Theory of Computer Games: Concluding Remarks

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

Introducing practical issues.

- The open book.
- The graph history interaction (GHI) problem.
- Smart usage of resources.
 - ▶ time during searching
 - ▶ memory
 - ▷ coding efforts
 - ▷ debugging efforts
- Opponent models
- How to combine what we have learned in class together to get a working game program.
- How to test your program?

The open book (1/2)

During the open game, it is frequently the case

- branching factor is huge;
- it is difficult to write a good evaluating function;
- the number of possible distinct positions up to a limited length is small as compared to the number of possible positions encountered during middle game search.

Acquire game logs from

- books;
- games between masters;
- games between computers;
 - ▶ Use off-line computation to find out the value of a position for a given depth that cannot be computed online during a game due to resource constraints.

• • • •

The open book (2/2)

- Assume you have collected *r* games.
 - For each position in the r games, compute the following 3 values:
 - \triangleright win: the number of games reaching this position and then wins.
 - \triangleright loss: the number of games reaching this position and then loss.
 - \triangleright draw: the number of games reaching this position and then draw.
- When r is large and the games are trustful, then use the 3 values to compute an estimated goodness for this position.

Comments:

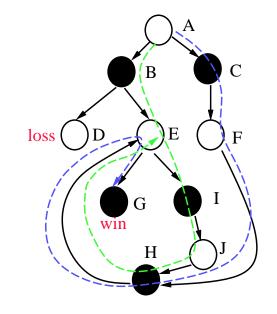
- Pure statistically.
- Can build a static open book.
- You program may not be able to take over when the open book is over.
- It is difficult to acquire large amount of "trustful" game logs.
- Automatically analysis of game logs written by human experts. [Chen et. al. 2006]
- Using high-level meta-knowledge to guide the way in searching:
 - ▶ Dark chess: adjacent attack of the opponent's Cannon. [Chen and Hsu 2013]

Graph history interaction problem

• The graph history interaction (GHI) problem [Campbell 1985]:

- In a game graph, a position can be visited by more than one paths.
- The value of the position depends on the path visiting it.
 - ▶ It can be win. loss or draw for Chinese chess.
 - ▷ It can only be draw for Western chess.
 - \triangleright It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al. '05].

GHI problem – example



- A → B → E → I → J → H → E is loss because of rules of repetition.
 Memorized H as a loss position.
- $A \to B \to D$ is a loss.
- $A \to C \to F \to H$ is loss because H is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \to C \to F \to H \to E \to G$ is a win.

Using resources

Time [Hyatt 1984] [Šolak and Vučković 2009]

- For human:
 - ▷ More time is spent in the beginning when the game just starts.
 - ▷ Stop searching a path further when you think the position is stable.
- Pondering:
 - ▷ Use the time when your opponent is thinking.
 - ▷ Guessing and then pondering.

Memory

- Using a large transposition table occupies a large space and thus slows down the program.
 - ▶ A large number of positions are not visited too often.
- Using no transposition table makes you to search a position more than once.

Other resources.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluating functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$
 - \triangleright "better" means closer to the real value f(p)
 - for some positions q, $f_2(q)$ is better than $f_1(q)$
- If you are using f_1 and you know your opponent is using f_2 , what can be done to take advantage of this information.
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - \triangleright In a MAX node, use f_1 .
 - \triangleright In a MIN node, use f_2

Opponent models – comments

Comments:

- Need to know your opponent model precisely.
- How to learn the opponent on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.

Search with chance nodes

Chinese dark chess

- Two player, zero sum, complete information
- Perfect information
- Stochastic
- There is a chance node during searching [Ballard 1983].
 - ▶ The value of a node is a distribution, not a fixed value.
- Previous work
 - Alpha-beta based [Ballard 1983]
 - Monte-Carlo based [Lancoto et al 2013]

Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function Pr(*) with the range of possible outcomes from 1 to N where N is a positive integer.
 - For each possible outcome i, there is a score(i) to be computed.
 - The expected value $E = \sum_{i=1}^{N} score(i) * Pr(x = i)$.
 - The minimum value is $m = \min_{i=1}^{N} \{score(i) \mid Pr(x=i) > 0\}$.
 - The maximum value is $M = \max_{i=1}^{N} \{score(i) \mid Pr(x=i) > 0\}$.
- Example: in Chinese dark chess.
 - For the first ply, N = 14 * 32.
 - \triangleright Using symmetry, we can reduce it to 7*8.

• We now consider the chance node of flipping the piece at the cell a1.

- \triangleright N = 14.
- ▷ Assume x = 1 means a black King is revealed and x = 8 means a red King is revealed.
- \triangleright Then score(1) = score(8).
- ▷ Pr(x = 1) = Pr(x = 8) = 1/14.

Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase *i*, *i* = N is evaluated.
 - Assume $v_{min} \leq score(i) \leq v_{max}$.
- How do the lower and upper bounds, namely m_i and M_i , of the chance node change at the end of phase i?

•
$$i = 0$$
.

 $\triangleright \ m_0 = v_{min}$ $\triangleright \ M_0 = v_{max}$

• i = 1, we first compute score(1), and then know

▷
$$m_1 \ge score(1) * Pr(x = 1) + v_{min} * (1 - Pr(x = 1))$$
, and
▷ $M_1 \le score(1) * Pr(x = 1) + v_{max} * (1 - Pr(x = 1))$.

• • • •

• $i = i^*$, we have computed $score(1), \ldots, score(i^*)$, and then know • $m_{i^*} \ge \sum_{i=1}^{i^*} score(i) * Pr(x = i) + v_{min} * (1 - \sum_{i=1}^{i^*} Pr(x = i))$, and • $M_{i^*} < \sum_{i=1}^{i^*} score(i) * Pr(x = i) + v_{max} * (1 - \sum_{i=1}^{i^*} Pr(x = i))$.

Example: Chinese dark chess

• Assumption:

• The range of the scores of Chinese dark chess is [-10,10] inclusive.

• *N* = 7.

•
$$Pr(x=i) = 1/N = 1/7$$
.

Calculation:

•
$$i = 0$$
,

▷ $m_0 = -10$.

$$\triangleright M_0 = 10.$$

- i = 1 and if score(1) = -2, then
 - ▷ $m_1 = -2 * 1/7 + -10 * 6/7 = -62/7 \simeq -8.86$. ▷ $M_1 = -2 * 1/7 + 10 * 6/7 = 58/7 \simeq 8.26$.
- i = 1 and if score(1) = 3, then
 - ▷ $m_1 = 3 * 1/7 + -10 * 6/7 = -57/7 \simeq -8.14$. ▷ $M_1 = 3 * 1/7 + 10 * 6/7 = 63/7 = 9$.

How to use these bounds

- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
 - Nicely fit into the alpha-beta search algorithm.
- Can do better by not searching the DFS order.
 - It is not necessary to finish search completely for the subtree of x = 1, and then start to look at the subtree of x = 2.
 - Assume it is a MAX chance node, e.g., the opponent takes a flip.
 - ▷ Knowing some value v'_1 of a subtree for x = 1 gives an upper bound, i.e., $score(1) \ge v'_1$.
 - ▷ Knowing some value v'_2 of a subtree for x = 2 gives an upper bound, i.e., $score(2) \ge v'_2$.
 - ▶ These bounds can be used to make the search window further narrower.

For Monte-Carlo based algorithm, we need to use a sparse sampling algorithm to efficiently estimate the expected value of a chance node [Kearn et al 2002].

Putting everything together

Game playing system

- Use some sorts of open book.
- Middle-game searching: usage of a search engine.
 - ▷ Main search algorithm
 - ▷ Enhancements
 - Evaluating function: knowledge
- Use some sorts of endgame databases.
- Debugging and testing

Testing

- You have two versions P_1 and P_2 .
- You make the 2 programs play against each other using the same resource constraints.
- To make it fair, during a round of testing, the numbers of a program plays first and second are equal.
- After a few rounds of testing, how do you know P_1 is better or worse than P_2 ?

How to know you are successful

- Assume during a self-play experiment, two copies of the same program are playing against each other.
 - Since two copies of the same program are playing against each other, the outcome of each game is an independent random trial and can be modeled as a trinomial random variable.
 - Assume for a copy playing first,

$$Pr(game_{first}) = \begin{cases} p & \text{if win} \\ q & \text{if draw} \\ 1 - p - q & \text{if lose} \end{cases}$$

Hence for a copy playing second,

$$Pr(game_{last}) = \left\{ \begin{array}{ll} 1-p-q & \text{if win} \\ q & & \text{if draw} \\ p & & \text{if lose} \end{array} \right.$$

Outcome of self-play games

- Assume 2n games, g_1, g_2, \ldots, g_{2n} are played.
 - In order to offset the initiative, namely first player's advantage, each copy plays first for n games.
 - We also assume each copy alternatives in playing first.
 - Let g_{2i-1} and g_{2i} be the *i*th pair of games.
- Let the outcome of the *i*th pair of games be a random variable X_i from the prospective of the copy who plays g_{2i-1} .
 - Assume we assign a score of x for a game won, a score of 0 for a game drawn and a score of -x for a game lost.

• The outcome of X_i and its occurrence probability is thus

$$Pr(X_i) = \begin{cases} p(1-p-q) & \text{if } X_i = 2x \\ pq + (1-p-q)q & \text{if } X_i = x \\ p^2 + (1-p-q)^2 + q^2 & \text{if } X_i = 0 \\ pq + (1-p-q)q & \text{if } X_i = -x \\ (1-p-q)p & \text{if } X_i = -2x \end{cases}$$

How good we are against the baseline?

- Properties of X_i .
 - The mean $E(X_i) = 0$.
 - The standard deviation of X_i is

$$\sqrt{E(X_i^2)} = x\sqrt{2pq + (2q + 8p)(1 - p - q)},$$

and it is a multi-nominally distributed random variable.

- When you have played n pairs of games, what is the probability of getting a score of s, s > 0?
 - Let $X[n] = \sum_{i=1}^{n} X_i$.
 - ▷ The mean of X[n], E(X[n]), is 0.
 - ▷ The standard deviation of X[n], σ_n , is $x\sqrt{n}\sqrt{2pq + (2q + 8p)(1 p q)}$,
 - If s > 0, we can calculate the probability of $Pr(|X[n]| \le s)$ using well known techniques from calculating multi-nominal distributions.

Practical setup

Parameters that are usually used.

- *x* = 1.
- For Chinese chess, q is about 0.3161, p = 0.3918 and 1 p q is 0.2920.
 - ▷ Data source: 63,548 games played among masters recorded at www.dpxq.com.
 - ▷ This means the first player has a better chance of winning.
- The mean of X[n], E(X[n]), is 0.
- The standard deviation of X[n], σ_n , is

$$x\sqrt{n}\sqrt{2pq + (2q + 8p)(1 - p - q)} = \sqrt{1.16n}.$$

Results (1/3)

$Pr(X[n] \le s)$	s = 0	s = 1	s = 2	s = 3	s = 4	s = 5	s = 6
$n = 10, \sigma_{10} = 3.67$	0.108	0.315	0.502	0.658	0.779	0.866	0.924
$n = 20, \sigma_{20} = 5.19$	0.076	0.227	0.369	0.499	0.613	0.710	0.789
$n = 30, \sigma_{30} = 6.36$	0.063	0.186	0.305	0.417	0.520	0.612	0.693
$n = 40, \sigma_{40} = 7.34$	0.054	0.162	0.266	0.366	0.460	0.546	0.624
$n = 50, \sigma_{50} = 8.21$	0.049	0.145	0.239	0.330	0.416	0.497	0.571

Results (2/3)

$Pr(X[n] \le s)$	s = 7	s = 8	s = 9	s = 10	s = 11	s = 12	s = 13
$n = 10, \sigma_{10} = 3.67$	0.960	0.981	0.991	0.997	0.999	1.000	1.000
$n = 20, \sigma_{20} = 5.19$	0.851	0.899	0.933	0.958	0.974	0.985	0.991
$n = 30, \sigma_{30} = 6.36$	0.761	0.819	0.865	0.902	0.930	0.951	0.967
$n = 40, \sigma_{40} = 7.34$	0.693	0.753	0.804	0.847	0.883	0.912	0.934
$n = 50, \sigma_{50} = 8.21$	0.639	0.699	0.753	0.799	0.839	0.872	0.900

Results (3/3)

$Pr(X[n] \le s)$	s = 14	s = 15	s = 16	s = 17	s = 18	s = 19	s = 20
$n = 10, \sigma_{10} = 3.67$	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$n = 20, \sigma_{20} = 5.19$	0.995	0.997	0.999	0.999	1.000	1.000	1.000
$n = 30, \sigma_{30} = 6.36$	0.978	0.986	0.991	0.994	0.997	0.998	0.999
$n = 40, \sigma_{40} = 7.34$	0.952	0.966	0.976	0.983	0.989	0.992	0.995
$n = 50, \sigma_{50} = 8.21$	0.923	0.941	0.956	0.967	0.976	0.983	0.988

Statistical behaviors

- Hence assume you have two programs that are playing against each other and have obtained a score of s + 1, s > 0, after trying n pairs of games.
 - Assume $Pr(|X[n]| \le s)$ is say 0.95.
 - ▶ Then this result is meaningful, that is a program is better than the other, because it only happens with a low probability of 0.05.
 - Assume $Pr(|X[n]| \le s)$ is say 0.05.
 - ▶ Then this result is not very meaningful, because it happens with a high probability of 0.95.
- In general, it is a very rare case, e.g., less than 5% of chance that it will happen, that your score is more than $2\sigma_n$.
 - For our setting, if you perform n pairs of games, and your net score is more than $2*\sqrt{1.16}*\sqrt{n}\simeq 2.154\sqrt{n}$, then it means something statistically.
- You can also decide your "definition" of "a rare case".

Concluding remarks

Consider your purpose of studying a game:

- It is good to solve a game completely.
 - > You can only solve a game once!
- It is better to acquire the knowledge about why the game wins, draws or loses.
 - ▷ You can learn lots of knowledge.
- It is even better to discover knowledge in the game and then use it to make the world a better place.

▶ **Fun!**

Try to use the techniques learned from this course in other areas!

References and further readings (1/3)

- M. Buro. Toward opening book learning. International Computer Game Association (ICGA) Journal, 22(2):98– 102, 1999.
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- R. M. Hyatt. Using time wisely. International Computer Game Association (ICGA) Journal, pages 4–9, 1984.
- R. Šolak and R. Vučković Time management during a chess game, ICGA Journal, no. 4, vol. 32, pp. 206–220, 2009.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing : mid-80's perspective, pages 278–280. ACM Press, 1985.

References and further readings (2/3)

- B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Abstracting knowledge from annotated Chinese-chess game records. In H. Jaap van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, *Lecture Notes in Computer Science 4630: Proceedings of the 5th International Conference on Computers and Games*, pages 100–111. Springer-Verlag, New York, NY, 2006.
- Bo-Nian Chen and Tsan-sheng Hsu. Automatic Generation of Chinese Dark Chess Opening Books Proceedings of the 8th International Conference on Computers and Games (CG), August 2013, to appear.

References and further readings (3/3)

- Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald, Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceedings IJCAI, pages 580–586, 2013.
- KEARNS, Michael; MANSOUR, Yishay; NG, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu "The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS# 4250, pages 165–179, 2005.