j′|.
. The Manhattan distance between a position and a goal position is the

sum of the Manhattan distance of every tile.
. h(P) is admissible.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 44

What else can be done?

Bi-directional search and IDA∗?
• How to design a good and non-trivial heuristic function?

How to find an optimal solution?
How to get a better move ordering in DFS?
Balancing in resource allocation:
• The efforts to memorize past results versus the amount of efforts to

search again.
• The efforts to compute a better heuristic, i.e., the cost function.
• The amount of resources spent in implementing a better heuristic and

the amount of resources spent in searching.

Search in parallel.
More techniques for disk based algorithms.
Q: Can these techniques be applied to two-person games?

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 45

References and further readings

Judea Pearl. Heuristics: Intelligent search strategies for
computer problem solving. Addison-Wesley, 1984.

* R. E. Korf. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence, 27:97–109,
1985.
R. E. Korf and P. Schultze. Large-scale, parallel breadth-first
search. Proceedings of AAAI, 1380–1385, 2005.
R. E. Korf. Linear-time disk-based implicit graph search,
JACM, 55:26-1–26-40, 2008.

TCG: Basic Search, 20131101, Tsan-sheng Hsu c© 46

