Theory of Computer Games

電腦對局理論

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Goal

- **Course name:** Theory of Computer Games
 - 電腦對局理論
- **Prerequisite:** Computer Programming, and Data Structure and Algorithms.
- **Goal:** This course introduces techniques for computers to play various games which include Chinese chess and Go.
- **Disclaimers:**
 - NOT yet a course on game theory.
 - NOT yet a course on video games.
 - NOT yet a course on war game simulations.
- **Web page:**
About this course

- **Time and Place:** Every Thursday from 2:20pm to 5:20pm at Room 310 (NTU CSIE building).
 - Sep 18 25
 - Oct 2 9 16 23 30
 - Nov 6 13 20 27
 - Dec 4 11 18 25
 - Jan 1 8 22

- **Dates:**
 - Nov 6 13 20 27
 - Dec 4 11 18 25
 - Jan 1 8 22

- **Format:**
 - Lectures.
 - Presentations for homework projects.
 - Invited lectures.
 - Chinese chess
 - Go
 - . . .
 - Student presentation: the last few lectures if time allows.

- **Class materials**
 - Class notes.
 - Collection of papers.
Acknowledgements

- Thanks to the students of this course for providing constructive feedbacks on the slides.
- Special thanks the following persons.
 - Yuh-Jie Chen (class of 2008)
 - Jennya Chang (class of 2011)
 - Jessica Lin (class of 2011)
 - 許祐程 (TA of the 2012 class)
Evaluation (1/3)

- **Homework (30%)**
 - One homework project about single-agent search (15%)
 - About single agent search.
 - Pick your own game, implement, and then present the result.
 - One homework project about Monte-Carlo simulation (15%)
 - About 2 player games.
 - Your program against TA’s program.

- **Written exam: midterm exam (30%)**
Evaluation (2/3)

- **Final project (40%)**
 - A computer game program for Chinese Dark Chess.
 - A sample code with GUI will be provided.
 - The usage of this sample code is restricted for anything related to this course only.
 - The 8th NTU-TCG Cup.
 - Submitted package: Code + documents.

- **Class participation (bonus)**
Evaluation (3/3)

- Presentation/Report of a research paper on game tree search.
 - If we have more than 16 students, then
 - Bonus for selected students who are obviously falling behind.
 - If we have less than 17 students, then
 - This is required for each student.
 - This will be 10% of your score in which case the two programming homework each take 10%.
 - If time allows, give an in-class presentation.
 - Discussion before presentation.
 - 30-minute talk.
 - \(\leq 30 \) slides in PDF format.
 - 10–15 minutes of Q & A.
 - Each student asks \(\geq 1 \) non-trivial question.
 - Submit your revised set of slides one week later.
 - If time does not allow, a written report.
 - Pick a paper related to the course.
 - Write a report with at least 1000 words in PDF format.
 - Summary of results in the paper.
 - Comments about this paper, its strength, weakness and potential improvements.
Lecturing format

- For each topic
 - The first and most influential papers are introduced.
 - A list of recent and latest papers is provided for further readings and/or topics for presentations.
Topics

- Introduction: an A.I. oriented overview
- Single-player games
- Two-player perfect information games
- Practical considerations
 - Memorizing knowledge
 - *Transposition tables*
 - *Endgame databases*
 - The graph-history interaction (GHI) problem
 - Opponent model
 - Timing control
 - Hardware enhancements
Introduction and an A.I. oriented overview

- Relations between computer games and Artificial Intelligence.
 - Why we study computer games?
 - Why we play or study games?

- History [SvdH02] [Sha50]
 - The Turk, a chess playing “machine” at 1780’s
 - The endgame playing machine at 1910’s
 - C. E. Shannon (1950) and A. Samuel (1960)

- Games that machines have beaten human champions [SvdH02] [Sch00]
 - Chess
 - Othello
 - Checker
 - …
Single-player games

- Games that can be played by one person
 - combinatorial games such as 15-puzzle or Sukodu
 - other solitaire

- Classical approaches [Kor85] [KF02] [CS98]
 - Brute-force, BFS, DFS and its variations including DFID
 - Bi-directional search
 - A*
 - IDA*
 - IDA* with databases

- Disk-based approach [KS05]
Two-player perfect information games (1/2)

- A survey of current status [vdHUvR02]
- Classical approaches
 - Alpha-beta search and its analysis [KM75]
 - Scout and Negascout [Pea80] [Rei83] [Fis83]
 - MTD(\(f\)): Best-first fixed-depth search [PSPdB96] [Pea80] if time allowed
- Enhancements to the classical approaches
 - Aspiration search
 - Quiescence search [Bea90]
 - Move ordering and other techniques [Sch89] [AN77] [Hsu91]
 - Further pruning techniques [SP96] including null move pruning and late move reduction
 - Proof-number search [AvdMvdH94] if time allowed
- Parallel alpha-beta based game tree search [Bro96] [FMM94] [HM02] [HSN89] [Hya97] [Man01]
Monte-Carlo game tree search
- Original ideas [Bru93]
- Best first game tree growing
- UCT
- Pruning techniques
 - Online knowledge [BH04] [YYK+06]
 - Offline knowledge [ST09] [HCL10a]
- Parallel Monte-Carlo game tree search [CJ08] [CWvdH08]

Case study:
- Computer Chinese chess [YCYH04]
- Computer Chinese dark chess [CSH10] if time allowed
Other games – if time allowed

- **Games with imperfect information and stochastic behaviors** [FBM98]
 - Backgammon
 - Bridge

- **Multi-player games** [Stu06]
 - Poker
 - Majon
Practical considerations (1/2)

- Transposition tables
 - Recording prior-search results to avoid researching
 - Design of a good hash function
 - Zobrist’s hash function \cite{Zob70}

- Open-game \cite{Hy99} \cite{Bu99} and endgame databases \cite{Th86} \cite{Th96} \cite{Wl06}
 - Off-line collecting of knowledge
 - Computation done in advance

- The graph-history interaction (GHI) problem \cite{Ca85} \cite{Bv98} \cite{Wh05}
 - The value of a position depends on the path leading to it.
 - Position value is dynamic and static.
Practical considerations (2/2)

- **Opponent model** [CM96]
 - How to take advantage of knowing the playing style of your opponent.

- **Timing and resource usage control** [Hy84] [HGN85] [MS93]
 - Using time wisely
 - Use too little time in the opening may be fatal.
 - Use too much time in opening may be fatal, too.
 - Knowledge from real tournament environments [vV09].
 - For Monte-Carlo type of search [HCL10b].

- **Hardware enhancements** [DL04]

- **Parallelization** [Bro96] [Man01]
Concluding remarks

- Search chance nodes
- How to put everything together
- How to test your implementation
Resources (1/5)

- **ICGA web site**
 - http://ticc.uvt.nl/icga/
 - Formally as ICCA (International Computer Chess Association)
 - *Between 1977 and 2001.*

- **International Computer Games Association**
 - *Since 2002.*

- **Host of Computer Olympiad**
 - *International competition of games played by computers*
 - Hold every year since 2000
 - 1989 at London, United Kingdom (1st)
 - 2004 at Ramat-Gan, Israel (9th)
 - 2005 at Taipei, Taiwan (10th)
 - 2011 at Tilburg, the Netherlands (16th)
 - 2013 at Yokohama, Japan (17th)
Resources (2/5)

- **TCGA web site**
 - Taiwan Computer Games Association
 - Since 2011.
 - http://tcga.ndhu.edu.tw
 - Annual conference and tournaments

- **TAAI game tournaments**
 - Taiwan AI Association
 - http://www.taaai.org.tw/TAAI/
 - Annual conference since 2001
 - Annual game tournament since 2009
Resources (3/5)

- **Proceedings of IJCAI**
 - International Joint Conference on Artificial Intelligence
 - Covers all areas of A.I.
 - Computer games occupy only a small session now
 - Since 1969, odd numbered of years

- **Proceedings of AAAI**
 - Association for the Advancement of A.I.
 - Covers all areas of A.I.
 - Computer games occupy only a small session now
 - Since 1980
Proceedings of the ACG conference

- Advances in Computer Games International Conference
- Every (if possible) odd numbered of year
 - 1999 at Paderborn Germany (9th)
 - 2003 at Graz, Austria (10th)
 - 2005 at Taipei, Taiwan (11th)
 - 2009 at Pamplona, Spain (12th)
 - 2011 at Tilburg, the Netherlands (13th)

Proceedings of the CG conference

- Computers and Games International Conference
- Since 1998, even numbered of years

Proceedings of IEEE CIG

- Computational Intelligence and Games International Conference
- Since 2005, every year.
- Video game, ...
Resources (5/5)

- **Artificial Intelligence**
 - Flagship journal
 - Since 1970

- **ICGA journal**
 - Quarterly publication since 1977

- **The A.I. magazine**
 - Journal for AAAI
 - Since 1980

- **IEEE transactions on Computational Intelligence and A.I. in Games**
 - A new IEEE journal
 - Quarterly publication since 2009
References

Bruno Bouzy. Associating shallow and selective global tree search with Monte Carlo for 9x9 Go. In *Lecture Notes in Computer*

D. E. Knuth and R. W. Moore. An analysis of alpha-beta prun-

A. Kishimoto and M. Müller. A general solution to the graph
history interaction problem. In *Proceedings of Nineteenth National

R. E. Korf. Depth-first iterative-deepening: An optimal admissi-

puzzles. *International Computer Game Association (ICGA) Journal*,

R. E. Korf and P. Schultze. Large-scale, para;;e; breadth-first

Hideki Kato and Ikuo Takeuchi. Parallel Monte-Carlo tree search

[SBB+07] Jonathan Schaeffer, Neil Burch, Yngvi Bjornsson, Akihiro Kishi-

[WH05] I.-C. Wu and D.-Y. Huang. A new family of k-in-a-row games. In H. Jaap van den Herik, Shun-Chin Hsu, Tsan sheng Hsu, and

