Basic Search Algorithms

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

The complexities of various search algorithms are considered in terms of time, space, and cost of the solution paths.

- Systematic brute-force search
 - ▷ Breadth-first search (BFS)
 - ▷ Depth-first search (DFS)
 - ▷ Depth-first Iterative-deepening (DFID)
 - ▷ Bi-directional search
- Heuristic search: best-first search
 - $\triangleright A^* \\ \triangleright IDA^*$
- The issue of storing information in DISK instead of main memory.
- Solving 15-puzzle.

Definitions

- Node branching factor b: the number of different new states generated from a state.
 - Average node branching factor.
 - Assumed to be a constant here.
- Edge branching factor e: the number of possible new, maybe duplicated, states generated from a state.
 - Average node branching factor.
 - Assumed to be a constant here.
- Depth of a solution d: the shortest length from the initial state to one of the goal states
 - The depth of the root is 0.
- A search program finds a goal state starting from the initial state by exploring states in the state space.
 - Brute-force search
 - Heuristic search

Brute-force search

- A brute-force search is a search algorithm that uses information about
 - the initial state,
 - operators on finding the states adjacent to a state,
 - and a test function whether a goal is reached.
- A "pure" brute-force search program.
 - A state maybe re-visited many times.
- An "intelligent" brute-force search algorithm.
 - Make sure a state will be visited a limited number of times.
 - ▷ Make sure a state will be eventually visited.

A "pure" brute-force search

- A "pure" brute-force search is a brute-force search algorithm that does not care whether a state has been visited before or not.
- Algorithm Brute-force(N₀)

{* do brute-force search from the starting state $N_0 *$ }

- current $\leftarrow N_0$
- While true do
 - If current is a goal, then return success
 - \triangleright current \leftarrow a state that can reach current in one step

Comments

- Very easy to code and use very little memory.
- May take infinite time because there is no guarantee that a state will be eventually visited.

Intelligent brute-force search

• An "intelligent" brute-force search algorithm.

- Assume S is the set of all possible states
- Use a systematic way to examine each state in S one by one so that
 - ▷ A state is not examined too many times does not have too many duplications.
 - \triangleright It is efficient to find an unvisited state in S.

Need to know whether a state has been visited before efficiently.

• Some notable algorithms.

- Breadth-first search (BFS).
- Depth-first search (DFS) and its variations.
- Depth-first Iterative deepening (DFID).
- Bi-directional search.

Breadth-first search (BFS)

- deeper(N): gives the set of all possible states that can be reached from the state N.
 - It takes at least O(e) time to compute deeper(N).
 - The number of distinct elements in deeper(N) is b.

• Algorithm BFS(N_0) {* do BFS from the starting state N_0 *}

- If the starting state N_0 is a goal, then return success
- Initialize a Queue Q
- Add N_0 to Q;
- While Q is not empty do
 - $\triangleright \textbf{ Remove a state } N \textbf{ from } Q$
 - If one of the states in deeper(N) is goal, then return success
 - \triangleright Add states in deeper(N) to Q
- Return fail

BFS: analysis (1/2)

Space complexity:

- $O(b^d)$
 - \triangleright The average number of distinct elements at depth d is b^d .
 - \triangleright We may need to store all distinct elements at depth d in the Queue.

Time complexity:

- $1 * e + b * e + b^2 * e + b^3 * e + \dots + b^{d-1} * e = (b^d 1) * e/(b 1) = O(b^{d-1} * e)$, if b is a constant.
 - ▷ For each element N in the Queue, it takes at least O(e) time to find deeper(N).
 - \triangleright It is always true that $e \geq b$.

BFS: analysis (2/2)

- A smart mechanism is needed if you want to make sure each node is visited at most once.
 - It needs to keep track of all nodes visited so far.

▷ $1 + b + b^2 + b^3 + \dots + b^d = (b^{d+1} - 1)/(b - 1) = O(b^d)$.

- Need a good algorithm to check for states in deeper(N) are visited or not.
 - Hash Binary search
 - $\triangleright \cdots$
- This is not really needed since it won't guarantee to improve the performance because of the extra cost to maintain and compare states in the pool of visited states!

BFS: comments

- Always finds an optimal solution, i.e., one with the smallest possible depth d.
 - Do not need to worry about falling into loops if there is always a goal.
 - ▶ Need to store nodes that are visited before if it is possible to have no solution.
- Most critical drawback: huge space requirement.
 - It is tolerable for an algorithm to be 100 times slower, but not so for one that is 100 times larger.

BFS: ideas when there is little memory

• What can be done when you do not have enough main memory?

• DISK

- ▶ Store states that has been visited before into DISK and maintain them as sorted.
- ▷ Store the QUEUE into DISK.
- Memory: buffers
 - ▷ Most recently visited nodes.
 - ▷ Candidates of possible newly explored nodes.
- Merge the buffer of visited nodes with the one in DISK when memory is full.
 - ▶ We only need to know when a newly explored node has been visited or not when it is about to be removed from the QUEUE.
 - ▶ The decision of whether it has been visited or not can be delayed.
- Append the buffer of newly explored nodes to the QUEUE in DISK when memory is full or it is empty.

BFS: disk based (1/2)

Algorithm BFS_{disk}(N₀)

{* do disk based BFS from the starting state $N_0 *$ }

- If the starting state N_0 is a goal, then return success
- Initialize a Queue Q_d of nodes to visited using DISK
- Initialize a buffer Q_m of nodes to visit using main memory
- Add N_0 to Q_d ;
- While Q_d and Q_m are not both empty do
 - $\triangleright If Q_d is empty, then \{ \\Sort Q_m; \\Write Q_m to Q_d; \\Empty Q_m \end{cases}$

}

- $\triangleright \mathbf{Remove} \ \mathbf{a} \ \mathbf{state} \ N \ \mathbf{from} \ Q_d$
- \triangleright If one of the states in deeper(N) is goal, then return success
- \triangleright Add states in deeper(N) to Q_m ;

 $\triangleright If Q_m is full, then \{ \\Sort Q_m; \\Append states in Q_m to Q_d; \\Empty Q_m \end{cases}$

```
}
```

Return fail

BFS: disk based (2/2)

- States to be visited are already sorted using their depths in ascending order.
 - No extra work is needed.
 - The states are appended according to their depths.

Disk based algorithms

When data cannot be loaded into the memory, you need to re-invent algorithms even for tasks that may look simple.

- Batched processing.
 - Accumulate tasks and then try to perform these tasks when they need to.
 - \triangleright Combine tasks into one to save disk I/O time.
 - ▷ Order disk accessing patterns.

Main ideas:

- It is not too slow to read all records of a large file in sequence.
- It is very slow to read every record in a large file in a random order.
- Sorting of data stored on the DISK can be done relatively efficient.
- When two files are sorted, it is cost effective to
 - ▷ compare the difference of them;
 - \triangleright merge them.

Disk based BFS (1/2)

Implementation of the QUEUE.

- QUEUE can be stored in one disk file.
- Newly explored ones are appended at the end of the file.
- Always retrieve the one at the head of the file.
- A newly explored node will be explored after the current QUEUE is empty.
 - property of BFS.

Disk based BFS (2/2)

- How to find out a newly explored node has been visited before or not if this is desired?
 - Maintain the list of visited nodes on DISK sorted according to some index function on ID's of the nodes.
 - ▶ When the member buffer is full, sort it according to their indexes.
 - Merge the sorted list of newly visited nodes in buffer into the one stored on DISK.
 - We can easily compare two sorted lists and find out the intersection or difference of the two.
 - \triangleright We can easily remove the ones that are already visited before once Q_m is sorted.
 - \triangleright To revert items in Q_m back to its the original BFS order, which is needed for persevering the BFS search order, we need to sort again using the original BFS ordering.
- Why we can delay the decision of whether a newly explored node has been visited or not?
 - We only need to know when a newly explored node has been visited or not when it is about to be removed from the QUEUE.
 - The decision of whether it has been visited or not can be delayed.

Depth-first search (DFS)

next(current, N): returns the state next to the state "current" in deeper(N).

- Assume states in deeper(N) are given a linear order with dummy first and last elements both being null, and assume $current \in deeper(N)$.
- Assume we can efficiently generate next(current, N) based on "current" and N.

• Algorithm DFS(N_0) {* do DFS from the starting state N_0 *}

- Initialize a Stack S
- Push $(null, N_0)$ to S
- While S is not empty do
 - \triangleright **Pop** (current, N) from S
 - $\triangleright \ R \leftarrow next(current, N)$
 - \triangleright If R is null, then continue {* all children of N are searched *}
 - \triangleright If R is a goal, then return success
 - \triangleright **Push** (R, N) to S
 - \triangleright If R is already in S, then continue {* to avoid loops *}
 - ▷ Can introduce some cut-off depth here in order not to go too deep
 - \triangleright **Push** (null, R) to S {* search deeper *}
- Return fail

DFS: analysis (1/2)

Time complexity:

• $O(e^d)$

 $\triangleright The number of possible branches at depth d is <math>e^d$.

- This is only true when the game tree searched is not skewed.
 - ▷ The leaves of the game tree are all of O(d).
- It can be as bad of $O(e^D)$ where D is the maximum depth of the tree.

Space complexity:

- *O*(*d*)
 - ▷ Only need to store the current path in the Stack.
- This is also only true when the tree is not skewed.
- It can be as bad of O(D) where D is the maximum depth of the tree.

DFS: analysis (2/2)

- May need to store the set of visited nodes in order not to visit a node too many times.
 - Methods:
 - ▶ Hash table
 - ▷ Sorted list and then use binary search
 - ▷ Balanced search tree
 - This is a real issue in order to get out of a long and wrong branch as fast as you can.

DFS: comments

- Without a good cut-off depth, it may not be able to find a solution in time.
- May not find an optimal solution at all.
- Heavily depends on the move ordering.
 - Which one to search first when you have multiple choices for your next move?
- A node can be searched many times.
 - Need to do something, e.g., hashing, to avoid researching too much.
 - Need to balance the effort to memorize and the effort to research.
- Most critical drawback: huge and unpredictable time complexity.

DFS: when there is little memory

- Difficult to implement a STACK on a DISK so far if the STACK is too large to be fit into the main memory.
- We need to decide instantly whether a node is visited or not.
 - The decision of whether a node is visited or not cannot be delayed.
 - ▷ Batch processing is not working here.
 - ▶ It may take too much time to handle a disk based hash table.
- Use data compression and/or bit-operation techniques to store as many visited nodes as possible.
 - Some nodes maybe visit again and again.
 - Need a good heuristic to store the most frequently visited nodes.
 - ▶ Avoid swapping too often.

DFS with a depth limit

- **Do DFS from the starting state** N_0 without exceeding a given depth *limit*.
 - length(root, y): the number of edges visited from the root node root to the node y during DFS searching.
- Algorithm DFS_{depth}(N₀, limit)
 - Initialize a Stack S
 - Push $(null, N_0)$ to S where N_0 is the initial state
 - While S is not empty do
 - \triangleright **Pop** (current, N) from S
 - $\triangleright \ R \leftarrow next(current, N)$
 - \triangleright If R is a goal, then return success
 - \triangleright If R is null, then continue {* all children of N are searched *}
 - \triangleright **Push** (R, N) to S
 - \triangleright If length $(N_0, R) > limit$, then continue {* cut off *}
 - \triangleright If R is already in S, then continue {* to avoid loops *}
 - \triangleright **Push** (null, R) to S {* search deeper *}
 - Return fail

Depth-first iterative-deepening (DFID)

- DFS_{depth}(N, current_limit): DFS from the starting state N and with a depth cut off at the depth current_limit.
- Algorithm DFID(N₀,cut_off_depth) {* do DFID from the starting state N₀ with a depth limit cut_off_depth *}
 - $current_limit \leftarrow 0$
 - While $current_limit < cut_off_depth$ do

 - $\triangleright \ current_limit \leftarrow current_limit + 1$
 - Return fail

Space complexity:

• O(d)

Time complexity of DFID (1/2)

• The branches at depth i are generated d - i + 1 times.

- There are e^i branches at depth i.
- Total number of branches visited M(e,d) is

$$\begin{aligned} & (d+1)e^0 + de^1 + (d-1)e^2 + \dots + 2e^{d-1} + e^d \\ &= e^d(1+2e^{-1}+3e^{-2}+\dots + (d+1)e^{-d}) \\ &\leq e^d(1-1/e)^{-2} \text{ if } e > 1 \end{aligned}$$

Analysis:

- $(1-x)^{-2} = 1/(1-2x+x^2) = 1+2x+3x^2+\dots+kx^{k-1}+(k+1)x^k-kx^{k+1}.$
- ▷ Hence $1 + 2x + 3x^2 + \dots + kx^{k-1} \le (1-x)^{-2}$, if |x| < 1.
- $\triangleright \text{ Since } |x| < 1,$

$$\lim_{k \to \infty} ((k+1)x^k - kx^{k+1}) = 0.$$

▷ If k is large enough and |x| < 1, then $(1-x)^{-2} \approx 1 + 2x + 3x^2 + \cdots + kx^{k-1}$.

Time complexity of DFID (2/2)

- Let M(e,d) be the total number of branches visited by DFID with an edge branching factor of e and depth d.

• Examples:

• When
$$e = 2$$
, $M(e, d) \le 4e^d$.

- When e = 3, $M(e, d) \le 9/4e^d$.
- When e = 4, $M(e, d) \le 16/9e^d$.
- When e = 5, $M(e, d) \le 25/16e^d < 1.57e^d$.
- • •
- When e = 30, $M(e, d) \le 900/841e^d < 1.071e^d$.

• $M(e,d) = O(e^d)$ with a small constant factor when e is sufficiently large.

DFID: comments

- No need to worry about a good cut-off depth as in DFS.
- Still need a mechanism to decide instantly whether a node has been visited before or not.
- Good for a tournament situation where each move needs to be made in a limited amount of time.
- **Q**:
 - ▶ Does DFID always find an optimal solution?
 - ▶ How about BFID?

DFS with depth limit and direction (1/2)

- Two refined service routines when direction of the search is considered:
 - DFS_{dir}(B, G, successor, i): DFS with the set of starting states B, goal states G, successor function and depth limit i.
 - $next_{dir}(current, successor, N)$: returns the state next to the state "current" in successor(N).

In the above two routines:

- successor is deeper for forward searching
- successor is prev for backward searching

Note:

- Given a state N, prev(N) gives all states that can reach N in one step.
- Given a state N, deeper(N) gives the set of all possible states that can be reached from the state N in one step.

DFS with depth limit and direction (2/2)

- DFS_{dir}(B, G, successor, i): DFS with the set of starting states B, goal states G, successor function and depth limit i.
- Algorithm $DFS_{dir}(B, G, successor, limit)$
 - Initialize a Stack S
 - For each possible starting state t in B do
 - \triangleright **Push** (null, t) to S
 - While ${\cal S}$ is not empty do
 - \triangleright **Pop** (current, N) from S
 - \triangleright $R \leftarrow next_{dir}(current, successor, N)$
 - \triangleright If R is a goal in G, then return success
 - \triangleright If R is null, then continue {* all children of N are searched *}
 - \triangleright **Push** (R, N) to S
 - $\triangleright If length(B, R) > limit, then continue \{* cut off *\}$
 - \triangleright If R is already in S, then continue {* to avoid loops *}
 - \triangleright **Push** (null, R) to S {* search deeper *}
 - Return fail

• Note length(B, x) is the length of a shortest path between the state x and a state in B.

Bi-directional search

Combined with iterative-deepening.

• DFS_{dir}(B, G, successor, i): DFS with the set of starting states B goal states C successor function and donth limit i

- B, goal states G, successor function and depth limit *i*. • successor is deeper for forward searching
 - successor is *prev* for backward searching

 \triangleright Given a state S_i , $prev(S_i)$ gives all states that can reach S_i in one step.

Algorithm BDS(N₀,cut_off_depth)

- $current_limit \leftarrow 0$
- while $current_limit < cut_off_depth$ do
 - b if DFS_{dir}({N₀}, G, deeper, current_limit) returns success, then return success {* forward searching *} else store all states at depth = current_limit in an area H
 - ▷ if DFS_{dir}(G, H, prev, current_limit) returns success, then return success {* backward searching *}
 - ▷ if DFS_{dir}(G, H, prev, current_limit + 1) returns success, then return success {* in case the optimal solution is odd-lengthed *}
 - \triangleright current_limit \leftarrow current_limit + 1
- return fail

- Backward searching at depth $= current_limit + 1$ is needed to find odd-lengthed optimal solutions.

Bi-directional search: Example

Bi-directional search: analysis

Time complexity:

• $O(e^{d/2})$

Space complexity:

• $O(e^{d/2})$: needed to store the half-way meeting points H.

Comments:

- Run well in practice.
- Depth of the solution is expected to be the same for a normal unidirectional search, however the number of nodes visited is greatly reduced.
- Pay the price of storing solutions at half depth.
- Need to know how to enumerate the set of goals.
- Trade off between time and space.
 - ▶ What can be stored on DISK?
 - ▷ What operations can be batched?
- Q:
- ▶ How about using BFS in forward searching?
- ▶ How about using BFS in backward searching?
- ▶ How about using BFS in both directions?

Heuristic search

- Heuristics: criteria, methods, or principles for deciding which among several alternative courses of actions promises to be the most effective in order to achieve some goal [Judea Pearl 1984].
 - Need to be simple and effective in discriminate correctly between good and bad choices.
- A heuristic search is a search algorithm that uses information about
 - the initial state,
 - operators on finding the states adjacent to a state,
 - a test function whether a goal is reached, and
 - heuristics to pick the next state to explore.
- A "good" heuristic search algorithm:
 - States that are not likely leading to the goals will not be explored further.

 \triangleright A state is cut or pruned.

• States are explored in an order that are according to their likelihood of leading to the goals \rightarrow good move ordering.

Heuristic search: A*

- Combining DFID with best-first heuristic search such as A*.
- A* search: branch and bound with a lower-bound estimation.

Algorithm A*(N₀)

- Initialize a Priority Queue PQ to store partial paths with keys being the costs of paths.
 - ▷ Initially, store only a path with the starting node N_0 only.
 - ▶ Paths in PQ are sorted according to their current costs plus a lower bound on the remaining distances.
- \bullet While PQ is not empty do
 - $\triangleright \qquad \textbf{Remove a path } P \textbf{ with the least cost from } PQ$
 - ▶ 11: If the goal is found, then return success
 - \triangleright 12: Find extended paths from P by extending one step
 - $\triangleright \qquad \text{Insert all generated paths to } PQ$
 - \triangleright Update PQ
 - 15: If two paths reach a common node then keep only one with the least cost
- Return fail

A* algorithm

• Cost function:

- Given a path *P*,
 - \triangleright let g(P) be the current cost of P;
 - \triangleright let h(P) be the estimation of remaining, or heuristic cost of P;
 - \triangleright f(P) = g(P) + h(P) is the cost function.
- How to find a good h() is the key of an A^* algorithm?
- It is known that if h() never overestimates the actual cost to the goal (this is called admissible), then A* always finds an optimal solution.
 Q: How to prove this?
- Note: If h() is admissible and P reaches the goal, then h(P) = 0 and f(P) = g(P).

Checking of the termination condition:

- We need to check for whether a goal is found only when a path is popped from the PQ, i.e., at Line 11.
- We cannot check for whether a goal is found when a path is generated and inserted into the PQ, i.e., at Line 12.
 - ▶ We will not be able find the optimal solution if we do the checking at Line 12.

A^{*} algorithm: Comments

- When a path is inserted, namely at Line 15, check for whether it has reached some nodes that have been visited before.
 - It may take a huge space and a clever algorithm to implement an efficient Priority Queue.
 - It may need a clever data structure to efficiently check for possible duplications.
- Cost function:
 - Need an lower bound estimation that is as large as possible.
 - Can design the cost function so that A* emulates the behavior of other search routines.

Q:

- ▶ What disk based techniques can be used?
- \triangleright Why do we need a non-trivial h(P) that is admissible?
- ▶ How to design an admissible cost function?

DFS with a threshold

- DFS_{cost}(N, f, threshold) is a version of DFS with a starting state N and a cost function f that cuts off a path when its cost is more than a given threshold.
 - $DFS_{depth}(N, cut_off_depth)$ is a special version of $DFS_{cost}(N, f, threshold)$.
- Algorithm DFS_{cost}(N₀, f, threshold)
 - Initialize a Stack S
 - Push $(null, N_0)$ to S where N_0 is the initial state
 - While S is not empty do
 - \triangleright **Pop** (current, N) from S
 - $\triangleright R \leftarrow next(current, N) \{ * \text{ pick a good move ordering here } * \}$
 - \triangleright If R = null, then continue {* all children of N are searched *}
 - \triangleright **Push** (R, N) to S
 - \triangleright Let *P* be the path from N_0 to *R*
 - $\triangleright If f(P) > threshold, then continue \{* cut off *\}$
 - \triangleright If R is a goal, then return success {* Goal is found! *}
 - \triangleright If R is already in S, then continue {* to avoid loops *}
 - \triangleright **Push** (null, R) to S {* search deeper *}
 - Return fail

How to pick a good move ordering (1/2)

- Instead of just using next(current, N) to find the next unvisited neighbors of N with the information of the last visited node being current, we do the followings.
 - Use a routine to order the neighbors of N so that it is always the case the neighbors are visited from low cost to high cost.
 - Let this routine be next1(current, N).
 - Note we still need dummy first and last elements being *null*.

How to pick a good move ordering (2/2)

Algorithm DFS1_{cost}(N₀, f, threshold)

- Initialize a Stack \hat{S}
- Push $(null, N_0)$ to S where N_0 is the initial state
- While S is not empty do
 - \triangleright **Pop** (current, N) from S
 - $\triangleright \ R \leftarrow next1(current, N)$
 - \triangleright If R = null, then continue {* all children of N are searched *}
 - \triangleright **Push** (R, N) to S
 - \triangleright Let *P* be the path from N_0 to *R*
 - $\triangleright \ If f(P) > threshold, then \ continue \ \{* \ cut \ off \ *\}$
 - \triangleright If R is a goal, then return success
 - \triangleright If R is already in S, then continue {* to avoid loops *}
 - \triangleright **Push** (null, R) to S {* search deeper *}
- Return fail

How to incooperate ideas from \boldsymbol{A}^*

- Instead of using a stack in DFS_{cost}, use a priority queue.
- Algorithm DFS2_{cost}(N₀, f, threshold)
 - Initialize a priority queue PQ
 - Insert $(null, N_0)$ to PQ where N_0 is the initial state
 - While PQ is not empty do
 - $\triangleright \operatorname{Remove} (current, N) \text{ with the least cost } f(P) \text{ for the path } P \text{ from } N_0 \\ \operatorname{to} N \text{ from } PQ \end{cases}$
 - ▶ If current is a goal, then return success
 - $\triangleright \ R \leftarrow next1(current, N)$
 - \triangleright If R = null, then continue {* all children of N are searched *}
 - \triangleright Insert (R, N) to PQ
 - \triangleright Let *P* be the path from N_0 to *R*
 - $\triangleright \ \textit{If} \ f(P) > threshold, \ \textit{then continue} \ \textit{\{* cut off *\}}$
 - \triangleright If R is already in PQ, then continue {* to avoid loops *}
 - \triangleright Insert (null, R) to $PQ \{ * \text{ search deeper } * \}$

• Return fail

• It may be costly to maintain a priority queue as in the case of A^* .

$IDA^* = DFID + A^*$

- DFS_{cost}(N, f, threshold) is a version of DFS with a starting state N and a cost function f that cuts off a path when its cost is more than a given threshold.
- IDA*: iterative-deepening A*
- Algorithm IDA*(N₀, threshold)
 - $threshold \leftarrow h(null)$
 - While *threshold* is reasonable do
 - $\triangleright DFS_{cost}(N_0, g + h(), threshold) \\ \{* Can also use DFS1_{cost} or DFS2_{cost} here * \}$
 - If the goal is found, then return success
 - \triangleright threshold \leftarrow the least g(P) + h(P) cost among all paths P being cut
 - Return fail

IDA*: comments

- IDA* does not need to use a priority queue as in the case of A*.
 - IDA* is optimal in terms of solution cost, time, and space over the class of admissible best-first searches on a tree.
- Issues in updating threshold.
 - Increase too little: re-search too often.
 - Increase too large: cut off too little.
 - Q: How to guarantee optimal solutions are not cut?
 - ▷ It can be proved, as in the case of A*, that given an admissible cost function, IDA* will find an optimal solution, i.e., one with the least cost, if one exists.
- Cost function is the knowledge used in searching.
- Combine knowledge and search!
- Need to balance the amount of time spent in realizing knowledge and the time used in searching.

15 puzzle (1/2)

Introduction of the game:

- 15 tiles in a 4*4 square with numbers from 1 to 15.
- One empty cell.
- A tile can be slided horizontally or vertically into an empty cell.
- From an initial position, slide the tiles into a goal position.

Examples:

• Initial position:

10	8		12
3	7	6	2
1	14	4	11
15	13	9	5

• Goal	position:
--------	-----------

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

15 puzzle (2/2)

- Total number of positions: $16! = 20,922,789,888,000 \le 2.1 * 10^{13}$.
 - It is feasible, in terms of computation time, to enumerate all possible positions, since 2007.
 - ▷ Can use DFS or DFID now.
 - ▷ Need to avoid falling into loops or re-visit a node too many times.
 - It is still too large to store all possible positions in main memory now (2013).
 - ▷ Cannot use BFS efficiently even now.
 - ▶ Maybe difficult to find an optimal solution.
 - ▷ Maybe able to use disk based BFS.

Solving 15 puzzles

- Using DEC 2060 a 1-MIPS machine: solved the 15 puzzle problem within 30 CPU minutes for all testing positions, generating over 1.5 million nodes per minute.
 - The average solution length was 53 moves.
 - The maximum was 66 moves.
 - IDA* generated more nodes than A*, but ran faster due to less overhead per node.
- Note: Intel Core i7 3960X (6 cores) is rated at 177,730 MIPS and ARM Cortex A7 is rated at 2,850 MIPS.

Heuristics used:

- g(P): the number of moves made so far.
- h(P): the Manhattan distance between the current board and the goal position.
 - ▷ Suppose a tile is currently at (i, j) and its goal is at (i', j'), then the Manhattan distance for this tile is |i i'| + |j j'|.
 - ▶ The Manhattan distance between a position and a goal position is the sum of the Manhattan distance of every tile.
 - \triangleright h(P) is admissible.

What else can be done?

- Bi-directional search and IDA*?
 - How to design a good and non-trivial heuristic function?
- How to find an optimal solution?
- How to get a better move ordering in DFS?
- Balancing in resource allocation:
 - The efforts to memorize past results versus the amount of efforts to search again.
 - The efforts to compute a better heuristic, i.e., the cost function.
 - The amount of resources spent in implementing a better heuristic and the amount of resources spent in searching.
- Search in parallel.
- More techniques for disk based algorithms.
- Q: Can these techniques be applied to two-person games?

References and further readings

- Judea Pearl. Heuristics: Intelligent search strategies for computer problem solving. Addison-Wesley, 1984.
- * R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. *Artificial Intelligence*, 27:97–109, 1985.
- R. E. Korf and P. Schultze. Large-scale, parallel breadth-first search. Proceedings of AAAI, 1380–1385, 2005.
- R. E. Korf. Linear-time disk-based implicit graph search, JACM, 55:26-1–26-40, 2008.